
https://doi.org/10.1007/s10916-021-01718-7

IMAGE & SIGNAL PROCESSING

Robust Data Integration Method for Classification of Biomedical
Data

Aneta Polewko-Klim1 · Krzysztof Mnich2 ·Witold R. Rudnicki1,2

Received: 8 October 2020 / Accepted: 26 January 2021
© The Author(s) 2021

Abstract
We present a protocol for integrating two types of biological data – clinical and molecular – for more effective classification
of patients with cancer. The proposed approach is a hybrid between early and late data integration strategy. In this hybrid
protocol, the set of informative clinical features is extended by the classification results based on molecular data sets. The
results are then treated as new synthetic variables. The hybrid protocol was applied to METABRIC breast cancer samples
and TCGA urothelial bladder carcinoma samples. Various data types were used for clinical endpoint prediction: clinical data,
gene expression, somatic copy number aberrations, RNA-Seq, methylation, and reverse phase protein array. The performance
of the hybrid data integration was evaluated with a repeated cross validation procedure and compared with other methods
of data integration: early integration and late integration via super learning. The hybrid method gave similar results to those
obtained by the best of the tested variants of super learning. What is more, the hybrid method allowed for further sensitivity
analysis and recursive feature elimination, which led to compact predictive models for cancer clinical endpoints. For breast
cancer, the final model consists of eight clinical variables and two synthetic features obtained from molecular data. For
urothelial bladder carcinoma, only two clinical features and one synthetic variable were necessary to build the best predictive
model. We have shown that the inclusion of the synthetic variables based on the RNA expression levels and copy number
alterations can lead to improved quality of prognostic tests. Thus, it should be considered for inclusion in wider medical
practice.

Keywords Random forest · Data integration · Feature selection · Biomedical data

Introduction

The cancer pathophysiology is related to both genetic and
epigenetic changes that are described by various types of
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biological data. Each type of cancer is very complex, with
high variability of sources, driver mutations, and responses
of the host to therapy [1]. Therefore, commonly used
clinical data does not provide all the information necessary
for analyses and predictions [2, 3].

In recent years, high-throughput omics data delivered
novel biological insights into human biology and health [4].
The omics data was successfully utilized for different goals,
such as cancer outcome prediction, survival prediction,
prediction of response to a pharmaceutical compound,
risk stratification, and clustering of cases [5–7]. However,
integration of various types of omics data [4, 8], and the
integration of omics and non-omics data [9–11] is necessary
to gain a deep understanging of biological systems. For this
purpose, many different modeling approaches have been
proposed [8, 12]. Machine learning methods in particular,
are crucial to the integrative analyses due to the constantly
growing dimensionality of omics data [13, 14].

This study is focused on the prediction of the clini-
cal endpoint with clinical and molecular genomic data.
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The prediction of clinical endpoints and clinical outcomes
based on the molecular data for cancer patients is extremely
difficult [3, 15]. Nevertheless, predictive and diagnostic
models significantly increased the efficiency of diagnos-
tics, prognostics, and therapeutics in patients with cancer
[15, 16].

With the advent of new types of molecular data, more
effective prediction of clinical endpoints requires new
methods for integration of clinical, as well as multiple
types of molecular data [17]. The comprehensive pan-cancer
analysis of multiple omics profiles and clinical factors,
conducted by Zhu et al. [17] showed that data integration
improved prognostic performance in 7 out of 14 of cancer
types examined, when compared with the use of clinical
variables alone.

The integration of clinical and omics data is challenging
due to the heterogeneity of the data sets [3, 18]. Clinical data
consist of a few variables, strongly related to the analyzed
phenomenon. Conversely, in omics data sets the signal
is distributed through many weak variables. Three major
strategies are generally used to deal with heterogeneous data
[3, 19, 20].

In the early clinico-genomic integration strategy (also
referred to as concatenation-based integration), one com-
bines several data sets and relies on the machine learning
algorithm for finding meaningful relationships across data
sets boundaries. In this approach the model building is usu-
ally preceded by a feature selection (FS) step [3], due to a
very large number of variables. The feature selection pro-
cedure is performed either for molecular data only [21], or
on the combined dataset [22]. In the late integration strat-
egy (model-based integration) is conducted in two stages.
First, separate models are built for each data set. Then,
their results are used as input for the second level machine
learning algorithm. These two strategies can be generally
executed using standard machine learning algorithms.

In the third approach, the intermediate integration strat-
egy (transformation-based integration), each individual data
set is transformed into an intermediate representation (e.g.
network, kernel) that preserves the individual properties of
the data set. The intermediate representations of data sets are
merged before developing prediction models. The advan-
tages and disadvantages of these approaches are thoroughly
discussed in [3].

One can observe that none of the above strategies is
appropriate for strongly heterogeneous data [3, 23, 24].
A handful of strong clinical variables is incomparable
to many weak omics ones, which makes the early and
intermediate integration inefficient. The late integration
is also problematic due to the different performance of
classification based on such different data. In some cases a
single important clinical feature delivers similar information

on the analysed phenomenon as the entire whole molecular
data set. Hence, the natural way to integrate such data, is to
build an aggregate of omics data and treat it as an additional
clinical feature.

In the current study, a novel methodology for integrat-
ing various types of molecular data with clinical data is
proposed. It is a mixture of early and late integration strat-
egy and can be performed using standard machine learning
algorithms. First, independent predictive models are devel-
oped for each type of molecular data. The results of these
models can be treated as synthetic features that are complex
aggregates of many molecular variables, maximising the
information on the investigated phenomenon. Then, these
new synthetic variables are included in the set of clinical
descriptors. Finally, a machine learning model is built using
the extended data set, consisting of the clinical and synthetic
molecular variables.

The methodology outlined above was applied to predict
clinical endpoints for breast cancer patients (BRCA data
set) or urothelial bladder carcinoma cancer patients (BLCA
data set). Both types of cancer were already investigated
in many studies in the context of data integration for the
prediction of the clinical endpoint [18, 25, 26]. The current
work is an extended and improved follow up of the earlier
pilot study performed for the BRCA data set, using two FS
methods [24].

The main contributions of the current study are as follows:

– a novel approach to the problem of integration of
diverse biomedical data of cancer patients;

– comparison of the performance of single predictive
models with combined models;

– demonstration that synthetic molecular variables (i.e.
classifier outputs) may be robust prognostic markers.

Materials andMethods

All data processing and analysis were conducted by using R
version 3.4.3 [27] and R/Bioconductor packages [28].

Data sets

Breast cancer

Three types of descriptors were available for breast can-
cer patients: clinical data (CD), gene expression profiles
(GE) obtained with Illumina Human HT-12 v3 microar-
ray, and copy-number alterations data (CNA) obtained with
Affymetrix SNP 6.0. The data was obtained from the Molec-
ular Taxonomy of Breast Cancer International Consortium
(METABRIC) project [29].
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Clinical data The clinical data set includes twenty five
clinical features, obtained from the diagnostic tests, such as:
Prosigna, Breast Cancer Index, EndoPredict, MammaPrint,
Mammostrat, and Oncotype DX DCIS. All samples with
missing values were removed, with the exception of the
tumor stage feature, where the null value was replaced by
0. All qualitative clinical data was converted into numerical
data. The disease-specific survival was used as the clinical
endpoint (decision variable), since it predicts breast cancer
survival more accurately than the overall survival [30].

Molecular data The primary gene expression set contains
1906 samples described by 24369 continuous variables
corresponding to the gene expression levels. The CNA
set contains 1483 samples described by 22544 discrete
variables, corresponding to alterations of the number of
copies of genes. The missing values of probes were
replaced by mean and median values, for GE and CNA
sets respectively. Additionally, the filtering of variables was
performed for the GE set, based on the quality of the signal.
Two criteria were used - a sufficiently high intensity and
variation of the signal. The low intensity of measured gene
expression is generally considered as noise. What is more,
gene expression should have a sufficiently high variation
to be included in analysis - the small changes of activity,
even if statistically significant, are very unlikely to have
any biological relevance. Filtering was performed with the
help of a dedicated function from genefilter of Bioconductor
package [31]. The intensity threshold was set at the first
quartile of the distribution of the maximum gene expression
levels. Only genes for which at least 10% of samples have
intensity greater than this threshold were included. As for
the variation criterion, only the genes for which the robust
coefficient of variation [32] was higher than 0.05 were
included. This pre-filtering procedure limited this number
of GE features to 8673.

The complete records, comprising of CD, GE and CNA
data, were available for 1394 patients (781 survivors and 613
deceased), and were used in the study as the BRCA data set.

Urothelial bladder carcinoma cancer

Four types of data were available for these patients: clinical
information, the median mRNA levels of gene expression
(RNA-seq V2 RSEM normalized expression values), DNA
methylation profiles (METH) generated from Illumina
HM450K array (beta-values for genes), and protein expres-
sion profiling with reverse-phase protein arrays (RPPA).
Data was obtained from the Cancer Genome Atlas Urothe-
lial Bladder Carcinoma (TCGA-BLCA) program [33].

Clinical data The primary clinical data set contains twenty
one clinical features, comprising of individual patients’

information, such as demographic characteristics, cancer
topography and morphology, and treatment information.
The samples with incomplete information were removed
from the original set. Both the nominal, and the ordinal data
were transformed into numerical representation.

Molecular data The primary RNA set consists of 408 samples
and 20437 probes, the METH set of 413 samples and 16221
probes, and the RPPA set of 344 samples and 225 probes.

The data preparation procedure was performed for all
molecular data. First, the missing values of variables were
replaced by a their mean value. Then, all values were
replaced by their logarithm in base 2. Next, the initial
prefiltration of low-intensity probes and probes with low
variability across samples was performed with the help of
the genefilter package, in the same way as for BRCA data
set. The ComBat function with sva R package [34] was used
for removing batch effects between samples with different
tissue source sites.

After integrating clinical and molecular data sets, the
final BLCA data contained records of 320 patients (149
survivors and 171 deceased) in four subsets containing 21
clinical descriptors (CD), 19006 mRNA gene expression
profiles (RNA), 15628 DNA methylation profiles (METH),
and 219 reverse-phase protein profiles (RPPA).

The cross-validation procedure

The goal of the current study requires an unbiased estimation
of the quality of predictions for all the machine learning
models developed. Therefore, the entire machine learning
pipeline, including feature selection and model building for
molecular data sets, the final data integration and testing
the quality of predictions, was conducted within a repeated
k-fold cross validation procedure. The general cross-valida-
tion protocol is shown in Algorithm 1. In this study, we
conducted r = 30 repeats of k = 5-fold cross validation.

Feature selectionmethods

Clinical data

Clinical descriptors are highly diverse, some of them cor-
respond to numerical values resulting from measurements,
some to ordinal values and some to categorical descrip-
tions. Therefore, the CD set is not suitable for analysis with
tests that require numerical data. Instead, the all-relevant
FS algorithm Boruta [35, 36], was used to identify and
the relevant clinical variables. This selection was performed
only once, using the entire data set. The resignation from
cross-validation, could lead to positive bias in the estimated
quality of models based on CD data only. Consequently, the
estimate of improvement due to expanding the description
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by adding molecular data to clinical variables, may have a
small negative bias. Nevertheless, the bias is expected to be
small, due to the small number of clinical variables and a
sharp border between relevant and irrelevant ones. Thus, we
use this approach, as it is both simpler for interpretation and
computationally less expensive.

Molecular data

It is known that the filtering FS methods have better gener-
alisation properties than wrappers and embedded methods
[37], because they are not related to the algorithms used
later for classification. Therefore, two FS filters, namely
Mann-Whitney U-test [38] and MDFS [39] were applied
for detecting the informative features in molecular profiling
data sets. The former is a standard R library, for the latter
we used MDFS R package version 1.0.5 [40]. In both cases,
feature ranking was based on the p-values of the tests. P-
values were corrected for multiple testing with the help of
the SGoF procedure [41].

U-test The U-test is the nonparametric equivalent of the
two-sample t-test that assigns a probability to the hypothesis
that two independent samples corresponding to two decision
classes (vital status of patients: death/alive) are drawn from
populations with the same average value. Application of the
U-test is recommended when the data does not conform to a
normal distribution and/or the sample sizes are small. Both
these cases commonly occur for molecular data.

MDFS The MDFS algorithm measures the decrease of the
information entropy of the decision variable due to knowl-
edge of D-dimensional tuples of variables and measures
the influence of each variable in the tuple In this study,
two versions of MDFS algorithm (1D and 2D) were used,
referred to as MDFS-1D and MDFS-2D, respectively.

Redundancy removal Molecular profiling data contains
multiple highly correlated features, that can have an adverse
effect on classification accuracy and therefore the greedy
algorithm was used to remove redundant features. The final
set of features was determined by removing features that
were highly correlated with higher-ranking ones. The cut-
off level of Spearman’s rank correlation coefficient was set
to 0.7. The number of features from all molecular sets used
for model building, was limited to m =100. This value was
established experimentally by comparing the quality of the
models as a function of m. The algorithm 2 describes the
entire feature selection and model building procedure for
molecular data.

Machine learningmethods

Classification algorithm

The predictive models were built using the random forest
algorithm [42], implemented in randomForest R package
[43]. Random forest is an ensemble of decision trees, where
each tree is built on a different bagging sample of the
original data set. For each split, a subset of variables is
selected randomly and the one is selected that allows to
achieve the highest Gini coefficient for the resulting leaves.
Random Forest works well on data sets with a small number
of objects, has few tunable parameters that don’t relate
directly to the data, and very rarely fails. It usually gives
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results that are either best or very close to the best results
achievable by any classification algorithm, as shown in
comparison of performance of 179 algorithms on 121 data
sets performed by Fernandez-Delgado et al. [44]. Being
a tree-based algorithm, random forest is insensitive to the
type of data – it can deal with binary, categorical, as well
as continuous variables. Hence, it is particularly useful in
the analysis of clinical data, that contain all the types of
variables. Another advantage of the random forest algorithm
is the built-in OOB mechanism for unbiased estimation of
predictions (the OOB is an acronym for out of bag). It is
obtained by using the objects, which were not included in
the bagging sample used for the tree building, to test the
quality of the predictions. Each object is “in the bag” for
1 − e−1 fraction of trees and is OOB for e−1. All trees
for which the object is OOB make prediction of its class.
These predictions are then counted and the predicted class
is assigned using the same criteria that would be used for
predicting class for new data. However, in this case we
already know the class of all objects, hence we can compute
all quality measures, such as the error rate, the AUC or the
MCC. This measures are in most cases equivalent to the
external cross-validation. Using OOB estimates allows to
simplify the data integration procedure, see remarks in the
Proposed integration strategy subsection.

Evaluation metrics

The quality of the models was evaluated using three metrics:
the accuracy (ACC), the area under the receiver operator
curve (AUC), and the Matthews correlation coefficient (MCC)
[45]. It should be noted that the MCC and AUC metrics are
better suited to evaluate the quality of a classifier for the
unbalanced population than the simple ACC. Hence only the
MCC and AUC are used for comparisons, whereas the ACC
is only reported for completeness of results. For random
forest classification, the values of MCC and ACC metrics
depend on the value of cutoff hyperparameter, i.e. the number
of votes that lead to a choice of a decision class. In this
study, the hyperparameter was tuned to maximize MCC,
using OOB estimate of predictions for the training data.

Data integration

In this study, three strategies for the integration of clinical
data with molecular data sets for clinical endpoint prediction
were explored.

Early integration strategy

In the initial approach, all the relevant clinical features
with top-m most relevant features obtained from a given
molecular data set were simply merged. Unfortunately, such

an approach did not improve the results of the classifier
based on clinical data alone. Weak molecular variables
seemed to be ignored by the random forest algorithm in
the presence of much stronger clinical ones. Therefore,
alternative approaches were tested.

Late integration strategy

The implementation of the late integration strategy is based
on the super learning algorithm, proposed by Van der Laan
et al. [46]. A general scheme of this protocol is displayed in
Fig. 1.

The algorithm uses internal cross validation to obtain
unbiased predictions of machine learning models for partic-
ular data sets. The vectors of cross-validated predictions are
treated as new explanatory variables and used to build the
second-order machine learning model. The super learning
approach is universal: it allows to integrate diverse feature
selection and machine learning techniques, as well as mul-
tiple data sets. We used it to combine all the individual
sets of predictions for various data sets obtained with pro-
tocols using various feature selection methods. Hence, our
second-order models were built using 7 synthetic variables
for BRCA data, and 10 for BLCA data.

We applied three diverse methods to build the combined
model: non-negative linear combination, random forest
algorithm, and a simple mean of k best-performing base
models. The last method, which may be identified with the
“wisdom of crowds” principle [47], often performs as good
as more complicated methods. To reduce the noise due to
the random cross validation splits, we ran 30 loops of 5-
fold internal cross validation to produce 30 separate super
learning models. The eventual prediction was an average
over all the combined models.

The well-established method for evaluating the quality
of the final model involves an external cross validation.
However, it is very demanding computationally. Instead,
we applied Bootstrap Bias Correction algorithm that gives
similar results with much smaller computational effort [48,
49]. The algorithm allows for unbiased quality estimation of
the combined model, using only one run of the internal cross
validation to compute base models. In this study, 30 repeats
of bootstrap sampling procedure was used to estimate the
performance of combined models.

Hybrid integration strategy

The hybrid data integration approach is based on combining
clinical descriptors with synthetic features built as machine
learning predictions for molecular data sets. The data integra-
tion procedure is presented in the Fig. 2 and in algorithm 3.
The algorithm 4 describes the way of computing the com-
bined predictions for new data.
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Fig. 1 Procedure scheme for clinical endpoint prediction with clinical and molecular data using the super learner algorithm. See notation in text

The OOB estimates (see the description of random forest
algorithm in the subsection Machine learning methods) of
predicted probability of “positive” decision, obtained for
molecular data, are used as synthetic variables. Hence, the
new variables are represented by real numbers in from
the (0,1) interval. Note that the present version of the
algorithm bases on unbiased OOB prediction estimation,
which is a built-in feature of random forest classifier. This
allows for building the synthetic variables using the training
data set. One can expect only a minor bias of the OOB
predictions for molecular data due to the feature selection.
This small bias may slightly overestimate the strength of
the artificial molecular features. If another machine learning
algorithm was used, the predictions on the training set could
be strongly overfitted and thus incomparable to clinical
variables. In such a case, cross-validated predictions should
be used, like in the super learning procedure.

Sensitivity analysis

A crucial advantage of the hybrid approach is the possi-
bility of evaluating the contribution of particular molecular
data sets to the information of the decision variable. This
was achieved by performing sensitivity analysis of the pre-
dictive model to the removal of the descriptive variables.
The predictive models were constructed using a data set
with a single feature (clinical or synthetic) removed. In
this way, the influence of the single feature on the quality
of the model using all other informative features could be
established.

The next step of the conducted analysis is similar to
the well-known recursive feature elimination method. A
series of predictive models was built. It started with
models including all features. Then at each step the least
important feature was removed and new model was built.
Consequently we were able to build a well-performing
model using a smaller number of features.
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Fig. 2 Procedure scheme for clinical endpoint prediction with clinical and molecular data using the proposed method. See notation in text

Results

Four stages of the study generated different types of results.
In the first stage we obtained information which clinical
descriptors and which individual molecular variables carry
information relevant for prediction of the clinical end
point for BRCA and BLCA cancer. We also obtained
the predictive models based on the individual data sets
and compared their performance. In the second stage the
individual models were combined using the late information
strategy and we compared the results of the individual
models with that of the combined model. In the third stage
the hybrid integration approach was used for generation
of the combined model, and contribution of different data
sets to the final prediction was examined. Finally, in
the fourth stage the influence of individual variables was
examined and compact models were obtained based on the
hybrid integration. The results of these stages are presented
below. The effectiveness and performance of the compared
protocols for integrating clinical data and high-dimensional
molecular data were evaluated using the BRCA cancer data
from the METABRIC project and BLCA cancer data from
the TCGA project.

Informative variables

Clinical variables

Boruta feature selection algorithm [50] was used to select
informative clinical variables with BRCA and BLCA data.
For BRCA data, the 17 of 25 clinical descriptors were deemed
relevant: intclust, cohort, age at diagnosis, NPI, ER IHC,
breast surgery, three gene, claudin subtype, chemotherapy,
radio therapy, grade, tumor size, tumor stage, ER status,
HER2 status, PR status, oncotree code (in order of their
importance). Generally, the variables are weakly correlated
with each other, except for one pair ER IHC and ER status,
for which the correlation coefficient is r = 0.82.

In the case of BLCA data, only 5 of 21 clinical descriptors,
namely histological subtype (hist subtype), age, ajcc nodes,
ajcc stage, and grade proved relevant. Correlations between
the selected variables are weak, however, the variables
ajcc nodes, ajcc stage are strongly related (see Fig. 3).

Molecular variables

Three feature filtering methods were used to identify the rel-
evant molecular variables: Mann-Whithey U-test, MDFS-
1D, and MDFS-2D. For each filter, SGoF correction for
multiple tests [51] was applied. This correction is optimised
for the power of the test rather than for the reduction of false
positive results. Its application assured a reasonable number
of input variables for the machine learning algorithms. The
number of selected biomarkers for various data sets and fil-
tering methods is presented in Table 1. GE, RNA, METH
contain over a thousand uncorrelated informative variables,
hence the predictive models were built on 100 top-ranked
ones. The number of selected features for CNA and RPPA
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Fig. 3 Statistics of values for AJCC STAGE and AJCC NODES
variables from the BLCA clinical data. Despite the weak correlation,
the variables are clearly interdependent. Use of both variables instead
of one of them in the predictive model curtails its quality
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Table 1 The number of all biomarkers for breast cancer (BRCA) and urothelial bladder carcinoma cancer (BLCA): the number of uncorrelated
biomarkers in the entire dataset (column All), the number of uncorrelated informative identified by various FS methods (U-test, MDFS-1D,
MDFS-2D)

Data Dataset All Samples FS methods

U-test MDFS-1D MDFS-2D

BRCA GE 8673 entire 3674 3177 3905

CV total 6274 2644 3594

mean 809 804 793

CNA 22544 entire 87 131 173

CV total 342 908 1156

mean 16 34 28

BLCA RNA 19006 entire 2994 2710 3549

CV total 3419 6714 11826

mean 525 626 592

METH 15628 entire 1723 1619 1917

CV total 2898 6298 10351

mean 474 469 482

RPPA 219 entire 30 29 15

CV total 108 143 207

mean 23 17 24

For each data set three rows correspond to the results obtained when filter was applied to the entire data set, the total number of uncorrelated
informative biomarkers deemed relevant at least once in 150 repeats of cross-validation, and the average number of biomarkers for a single fold

data is much smaller, mainly due to stronger correlations
between the variables. The sets of selected variables were
stored for each fold of the cross validation. As shown in
Table 1, the number and ranking of variables deemed rele-
vant varied strongly between the folds of the cross validation
procedure for both types of cancer.

For example, in RNA dataset for BLCA cancer, the total
number of variables deemed relevant in 150 repeats of cross-
validation was 11826, which is more than half of the total
number of variables. Contrastingly, the average number
for a single fold is only 592. This divergence arises due
to the application of the SGoF procedure for the control
of multiple tests. This procedure maximizes the power of
the test, but allowing about ten per cent fraction of false
positives. These false positives are different in different
repeats of cross validation, leading to a large number of
variables that were at least once identified as relevant. The
feature sets selected with different methods are also quite
divergent in examined data sets.

Nevertheless, models developed on different feature sets
give comparable results. This is due to a high correlation
between variables and the application of a greedy algorithm
for selection of a representative of a cluster of similar
variables. Small variations in ranking of the features may
lead to a different choice of representatives. Nevertheless,
the information about the decision variable remains similar
for each choice. Therefore, the final predictive model is

stable and does not depend on particular input features. This
effect is well-known for omics data [52].

Individual models

First, the molecular data sets and clinical data were studied
independently. Generally, different feature filtering methods
did not significantly alter the quality of the predictive
models. Nevertheless, for some molecular data sets the
application of the U-test as the filtering algorithm gave
worse results in comparison with MDFS-1D or MDFS-
2D. The MDFS-1D is more efficient computationally in
comparison with MDFS-2D. Therefore, it was used in the
subsequent analyses.

The results for the random forest models built with
features selected by the Boruta algorithm for clinical data,
and features selected by MDFS-1D method for molecular
data are shown in three upper rows of Table 2 for BRCA
data, and in four upper rows of Table 3 for BLCA data.

While these results are far from perfect, they clearly
show that all data sets contain significant information on
the clinical endpoint for the patients. For both types of
cancer, the best classification results were obtained for
models which used clinical data. Models using molecular
data exhibit significantly lower predictive power.

For breast cancer, models built using the CNA data set
were the weakest, although still statistically significant.
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Table 2 The results of random forest models trained on BRCA data obtained with different sets of variables

Data set ACC MCC AUC t statistic p-value

CD 0.677 0.362 0.739 – –

GE 0.618 0.261 0.681 – –

CNA 0.579 0.203 0.634 – –

CD+GE 0.684 0.370 0.749 10.2 (30) 2.0 · 10−11

CD+CNA 0.675 0.356 0.740 1.3 (17) 9.6 · 10−02

CD+GE+CNA 0.685 0.368 0.753 10.4 (30) 2.0 · 10−11

Super learner 0.690 0.381 0.755 14.5 (30) 4.2 · 10−15

The upper panel displays results obtained with homogeneous data: clinical data (CD), gene expression (GE), copy and number aberrations (CNA).
The middle panel displays results obtained for clinical data combined with the classification results of the molecular data (CD + GE, CD + CNA
and CD + GE + CNA). The last row of the table displays the results of super learning procedure using NNLS method. The average values for
ACC, AUC, and MCC are shown for all models. The last two columns show the results of the paired t-test between AUC values of integrated
models compared with one obtained for clinical data only. The number in parentheses shows in how many times the integrated model was better
than the baseline CD model in 30 repeats of cross validation, the best values are displayed in bold face

Such a result could have been expected in light of our
understanding of the biological processes in cancer. The
alteration of the number of copies of genes results in
modified expression patterns in cells, that in turn can lead
to the development of lethal forms of cancer. Nevertheless,
each of these steps is mostly non-deterministic and depends
on the individual history of the patient. Hence, the most
information is contained on the clinical level, less on
the gene expression level, and even less on the genetic
alterations level.

For the bladder cancer, the highest prediction power
(AUC = 0.657) among the molecular data sets was obtained

from RNA data. The weakest model was constructed with
RPPA data, probably due to a small number of informative
variables (between 17 and 24).

Combinedmodels

Early integration strategy Next, we examined, whether
extending clinical data with molecular data can lead to an
improved predictive power of machine learning models. The
direct extension of the CD data set by adding the most
relevant features from molecular data sets did not lead to
better models. This occurs because the individual molecular

Table 3 The results of random forest models trained on BLCA data data obtained with different sets of variables

Data set ACC MCC AUC t statistic p-value

CD 0.626 0.252 0.676 – –

RNA 0.616 0.232 0.657 – –

METH 0.576 0.154 0.623 – –

RPPA 0.591 0.178 0.632 – –

CD+RNA 0.642 0.279 0.690 4.2 (25) 1.2 · 10−4

CD+METH 0.625 0.247 0.674 -0.81 (13) 7.9 · 10−1

CD+RPPA 0.627 0.250 0.678 0.41 (19) 3.4 · 10−1

CD+RNA+METH 0.635 0.255 0.683 2.2 (19) 1.6 · 10−2

CD+RNA+RPPA 0.644 0.282 0.691 3.2 (24) 1.8 · 10−3

CD+METH+RPPA 0.623 0.242 0.671 -1.1 (12) 8.6 · 10−1

CD+all 0.638 0.265 0.685 2.2 (22) 1.7 · 10−2

Super learner 0.625 0.268 0.696 7.5 (23) 1.5 · 10−8

The upper panel displays the results obtained with homogeneous data: clinical data (CD), RNA-seq (RNA), methylation (METH), reverse phase
protein array (RPPA). The middle panel displays the results obtained for clinical data combined with the classification results of the molecular
data (CD + RNA, CD + METH, CD + RPPA, CD + RNA + METH, CD + RNA + RPPA, CD + METH + RPPA, CD + RNA + RPPA + METH
labelled as CD+all). The last row of table displays the results of super learning procedure using NNLS method. The average values for ACC,
AUC, and MCC are shown for all models. The last two columns show the results of the paired t-test between AUC values of integrated models
compared with one obtained for clinical data only. The number in parentheses shows in how many times the integrated model was better than the
baseline CD model in 30 repeats of cross validation, the best values are displayed in bold face
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features carry very little information in comparison with any
of the clinical features. Consequently, they are very seldom
used by a random forest classifier and have no influence on
the final predictions of a model.

Late integration strategy In the next part of the analysis,
the advanced ensemble classification called super learning
was used for prediction endpoints of cancer patients. The
super learning model was built for both types of cancer
using all the individual machine learning models based
on clinical and molecular data with various feature filters.
Three methods of combining various prediction results via
super learner ensemble algorithm were tested, namely non-
negative least squares (NNLS), random forest, and best-k.
The non-negative least squares combining method proved to
give the best results for both cancer types.

The values of evaluation metrics for super learning
models are displayed in the last rows of Table 2 for the
BRCA data and Table 3 for the BLCA data. For both cancer
data sets, super learning predictive models outperform the
individual machine learning models. The improvement is
small but statistically significant.

For the BRCA data set, both the AUC and MCC have
improved in all or all but one repeats of the procedure
(p-values are 9.3 · 10−9 and 4.2 · 10−15, respectively).

For the BLCA data set, the results were weaker. The
AUC has improved in 23 out of 30 repeats of the procedure.
Nevertheless, the improvement of the AUC is statistically
significant, with p-value from the paired t-test at 1.5 ·10−8).

Hybrid integration strategy In the hybrid model, the set of
clinical descriptors was extended by the composite features,
corresponding to the fraction of votes for the deceased
class in random forest classifier built from molecular data
sets. Adding all the combinations of synthetic molecular
variables to the clinical ones was tested. The results of
random forest combined models built on the extended data
sets are displayed in rows 4-6 of Table 2 and the rows
5-11 of Table 3 for the BRCA data and the BLCA data,
respectively.

For BRCA patients, only gene expression data con-
tributes additional information on the clinical endpoint.
However, the improvement of classification is visible only
when using AUC as a quality metric. In particular, AUC
improved in all 30 repeats of cross-validation, (p-value
9.3 · 10−9). On the other hand, changes in MCC and ACC
are minor and inconsistent. The CNA data does not con-
tribute new information, all metrics either decrease (ACC
and MCC) or increase minimally (AUC).

Similar results are obtained for BLCA patients: only
knowledge of gene expression added some information to
the clinical descriptors. This was reflected by changes in the
AUC measure, which has improved 25 times in 30 repeats of

cross-validation (p-value 1.6 · 10−4). The predictive models
did not improve when either methylation or RPPA data were
added.

Both for BRCA and BLCA data sets, the best models
obtained with the hybrid approach have comparable
predictive power to the models obtained with the super
learning. The best AUC was obtained with the super
learning for both data sets, but the difference is tiny and
not statistically significant. On the other hand, the best ACC
and MCC were obtained with the super learner approach
for BRCA, while for the BLCA the best results were
obtained by the hybrid model with synthetic RNA and RPPA
variables.

Sensitivity analysis

The final step of this study was the sensitivity analysis. It
was conducted on the combined CD + GE + CNA model
for BRCA data, and CD + RNA + METH + RPPA model
for BLCA data. In these models each molecular data set was
represented as a single feature – the fraction of trees that
predict that given patient belongs to the deceased class.

In the first type of sensitivity analysis, a single feature
was removed from the description, and the decrease of the
AUC of the model was used as a measure of importance.
The second type of performed sensitivity analysis was the
recursive feature elimination, where the least important
features are iteratively removed from the predictive model.

The first type of analysis conducted on the BRCA data
has shown that molecular features representing both GE and
CNA data, are relatively strong, see the third and fourth
position of features in Fig. 4 (left panel). What is more, the
inclusion of these features increased the robustness of the
model, with respect to the removal of the features from the
description. For the purely clinical model, the removal of
any descriptor resulted in decreased accuracy. Contrastingly,
after adding synthetic molecular features the significant
decrease of AUC is present only for two clinical variables
(age at diagnosis, and NPI) as well as for molecular GE.
This result suggests that molecular descriptors can replace
clinical descriptors in a model, making it simpler and easier
to interpret. This hypothesis is confirmed by the results of
the RFE procedure, as shown on the right panel of Fig. 4. In
this case, the quality of the model is stable until ten features
are left in the description, namely age at diagnosis, NPI,
molecular GE, molecular CNA, cohort, intclust, tumor size,
breast surgery, chemotherapy,and tumor stage.

Adding molecular descriptors had higher effect on
the BLCA models. The extended model was resistant to
removal of any single descriptor, see left panel of Fig. 5.
What is more, the RFE procedure resulted in the best
predictive model (AUC = 0.694) constructed using only
three features: two clinical features (age, ajcc stage) and
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Fig. 4 Results of sensitivity analysis for the BRCA data. Left panel:
the change of AUC of the predictive model (CD + GE + CNA) after the
removal of particular features. Right panel: The result of the recursive

feature elimination. Red line indicates the level of AUC for the clas-
sifier built on top-17 clinical descriptors and two synthetic molecular
descriptors. Dotted lines mark the standard deviation of �AUC

one synthetic (RNA), see right panel of Fig. 5. An alternative
model, using (age, ajcc nodes and RNA) features (AUC =
0.696) can also be used, since ajcc nodes and ajcc stage are
strongly dependent on one another, see Fig. 3.

Conclusions

A new method, i.e. the hybrid data integration strategy,
was introduced for the integration of heterogeneous types

Fig. 5 The results of sensitivity analysis for the BLCA data. Left
panel: the change of AUC of the predictive model (CD + RNA +
METH + RPPA) after the removal of particular features. Right panel:
The result of the recursive feature elimination. Red line indicates the

level of AUC for the classifier built on top-5 clinical descriptors and
three synthetic molecular descriptors. Dotted lines mark the standard
deviation of �AUC
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of data sets (clinical and omics data). The method uses
results of machine learning predictions based on molecular
data sets as new variables, which are then analyzed together
with clinical ones. The approach is general and may be
implemented using various machine learning algorithms.
However, the use of random forest algorithm allowed
to simplify the procedure thanks to its built-in OOB
performance estimation.

The hybrid data integration protocol was applied to
predict clinical endpoint for two types of cancer. In both
cases adding a synthetic variable based on gene expression
levels lead to a statistically significant increase in the
predictive power of the combined model. On the other
hand, the effects for synthetic variables based on other
types of molecular data were not statistically significant. In
particular, adding variables derived from methylation and
RPPA data to the BLCA models seemed to decrease the
quality of the models, although the effect is not statistically
significant. Nonetheless, while the addition of variable
derived from CNA data to BRCA models did not improve
the predictive ability, it has contributed to the robustness of
the model upon removal of variables from the description.
The synthetic molecular variables performed as indicators
of the progress of the disease on the molecular level. Their
relative importance in combined models was high (second
and fourth most relevant variable in the BRCA model and
second most relevant variable for BLCA model).

The inclusion of the synthetic variables based on the
RNA expression levels and copy number alterations can lead
to an improved quality of prognostic tests. Thus, it should
be considered for inclusion to medical practice.

The performance of the hybrid data integration approach
was compared with two state-of-the-art methods of data
integration: early integration and super learning. The new
method proved to perform nearly as well as super learning
and much better than the early integration, which was
ineffective for this purpose. What is more, it gives a better
understanding of results than super-learning. It also allows
for reduction of model complexity.
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