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Targeting solid tumors with absolute precision is a long-standing challenge in cancer
immunotherapy. The identification of antigens, which are expressed by a large fraction of
tumors of a given type and, preferably, across various types, but not by normal cells, holds
the key to developing safe, off-the-shelf immunotherapies. Although the quest for widely
shared, strictly tumor-specific antigens has been the focus of tremendous effort, only few
such candidates have been implicated. Almost all antigens that are currently explored as
targets for chimeric antigen receptor (CAR) or T cell receptor (TCR)-T cell therapy are also
expressed by healthy cells and the risk of on-target off-tumor toxicity has remained amajor
concern. Recent studies suggest that this risk could be obviated by targeting instead
combinations of two or more antigens, which are co-expressed by tumor but not normal
cells and, as such, are tumor-specific. Moreover, the expression of a shared tumor antigen
along with the lack of a second antigen that is expressed by normal tissues can also be
exploited for precise recognition. Additional cues, antigenic or non-antigenic ones, which
characterize the tumor microenvironment, could be harnessed to further increase
precision. This review focuses on attempts to define the targetable signatures of
tumors and assesses different strategies employing advanced synthetic biology for
translating such information into safer modes of immunotherapy, implementing the
principles of Boolean logic gates.

Keywords: Boolean logic gates, adoptive cell therapy, chimeric antigen receptors, on-target off-tumor toxicity,
synthetic biology
INTRODUCTION

In adoptive cell therapy (ACT) of cancer, great effort is made to develop off-the-shelf genes,
designed for redirecting autologous T or NK cells to selectively eradicate tumor cells while avoiding
on-target off-tumor attack (1–3). Ready-to-use, donor-derived T/NK cells genetically
reprogrammed to recognize a given type of cancer will vastly accelerate treatment and assure
quality and quantity of the cell product (4). Chimeric antigen receptors [CARs, originally developed
by G. G. and colleagues (5, 6)] redirect T, and other immune killer cells to recognize antigens in an
MHC-independent manner and are thus ideally suited for this purpose. However, the vast majority
of CAR antigens expressed on solid tumors or cellular components of the tumor microenvironment
(TME) that are presently investigated are expressed by vital nontumor tissues (7–11) and their
targeting poses a severe safety concern. This critical downside has prompted the search for
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combinations of antigens (present or absent) as well as non-
antigenic cues, which could define new targetable tumor-specific
signatures. To achieve this goal two major challenges are
concomitantly addressed: 1) Identification of combinations,
which are shared by the vast majority, if not all tumor cells in
a large fraction of patients and can unequivocally discriminate
between tumor and nontumor tissues. 2) The development of
molecular devices, which can sense and integrate these complex
inputs to produce the desired biological output, implementing
the basic principles of Boolean logic gates. Two types of logic
gates that are particularly relevant to the safety challenge are the
logic AND gate, which would only produce an output in the
presence of all its designated inputs and the NOT gate, which
would require the presence of at least one input and the absence
of another, to act. Here we examine different classes of such cues
as potential components of tumor-specific signatures and review
various strategies used to exploit the AND and NOT gates for
their immunotargeting. Other powerful genetic approaches
implementing the OR logic gate (12–15), TRUCKs (16–18) or
switch receptors (19–22) address additional critical challenges in
ACT and are not dealt with in this review.
POTENTIAL LOGIC GATE INPUTS

Antigenic Cues
While distinct input and output modules of logic gated ACT are
defined by their biological thresholds, each intact circuit should
eventually comply with clinical tolerability. This aspect is
particularly important while weighing the actual expression of
a given antigen by tumor vs. normal cells, as the outcome of
antigen binding critically depends not only on its expression
level, but also on the overall avidity of interaction, the fidelity of
the signaling cascade and the response mechanism. With this in
mind, attempts are made to identify combinations of surface
antigens that are expressed by all cells in a given tumor and by
most tumors of a given type and, desirably, by different tumor
types, but not by any vital tissue. As the number of input signals
grows, precision is expected to increase, but at the expense of the
fraction of tumors complying with all inputs and of applicability,
as additional modules would inevitably require increasingly
improved gene transfer vectors.

Acute myeloid leukemia (AML) is a heterogeneous
class of diseases characterized by particularly high genetic
instability that gives rise to multiple immunophenotypes in a
single patient, rendering AML notoriously refractory to
conventional immunotherapies (23). In attempt to circumvent
this heterogeneity, Perna et al. (24) performed meticulous
proteomics and transcriptomics analysis of large surfaceome
datasets from malignant and normal tissues, aiming at
identifying antigen pairs which could serve as targets for
combinatorial CAR therapy. While a number of antigens have
been previously reported as potential AML CAR targets, none
met the criteria defined in this study for an optimal single
target. Following a stringent refining process, four antigen
pairs: ADGRE2+CD33, CCR1+CLEC12A, CD70+CD33, and
Frontiers in Immunology | www.frontiersin.org 2
LILRB2+CLEC12A, yielded nearly optimal results, for all of
which the dual targeting score significantly exceeded that of
either antigen alone.

More recently, Dannenfelser et al. carried out a comprehensive
in-silico screen of >2.5 million dual and 60 million triple antigen
combinations across 33 tumor types and 34 normal tissues,
assessing their ability to discriminate tumors from normal
tissues via either AND or NOT gates (25). For prioritizing
candidate antigen combinations the authors created a
numerical ruler, integrating precision and recall (fraction of
targetable tumor samples), with which they compared single
antigens to double and triple gates. For every cancer type
assessed they identified at least 25 high-score antigen pairs,
which substantially outperform single ‘clinical’ antigens
currently explored in CAR therapy of the same cancer.
Furthermore, for several tumor types, triple antigen
combinations show near ideal precision, yet, with an
anticipated decline in recall. Although this study is based on
RNA-seq databases rather than actual surface protein expression,
it underscores the discriminatory power of combinatorial antigen
recognition, paving the way for clinical evaluation of numerous
CAR therapies targeting new antigen combinations in virtually all
cancer types.

Another class of candidate antigens for combinatorial
recognition are expressed by tumor-supporting cells at the
TME, including cancer-associated fibroblasts, tumor-associated
macrophages, myeloid-derived suppressor cells, regulatory T
cells and additional immune cells (9–11), as well as tumor
endothelial cells (TECs) (26–29). Antigens that are
preferentially expressed by these cells (such as VEGFRs,
PSMA, ALCAM, CD13, CLEC14A, RGS5, TEMs, fibronectin
EIIIB splice variant, Endothelin B receptor, avb3 integrin and
others) are particularly attractive, as, unlike tumor antigens, they
are not subjected to genetic and epigenetic instability. Among
these, TECs draw special attention, as they are highly accessible
to the therapeutic cells and are less affected by immune-
suppressive conditions dominating the TME. While none of
these antigens is utterly specific, collectively they provide an
additional layer of potential targets for gated therapy.

Loss of heterozygosity (LOH) characterizes the majority of
human cancers. It is manifested in multiple losses of full
chromosomes, entire chromosomal arms or sub-chromosomal
regions and is often associated with the loss of a normal copy of a
tumor suppressor gene (30–33). Many LOH events already occur
prior to malignant transformation creating a loss signature that
is shared by premalignant cells and all descendant tumor
cells in a given patient (34). An inevitable outcome of LOH
is the concomitant loss of all other genes residing on the
deleted chromosomal material, and these naturally include
heterozygous alleles of protein-coding genes. This early LOH-
driven antigenic landscape is consequently irreversible and is not
affected by tumor heterogeneity. LOH-based discrimination of
tumor from normal cells can be achieved by NOT gates based on
either CARs that are directed at an allelic variant encoding an
extracellular epitope, which can be distinguished from the
homologous one or TCRs, recognizing a linear peptide that is
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presented on normal but not tumor cells by one of the patient’s
HLA-I products. A special class of LOH events involve the HLA
gene locus on chromosome 6q21 and are apparently exploited by
tumors as an escape mechanism from CD8 T cells (35–37). It now
emerges that this mechanism also allows tumor cells to avoid
recognition by adoptively transferred T cells, as reported, for
example, in TIL therapy of a patient with metastatic colorectal
cancer, targeting a peptide harboring the KRAS G12D mutation
presented by HLA-C*08:02 (38). LOH is source for a universe of
antigenic combinations that can be targeted by NOT modules and
pioneering attempts to explore this new route to cancer
immunotherapy have recently been published (39, 40).
Non-Antigenic Cues at the TME
Hypoxia is a prominent feature of the TME, resulting from
rapidly dividing cancer cells and aberrant vascularization (41).
Tumor cell adaptation to hypoxic conditions is governed by
hypoxia-inducible factors (HIFs) via the hypoxia pathway (42).
Under normoxic conditions, prolyl-hydroxylases (PHDs)
hydroxylates conserved prolines of HIF-1a, leading to
ubiquitination and proteasomal degradation. However, during
hypoxic conditions, the PHDs are inactive, allowing HIF-1a
accumulation, translocation to the nucleus, dimerization with
HIF-1b and formation of a transcriptional complex. The HIF
complex binds to the promoter region of hypoxia-responsive
elements (HRE) and triggers transcription, which regulates
several biological functions of tumor cells (43). These two
hypoxia-induced mechanisms, acting independently at the
transcription and post-translational levels, can be exploited for
confining CAR activity to hypoxic tissues.

Pro-inflammatory cytokines secreted by a variety of cells at the
TME induce cellular responses that are associated with tumor
initiation, progression, tissue invasion, metastasis and evasion from
an immune response. In parallel, potent immunosuppressive
mediators that are overproduced by tumor-supportive immune
cells act in many solid tumors to counteract the antitumor
response. Consequently, the TME is often characterized by
elevated levels of cytokines, including TNF-?, IFN-g, IL-6, IL-8,
IL-17, IL-21, TGF-? and IL-10 (44–46), which can serve as TME
biomarkers and guide AND gated therapies exploiting cytokine-
responsive receptors or transcriptional control elements.

Continuous interactions between tumor and nontumor cells at
the TME result in the upregulation of a battery of pericellular
proteases, which play a critical role in tumor angiogenesis, invasion
and metastasis (47–49). These include various matrix
metalloproteinases, cathepsins, elastase, granzyme B, tissue and
urokinase plasminogen activators and others, creating a protease-
rich niche that is distinguishable from most other normal tissues.
This unique characteristic of the TME paves the way for the design
of antitumor antibodies or CARs whose recognition moieties are
masked by a protease-cleavable peptide, which is liberated at the
tumor site, creating a bona-fide logic AND gate.

Tumor-specific as well as tissue- or state-specific promoters
can be harnessed to confine the expression of therapeutic genes
of interest (GOIs) to designated target cells in-vivo and, as such,
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offer another class of cues for gated cancer therapy. However, as
with tumor antigens, no single promoter appears to be solely
restricted to a given type of tumor. Nonetheless, dividing the
specificity task between two promoters, both simultaneously
active only in the target cells, could confer the desired
precision of action (50–52). In addition, synthetic promoters
comprising distinct transcription factor (TF)-binding elements
can assure that transcription of a therapeutic gene takes place
only in cells expressing all corresponding TFs (53, 54).
SELECTED STRATEGIES

AND Logic Gates
Combinatorial Antigen Recognition
The ‘split’ recognition AND gate (Figure 1) comprises an affinity-
reduced CAR specific to one antigen that harbors an activation
domain (typically CD3z) only, co-expressed with a chimeric
costimulatory receptor (CCR) that is specific to another antigen,
which only possesses a costimulatory element (often derived from
CD28 and/or 4-1BB), but no activation domain. If properly
calibrated, split antigen recognition would allow full T cell
activation only in the presence of both antigens, while normal
cells expressing only one would be protected. This principle has
been demonstrated in several preclinical studies [e.g (55–58)].

SUPRACARs (Figure 1) logically respond to multiple antigens
without the needof re-engineeringT cells specifically for each target
antigen (59). The universal zipCAR module possesses a
conventional CAR signaling moiety connected to an extracellular
leucine zipper. The zipFv antigen-recognition module harbors a
scFv fused to a second leucine zipper,which is capable of interacting
with the zipCAR. The engineering of multiple zippers with varying
binding properties enables multiplexed control over T cell
responses, including a split-CAR configuration.

The RevCAR platform (Figure 1) (60) consists of compact
CARs incorporating peptide tags instead of full-length scFv, and
bispecific molecules coupling an anti-tag scFv to an antitumor
scFv. Using two split anti-tag CARs and the corresponding
bispecific engagers the system operates as an AND gate.

Reduced affinity CARs are also the central components of the
AvidCAR AND gate strategy (Figure 1) (61). It exploits
monomeric, reduced affinity CARs specific to one antigen,
designed to homodimerize by the second antigen through a
second scFv incorporated into the same ectodomain, thereby
gaining sufficient avidity for T cell activation.

The ‘Co-LOCKR’ gate (Figure 1) (62), is based on competition,
rather than complementation. This system employs a universal
CAR recognizing a unique ‘recruitment peptide’ which resides on
a ‘Latch’ domain engrafted onto a protein termed the ‘Cage’ that is
capable of binding antigen A. In both the unbound and the bound
states of the Cage the recruitment peptide is sequestered by the
Cage-bound Latch and cannot bind its receptor. The second
soluble protein component of this system is the ‘Key’. It
recognizes antigen B and contains a unique domain, which can
compete out the folded sequestering domain of the Cage and
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FIGURE 1 | Schematic representation of selected Boolean logic AND and NOT gate strategies for integrating two or three antigenic cues, designed to enhance
precision of CAR-T cell therapy of cancer.
AND gates. The split recognition strategy involves one receptor with an activation domain and a second receptor with a co-stimulatory domain, each specific to
a different antigen. Full T cell activation is only achieved upon simultaneous engagement of the two receptors with their respective antigens. Each SUPRA CAR
system utilizes a universal CAR-like receptor (zipCAR) carrying a leucine zipper, which can bind a corresponding leucine zipper incorporated onto a soluble
antigen-specific zipFv protein, enabling multiplexed control of T cell responses. Shown here are zipCAR-1, equipped with a leucine zipper specific to that of
zipFv-1, which recognizes antigen A that is shared by the tumor and normal cell, and zipCAR-2, specific to zipFv-2 and to antigen B that is expressed by the
tumor cell but not by the same normal cell. RevCARs are economical CAR constructs, harboring peptide epitopes instead of scFvs. The RevCAR platform
utilizes bi-specific engagers, each comprising two scFvs: one specific to a distinct peptide epitope and the other recognizing a tumor-associated antigen. Shown
here are a T cell co-expressing two different RevCARs, each harboring a different peptide epitope and either T cell activation or costimulatory domain, and two
engagers, each directed at a given peptide epitope and a tumor antigen. The T cell can only be activated when the two engagers are simultaneously bound to
their tumor antigens. AvidCAR is an avidity-controlled CAR platform, designed to homodimerize upon dual antigen recognition conferring sufficient avidity for T
cell activation. The Co-LOCKR gate utilizes a universal CAR specific to a recruitment peptide, which is placed in a ‘Latch’ sequence. The latch itself is linked to a
soluble ‘Cage’ protein that is directed at first tumor antigen. The recruitment peptide is normally sequestered by the Cage and is only exposed to engagement
by the CAR when a competing ‘Key’ protein binds a second antigen present on the same tumor cell. The synNotch AND gate comprises a constitutively
expressed module which releases a synthetic TF only upon binding of antigen A. Upon translocation to the T cell nucleus, this TF drives the expression of a
conventional CAR specific to antigen B.
NOT gates. The iCAR and the LOH-iCAR typically utilize an inhibitory element derived from a T/NK cell inhibitory receptor. Binding of the iCAR to the inhibitory
antigen would prevent T cell activation that could otherwise take place following engagement of the aCAR with the activating antigen. The SUPRA CAR NOT module
operates through competition: when both zipFv-1 and zipFv-2 proteins bind their respective antigens A and B on normal cells, their complementary leucine zippers
are tightly engaged, precluding activation of the zipCAR. T cell activation can only take place upon encounter with tumor cells, in the absence of competition by non-
bound zipFv-1. The Co-LOCKR NOT circuit implements a combination of AND and NOT gates and functions through competition, employing a third protein (in
addition to the Cage and Key proteins) that binds specifically to a third antigen present on normal but not tumor cells. This protein possesses a Decoy element,
which binds Key with high affinity. When all three proteins are engaged with their target epitopes on the surface of a normal cell, Key is prevented from binding to
Cage so that release of the recruitment peptide does not take place. The synNotch circuit shown here utilizes a suicide module, which is only activated upon
encounter with an inhibitory antigen expressed by the normal cell to be protected.
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liberate the recruitment peptide that is now accessible to the CAR.
This productive interaction can only take place if antigens A and B
are present in close proximity on the same target cell and does not
occur in solution.
AND Gates Utilizing Synthetic Promoters and
Non-Antigenic Cues
The synthetic Notch (synNotch)-based AND gate, (Figure 1
(63–66), and see (67) for review), harnesses regulated
intramembrane proteolysis (68), a unique signaling pathway
that utilizes the dual cleavage of a group of cell surface
receptors, including Notch, by membrane-associated proteases
following ligand binding. This process releases the intracellular
domain (ICD), which can then translocate to the cell nucleus and
function as a TF. The basic synNotch module encodes an N-
terminal scFv targeting antigen A, fused to a minimal Notch
sequence including the cleavable transmembrane domain and a
microbial-derived ICD, which can operate as a TF that controls
gene expression from a synthetic promoter. The second module
encodes a conventional CAR targeting antigen B and is placed
under the control of this synthetic promoter, so that the entire
circuit only operates in the presence of both antigens. By
expressing a synNotch receptor with low-affinity for a given
antigen, which controls the expression of a high affinity CAR
against the same antigen, Hernandez-Lopez et al. recently
engineered T cells to discriminate with high sensitivity between
tumor cells overexpressing HER2 and normal cells displaying
low HER2 density (69).

In 2017, Nissim et al. presented a revolutionary AND gate
comprising a two-module mRNA circuit, which they used for the
in-vivodelivery of amulti-component immunostimulatory cassette
tobe exclusively expressed in cancer cells (51).The expressionof the
GOI is governed by the coordinated activity of two separate
modules, each driven by one of two synthetic promoters, which
are simultaneously active in cancer cells only.While operating here
as a multi-functional immune modulator, this approach offers
numerous gated applications in ACT.

Several strategies have exploited hypoxia-induced pathways
for designing self-decision-making CAR-T cells. One such
approach utilizes CARs that incorporate an oxygen-sensing
subdomain (HIF-1a) into the CAR scaffold and become active
only under hypoxic conditions (70). Another strategy restricts
CAR expression to the TME by introducing HRE regions into the
CAR promoter, thus coupling transcription to hypoxia (71).

A synthetic promoter [dubbed CARTIV (54)], places a CAR
gene under the control of inflammation and hypoxia-induced
signals characterizing the TME. To obtain a proof of concept, the
authors incorporated into these promoters DNA elements
responsive to IFNg, TNFa and hypoxia and showed an
additive effect on CAR expression and function in primary
human T cells in the presence of the three stimuli.

A unique AND gate integrating inputs from the TEC-associated
promoter of the pre-proendothelin-1 gene and the local presence of
TNFa, directs the in-vivo expression of a suicide Fas-TNFR1
Frontiers in Immunology | www.frontiersin.org 5
receptor selectively to TECs, exerts an antiangiogenic effect and
shows promising efficacy in clinical studies (72, 73).

‘Probodies’ are soluble antitumor mAb-based prodrugs, which
function as two-module AND gates (74). While the antigenic cue
is targeted by the probody antigen-binding site, it is masked by a
cleavable peptide, designed for preferential removal at the
protease-rich TME. The therapeutic potential of probodies was
initially demonstrated in a human xenograft model for non-small
cell lung cancer, using the anti-EGFR antibody cetuximab (75)
and was later applied to antitumor CARs, using essentially the
same molecular and experimental design (76).
NOT Logic Gates
NOT gates are designed to protect normal cells that express a
selected tumor antigen targeted by an activating CAR (aCAR) or
TCR), as well as a second antigen (the ‘protective’ antigen) that is
NOT expressed by the tumor. An effective NOT device would
counteract T cell activation triggered by the tumor antigen when
simultaneously engaging the protective antigen on the same
normal cell. Creating a safe NOT gate entails the incorporation
of an inhibitory module specific to the second antigen, which can
operate through either strong inhibitory signaling or potent
competition with the activating module while guaranteeing
continuous dominance over the latter. It is mandatory that the
effect of the NOT module on the therapeutic T cell is transient
and fully reversible, as repeated inhibitory signaling can anergize
these cells and abolish their therapeutic efficacy.

The implementation of the inhibitory approach for producing
a NOT gate was pioneered by Fedorov at al (77)., who recruited
the signaling domains of the T cell inhibitory receptors CTLA-4
and PD-1 to create inhibitory CARs (iCARs) (Figure 1). Since
then a number of studies exploring NOT gates have examined
iCARs incorporating inhibitory signaling elements that are
derived from T or NK cell-associated inhibitory receptors,
including PD-1 (40, 78), BTLA (79) and LIR1 (39).

Employing competitive inhibition, the SUPRA CAR technology
offers a ‘Cell Selector’ application (Figure 1) (59). Here, the
presence of a protective antigen on normal cells recruits a
designated zipFv harboring a zipper, which binds avidly to the
activating zipFv zipper, blocking its binding to the zipCAR, thereby
preventing activation. Another competition-based NOT module is
offered by the Co-LOCKR system (Figure 1), allowing the
simultaneous recognition of antigen A AND antigen B but NOT
antigen C, creating an AND-NOT gate (62). This scenario is
addressed through a third soluble component specific to antigen
C, which carries a ‘Decoy’ segment. Upon antigen binding on the
cell to be protected, the Decoy binds tightly to the adjacent ‘Key’
and prevents binding of the latter to the ‘Cage’, so that release of the
recruitment peptide and subsequent T cell activation cannot take
place. Another antigen-driven AND-NOT circuit was recently
reported (Figure 1), utilizing a synNotch receptor, which governs
the expression of the pro-apoptotic factor tBID (truncated BID, a
member of the BH3-domain-only subgroup of BCL-2 family) upon
antigen binding as a novel, gated suicide mechanism (66).
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CONCLUSIONS

Exploiting combinations of shared antigenic and non-antigenic
features characterizing all types of cancer by logic-gated
technologies can dramatically increase the fidelity of tumor
targeting and alleviate safety concerns. While advancing exciting
gates that combine universal CARs with soluble proteins (Co-
LOCKR, SUPRA CARs, RevCARs) still requires extensive
calibration and optimization, others, such as split recognition or
iCARs seem closer to clinical evaluation. New and powerful
bioinformatic algorithms, rapidly growing datasets of tumors vs.
normal cells, the development of sophisticated synthetic biology
tools, along with progress made in our understanding of the
Frontiers in Immunology | www.frontiersin.org 6
intricate immune recognition and signaling networks, all pave the
way for the creation of increasingly powerful logic gates for
improved precision of cancer immunotherapy.
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