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Abstract

Background: Tumor recurrence is one of the major challenges in clinical management of chordoma. Despite R0-
resection, approximately 50% of chordomas recur within ten years after initial surgery. The underlying molecular
processes are poorly understood resulting in the lack of associated therapeutic options. This is not least due to the
absence of appropriate cell culture models of this orphan disease.

Methods: The intra-personal progression model cell lines U-CH11 and U-CH11R were compared using array
comparative genomic hybridization, expression arrays, RNA-seq, and immunocytochemistry. Cell line origin was
confirmed by short tandem repeat analysis. Inter-personal cell culture models (n = 6) were examined to validate
whether the new model is representative. Cell viability after HOX/PBX complex inhibition with small peptides was
determined by MTS assays.

Results: Using whole genome microarray analyses, striking differences in gene expression between primary and
recurrent chordomas were identified. These expression differences were confirmed in the world’s first intra-personal
model of chordoma relapse consisting of cell lines established from a primary (U-CH11) and the corresponding
recurrent tumor (U-CH11R). Array comparative genomic hybridization and RNA-sequencing analyses revealed
profound genetic similarities between both cell lines pointing to transcriptomic reprogramming as a key
mechanism of chordoma progression. Network analysis of the recurrence specific genes highlighted HOX/PBX
signaling as a common dysregulated event. Hence, HOX/PBX complexes were used as so far unknown therapeutic
targets in recurrent chordomas. Treating chordoma cell lines with the complex formation inhibiting peptide HXR9
induced cFOS mediated apoptosis in all chordoma cell lines tested. This effect was significantly stronger in cell lines
established from chordoma relapses.

Conclusion: Clearly differing gene expression patterns and vulnerabilities to HOX/PBX complex inhibition in highly
therapy resistant chordoma relapses were identified using the first intra-personal loco-regional and further inter-
personal chordoma progression models. For the first time, HOX/PBX interference was used to induce cell death in
chordoma and might serve as the basic concept of an upcoming targeted therapy for chordomas of all progression
stages.
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Background
Chordomas are slow growing but locally invasive tumors
of the axial skeleton [1]. Microscopically, strongly vacuo-
lated cells, so called physaliferous cells, are diagnostically
indicative for this lesion [2].
Chordoma cells are thought to originate from cellular

remnants of the notochord, as the most consistent fea-
ture is the sustained expression of the developmental
transcription factor brachyury. Beyond being a sensitive
chordoma marker, high levels of nuclear brachyury,
encoded by the TBXT gene, appear to significantly con-
tribute to tumorigenesis. Thus, shRNA- and sgRNA-
mediated TBXT repression in chordoma cell lines have
been shown to suppress cell growth and induce apop-
tosis [3, 4]. Moreover, germline duplication of TBXT is
associated with chordoma risk in rare familiar cases,
whereas the nonsynonymous SNP rs2305089 can be also
found in sporadic chordomas and has prognostic signifi-
cance in overall survival [5, 6]. Further genomic aberra-
tions of chordomas include mutations in SWI/SNF
chromatin modelling genes (PBRM1, SMARCB1), PI3K
signaling genes (PIK3CA, PTEN) and the LYST gene [7].
Somatic copy number alterations involve gains of
chromosome 7p and homozygous deletions of chromo-
some 9p21 region, harboring the EGFR and CDKN2A
gene loci, respectively [8]. Recently, deletions of 9p21.3,
9p21.11 and 22q deletion as well as SWI/SNF alterations
have been associated to shorter recurrence free survival
in skull base chordomas [9]. However, generally, only
few genes are recurrently mutated and the full muta-
tional landscape in chordoma is not known, yet. Due to
their slow growth chordomas are considered chemo-
and radio-resistant [10]. Based on the identification of
potential molecular drivers in chordoma and the imple-
mentation of small molecule library screenings, selected
small molecules, such as Palbociclib (NCT03110744) or
Afatinib (NCT03083678), targeting p16 and EGFR, re-
spectively, are currently evaluated in phase 2 clinical tri-
als. However, so far there are no phase 3 clinical trials or
approved anticancer drugs. Therefore, curative en-bloc
resection is the recommended treatment for primary tu-
mors whenever feasible. For incompletely resected chor-
domas an adjuvant high-dose radiotherapy should be
considered [11]. Though, loco-regional tumor recur-
rence following initial en-bloc resection with or without
subsequent radiation is high. Loco-regional recurrence
rates of > 50% were published [12]. Notably, the risk of
recurrence varies depending on the localization of the
tumor with the highest rates observed for sacral chordo-
mas [13]. Although tumor free surgical resection mar-
gins are regarded as the most important predictor of
local chordoma recurrence, the risk of local recurrence
remains high even when the resection is initially consid-
ered R0 [12]. Completely resected primary, sacral

chordomas have a 5- and 10-year local relapse rate of
approximately 25 and 50%, respectively [14].
Despite the high propensity to relapse, little is known

about the underlying molecular processes accounting for
chordoma progression. This is probably due to the rare-
ness of the disease (incidence< 0.1:100000) and the defi-
ciency of appropriate cell culture models [15].
Here, we investigated the molecular differences in pri-

mary and recurrent chordomas using the cell lines U-
CH11 and U-CH11R, which were established from the
primary and the recurrent sacral chordoma of the same
patient. We identified targetable genetic features of U-
CH11R and inhibited the dimerization of PBX and the
HOX transcription factors to induce apoptosis. This ap-
proach was extended to further chordoma cell lines.

Methods
Establishment of chordoma cell lines and cells in culture
The establishment and maintenance of chordoma cell
lines has been previously described [13]. The chordoma
cell lines U-CH1, U-CH2, U-CH11, U-CH11R, U-
CH17P, U-CH19, and MUG-Chor1 were included and
cultured as previously described [8, 13, 16–19]. Human
foreskin fibroblasts (HFF) from three different donors
were used as control cells. Cell lines were quality con-
trolled by short tandem repeat (STR) analysis using the
GenomeLab STR Primer Set Kit (Beckman Counter,
Krefeld, Germany) and were tested regularly for myco-
plasma contamination via PCR as described earlier (lat-
est report in Additional file 1 (Additional Figure 1)) [18].
Patients gave their informed written consent and the
study was in line with the Declaration of Helsinki and
approved by the local ethics committee (vote 369/17).

Cell proliferation and cell viability assay
Population doubling time (PDT) and cell viability were
assessed by MTS assays (Abcam, Cambridge, UK) ac-
cording to the manufacturer’s recommendations. To de-
termine the PDT of U-CH11 and U-CH11R, cells were
seeded in 96-well culture plates at 7500 cells/cm2 and
15,000 cells/cm2 in biological and technical triplicates.
Cell viability was examined at different time points up to
336 h. PDT was calculated by GraphPad Prism v.5
(GraphPad Software, Inc., San Diego, CA, USA) using a
best fit exponential growth equation.
For cell viability assays in response to HXR9 and

CXR9, cells were seeded in 96-well culture plates and
allowed to adhere overnight, following the incubation of
the peptides for 24 h. The amino acid sequences of
HXR9 and CXR9 have been previously published by
Morgan et al. [20, 21]. The peptides were custom syn-
thesized by Biosynthesis Inc. (Lewisville, TX, USA) using
conventional column-based chemistry and purified to >
90%. IC50 values were determined using GraphPad Prism
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v.5. All cell lines were tested in biological and technical
triplicates.

Colony formation in soft agar
The colony formation assay was performed as previously
described [18]. Plated monolayer U-CH1, U-CH19, U-
CH11, and U-CH11R cells were treated with 50 μM
HXR9 or CXR9 for 8 h prior to replating 10,000 cells/
well in soft agar base in six-well dishes. Cells were main-
tained at 37 °C for 32 days and growth medium was re-
placed twice a week. Number of colonies was counted
using the ImageJ software (NIH). For each cell line three
independent experiments were performed.

Array comparative genomic hybridization
Array comparative genomic hybridization (aCGH) was
performed with the SurePrint G3 Human CGH Micro-
array 8 × 60 (Agilent Technologies) as described previ-
ously [13]. Array-CGH data were analyzed using the
Genomics Workbench software (Agilent Technologies)
applying the ADM-2 aberration algorithm (threshold
6.0; cutoff ±0.5).

RNA-sequencing analysis
RNA-sequencing data of the primary chordoma tissue as
well as U-CH11 and U-CH11R cell lines was obtained
from the Chordoma Foundat ion (https : / /www.
chordomafoundation.org). The GATK workflow for call-
ing single nucleotide polymorphisms (SNPs) and indels
in RNA-sequencing experiments was used (https://
gatkforums.broadinstitute.org/gatk/discussion/3891/
calling-variants-in-rnaseq). Raw reads were processed
with Trimmomatic (v0.39) to remove adapter sequences
and aligned with the STAR (v2.7) 2-pass method against
the human genome build37 (hg19) [22–24]. Variants
were called and filtered by the GATK-HaplotypeCaller
(v4.1.4.1).

Variant filtering and SNP selection
The functional annotation of the variants was performed
using ANNOVAR [25]. Only exonic variants with a read
depth ≥ 20 were included in further analyses and selected
on the basis of allele frequency (AF < 1%) obtained from
the genome Aggregation Database v2 (gnomAD) and of
genomic function (nonsynonymous SNV, frameshift de-
letion, frameshift insertion, startloss, stopgain).

Microarray gene expression profiling
Microarray gene expression profiling was performed as
described earlier [13]. Data was processed and analyzed
using the GeneSpring 14.9 software (p < 0.05, FC > 2).
Each cell line was tested at least in duplicates. Basal ex-
pression levels of selected genes are given (Additional
file 1 (Additional Table 8)).

Real-time polymerase chain reaction (qRT-PCR)
Gene expression analysis of cFOS and verification of se-
lected microarray results was performed using qRT-
PCR. RNA extraction was performed with the RNeasy
Mini-Kit (Qiagen, Hilden, Germany). Total RNA was re-
verse transcribed to cDNA using the SuperScript IV Re-
verse Transcriptase Kit (ThermoFisher Scientific,
Waltham, MA, USA). Gene expression was quantified by
qRT-PCR utilizing the QuantiTect SYBR Green Master
Mix (Qiagen) and uniquely designed gene expression
primers (CFOS, GABRA2, GYLAT, SOST, HOXA3,
HOXB7, and HOXB13) including GAPDH and ACTB
reference genes. Analyses were performed in technical
triplicates and in at least biological duplicates.

miRNA expression analysis
miRNA was extracted using the miRNeasy Mini Kit
(Qiagen) according to the manufacturer’s handbook. For
mature miRNA expression analysis, cDNA synthesis of
1 μg total RNA was carried out using the miScript Re-
verse Transcription Kit (Qiagen) with HighFlex buffer.
qRT-PCR was performed using the QuantiNova SYBR
Green PCR Kit and the Light-cycler Rotor Gene Q (Qia-
gen). The miScript Primer Assay for the mature Hs-
miR-196a_2, Hs-miR-196b_2 and mirScript Universal
Primer (all obtained from Qiagen) were used according
to manufacturer’s protocol. Relative miRNA levels were
normalized to RNU6_2 snRNA. All measurements were
performed in technical and biological triplicates. Relative
fold changes were calculated using the comparative cycle
threshold (Ct) eq. (2-△△Ct).

Luciferase assay
Luciferase firefly pIS0-vectors containing HOXA7–
3’UTR, HOXB8–3’UTR, and mir196a-as were a gift from
David Bartel (purchased from Addgene [26];). Adherent
HEK293T and U-CH1 were grown in 10% FCS supple-
mented IMDM to 90% confluency in 24-well plates.
Cells were cotransfected with 0.4 μg of the firefly lucifer-
ase vector, 0.08 μg of the control vector containing
Renilla luciferase (pRL-SV40P, Addgene, Quelle: Serum-
induced expression of the cdc25A gene relief of E2F-
mediated repression) and 2 pmol of synthetic miRNA-
196a-5p mimic (abm, Richmond, BC, Canada) or a
scrambled control microRNA in a final volume of 0.25
ml using Lipofectamine 2000 (ThermoFisher Scientific).
Firefly and Renilla luciferase activities were measured
consecutively 24 h after transfection using the Dual-Glo
Luciferase Assay System and a luminometer (FB12
Luminometer, Titertek-Berthold, Pforzheim, Germany).

MicroRNA mimic and hairpin inhibitor transfection
Chordoma cell lines were grown in 10% FCS supple-
mented IMDM to 90% confluency in 6-well plates and
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allowed to adhere overnight. Cells were then transfected
with 100 nM miR-196a-5p mimic (Dharmacon) or
scrambled sequence (abm, Richmond, BC, Canada) by
using Lipofectamine 2000 (ThermoFisher Scientific) ac-
cording to the manufacturer’s protocol and harvested
after 6 h for Western blot and qRT-PCR analyses.

Immunohistochemistry and immunocytochemistry
Immunostaining of formalin-fixed and paraffin-
embedded cell blocks and tissue sections (4 μm) were
carried out by the avidin-biotin-complex method apply-
ing the K005 AP/RED Detection System (Dako,
Glostrup, Denmark). The antibodies used are given in
Additional file 1 (Additional Table 1). The ratio of posi-
tive cells was annotated as follows: “no immunoreactivity
detected” (−), “immunoreactivity ≤30%” (+), “immunore-
activity >30% and <70%” (++), “immunoreactivity ≥70%”
(+++).

Immunoblotting
Cell pellets were resuspended in RIPA lysis buffer con-
taining protease and phosphatase inhibitor (Thermo-
Fisher Scientific). Lysates were incubated in liquid
nitrogen for 3 min, thawed and then centrifuged at
14000 rpm and 4 °C to remove debris. Protein quantifi-
cation of the supernatants was performed using the
Pierce BCA Protein Assay Kit (ThermoFisher Scientific).
Prior Western blot analyses samples were equalized for
protein amount, reduced with DTT and denatured at
90 °C for 5 min. Protein samples were resolved using 4–
12% Bis-Tris gels (ThermoFisher Scientific) and then
transferred to nitrocellulose membranes using a wet
transfer device. Membranes were probed with primary
antibodies at 4 °C overnight.
To assess apoptosis in chordoma cell lines following a

24 h treatment with HXR9 and CXR9, cleaved PARP
(Asp214), cleaved Caspase-7 (Asp198; both 1:1000; Cell
Signaling; Cambridge, UK) and a cocktail of primary
antibodies to detect apoptosis biomarkers pro/p17-Cas-
pase-3, cleaved Caspase-3, along with ß-Actin loading
control (abcam, Cambridge, UK) were used.
Protein lysates of miRNA mimic transfected cells were

analyzed using an antibody against HOXA7 (1:1000;
clone 2F2; Abnova, Taipeh, Taiwan) and ß-Actin (1:
2000; BA3R clone; ThermoFisher Scientific).
Membranes were incubated with secondary antibodies

(Goat anti-Mouse IgG (H + L) 1:10000, ThermoFisher
Scientific; Goat anti-Rabbit-IgG (whole molecule) 1:
2000, Sigma-Aldrich, St. Louis, USA) and detected with
the WesternSure Chemiluminescent Substrate (LI-CORE
Biosciences, Lincoln, NE, USA). Immunoblots were
quantified by densitometry using the ImageJ software
(NIH).

Caspase-3/7 activity assay
Caspase 3/7 activation in cells was assessed using the
EarlyTox Caspase3/7 NucView 488 kit (Molecular de-
vices, UK) following the manufacture’s instructions.
Chordoma cells were plated at approx. 2500 cells/cham-
ber in an 8-well Nunc Lab-Tek II CC2 chamber slide
system (ThermoFisher Scienfic) and allowed to adhere
overnight. HXR9 and CXR9 peptides (30 μM) were
added to the cells and incubated for 24 h. The Caspase-
3/7 NucView was then added directly to the cells at a
final concentration of 5 μM and incubated at room
temperature for 30 min, protected from light. Imaging
was performed on the PAULA Cell imager (Leica Micro-
systems, Wetzlar, Germany).

Rank-rank hypergeometric overlap analysis
The overlap trend between two complete, continuous
gene-expression signatures was identified and visualized
using the rank-rank hypergeometric overlap (RRHO) al-
gorithm (https://systems.crump.ucla.edu/rankrank/
rankranksimple.php). Genes were ranked by their log10-
transformed t-test p-values and effect size direction; the
Benjamini and Yekutieli method was applied as a mul-
tiple hypothesis correction factor. A rank-rank overlap
heatmap was generated to visualize the range of gene ex-
pression overlap between two signatures. The strength
of enrichment is indicated as -log10 transformed hyper-
geometric p-value [27].

Functional enrichment analyses
Gene set enrichment analyses (GSEA) were performed
by computing overlaps between identified class-specific
gene signatures and gene sets derived from the Molecu-
lar Signature Database (MSigDB) v7.1 [28]. For statistical
computing, the RStudio v1.2.5 software and the R Clus-
terProfiler package were used applying the hypergeo-
metric distribution method. The following thresholds
were applied to determine statistical significance: Benja-
min&Hochberg adjusted p-value < 0.05, q-value < 0.05
[29]. The enrichplot v1.6.1 package was implemented to
visualize functional enrichment results obtained from
the GSEA. Protein-protein interactions were predicted
by STRING v11.0 database analysis applying a minimum
required interaction score of 0.4 [30].

miRNA target gene predictions
Micro-RNA target genes of the miR-196a-5p were pre-
dicted using TargetScan v7.2 (http://www.targetscan.
org/vert_72/), miRDB v6.0 (www.mirdb.org) and mirDIP
v4.1 (http://ophid.utoronto.ca/mirDIP/).

Statistical analysis
For statistical analyses Student’s t-tests were performed.
A p-value ≤0.05 was considered significant.
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Results
Clinical history of the tumor progression model
The cell lines U-CH11 and U-CH11R were established
from the primary and the corresponding recurrent chor-
doma of a 71-year-old male Caucasian patient. The ini-
tial lesion was located at the sacrum and was 8 × 5.5 × 3
cm in size. Following a surgical resection, considered R0,
the chordoma locally relapsed within 40months after
the first diagnosis and measured 6.5 × 5.5 × 4 cm at the
time of re-excision. Clonal cell selection and genetic al-
terations induced upon radio- or chemotherapy can be
excluded, as this was no part of the patient’s treatment
regimen.

Characterization of the recurrent lesion and the derived
cell line U-CH11R
Both, primary and recurrent tumors show nuclear bra-
chyury expression and were histologically classified as
classical, physaliferous chordomas (not otherwise speci-
fied, NOS) according to the WHO criteria. The cell line
U-CH11 was characterized previously [8]. The cell line
U-CH11R was authenticated by comparing its STR pro-
file with the profile of U-CH11 (Additional file 1

(Additional Table 2)). In concordance with the originat-
ing tumor tissue, cells of U-CH11R feature the typical
appearance of chordomas including a strongly vesicu-
lated cytoplasm and nuclear brachyury expression. (Fig.
1a and b).
The immunocytochemical chordoma panel of the cell

line largely represents the panel of the fixed tumor tissue
(Additional file 1 (Additional Figure 2)). U-CH11 and U-
CH11R exhibit very similar immunocytological profiles
with both being positive for pan-cytokeratin and vimen-
tin, weakly positive for the epithelial membrane antigen
(EMA), and negative for S100-protein. Differences were
seen regarding the Ki-67 labeling index, which was esti-
mated 1% in U-CH11 and 5% in U-CH11R (Fig. 1b).
Consistent with the higher proliferation index, the

population doubling time (PDT) of U-CH11R was sig-
nificantly shorter (student’s t-test; **p < 0.01) (Fig. 1c).

U-CH11 and U-CH11R cells are genetically similar
In order to assess the clonal relationship between U-
CH11 and U-CH11R cells, the genomic aberration pro-
files of the two cell lines were determined by aCGH. A
high concordance of chromosomal alterations between

Fig. 1 U-CH11 and U-CH11R cells are clonally related. a Hematoxylin/eosin staining of the primary and the recurrent chordoma tissues and
in vitro light microscopy of U-CH11 and U-CH11R. The physaliferous cell morphology is conserved. b Immunocytochemical staining of the
chordoma markers brachyury, S100-protein, vimentin, pan-cytokeratin, epithelial membrane antigen (EMA), and Ki-67. c Mean in vitro population
doubling times (±SD; n = 3) of U-CH11 and U-CH11R at different cell densities (**p < 0.01) d Overlay of the array comparative genomic
hybridization ratio plots of U-CH11 (green) and U-CH11R (blue) showing a high concordance of alterations. e Hierarchical cluster analysis of U-
CH11 and U-CH11R in comparison to 12 additional chordoma cell lines. Clustering was performed in a Euclidean distance measure and single
linkage rule
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both cell lines was observed, including mainly losses on
chromosomes 3p, 5q, 6q, 8p, 10p, 11q, 12p, 18q, 22q,
and Y. Additionally, gains of chromosomal material were
detected on 11q, 18q, and 20q. Only few chromosomes
were altered differently, such as an extra gain of 8q and
loss of 13q in U-CH11 and a loss of 1p in U-CH11R
(Fig. 1d).
In an unsupervised hierarchical clustering based on

the aCGH data of 12 additional chordoma cell lines, U-
CH11 and U-CH11R formed a distinct subgroup, sub-
stantiating the close relation between these two cell lines
(Fig. 1e).

Mutations in the primary chordoma tissue are conserved
in U-CH11 and U-CH11R
Genetic alterations in the U-CH11 and U-CH11R cell
lines in relation to the primary chordoma tissue were in-
vestigated by RNA-sequencing. Approximately 80%
(6725/8512) of the exonic SNPs detected in the primary
chordoma tissue were conserved in the derived primary
chordoma cell line U-CH11 (Fig. 2a).
A large proportion of the in common mutations was

also detected in the recurrent chordoma derived cell line
U-CH11R (90%; 6056/6725). Furthermore, a number of
variants (30%; 567/1796) in the tissue that were not de-
tected in U-CH11 were found in U-CH11R supporting
the hypothesis that a cell clone within the primary chor-
doma gave rise to the recurrent tumor. All samples har-
bored the brachyury Gly177Asp SNP (rs2305089) which
is strongly associated with chordoma in the European
population [31].
Exonic alterations were further filtered by allele fre-

quency and genomic consequence. The mean rankscore
of various SNP analysis tools was calculated to predict
the deleteriousness of any amino acid change. The score
ranges from 0 to 1 and variants with higher risks are
predicted to be more likely pathogenic. A cut-off of 0.8
was used to filter the most likely deleterious substitu-
tions. Figure 2b gives an overview of the discovered

mutations (Full list: Additional file 2). In the primary
chordoma tissue, a pathogenic mutation in EHD3
(rs772124528) was detected, which was also found in U-
CH11R. Two additional mutations in ABCC1
(rs201020041) and MCCC1 (rs150862707) were exclu-
sively found in U-CH11R. Moreover, a number of patho-
genic mutations, such as in ABCF3, were detected in
both, U-CH11 and U-CH11R, but not in the tumor
tissue.

Microarray gene expression analysis reveals significant
differences between U-CH11 and U-CH11R
Expression differences between U-CH11 and U-CH11R
were identified by microarray gene expression analysis.
More than 3000 genes were found to be significantly dif-
ferently expressed (Fig. 3a) and expression differences of
selected genes were validated by qRT-PCR (Additional
file 1 (Additional Figure 3)).
CALD1 (6968-fold), COL1A2 (3054-fold), and POSTN

(2995-fold) are the top overexpressed genes in U-CH11R
versus U-CH11. Also, several oncogenes such as BCL2
(11.5-fold), BRAF (9.8-fold), KRAS (4.9-fold), and SRC
(2.8-fold) are significantly stronger expressed in the re-
current chordoma cell line (Additional file 3).
To address the functional potentials, GO annotations

(MSigDB C5: GO) were applied to the overexpressed
genes in U-CH11R. GSEA revealed that these genes are
associated with extracellular matrix structural constitu-
ent, extracellular structure organization and cell matrix
adhesion (Fig. 3b), bone morphogenesis, bone develop-
ment, and skeletal system morphogenesis
(Additional file 4).
The most down regulated genes in U-CH11R are

GABRA2 (− 1533-fold), lnc-TPTE3 (− 1159-fold) and
GLYAT (− 1075.2-fold) (Fig. 3a). Associated GO-terms
included RNA splicing, RNA splicing via transesterifica-
tion reactions and spliceosomal complex (Fig. 3c). A
high proportion of diminished genes mapped to
chromosome 1p and chromosome 8q, when assigned to

Fig. 2 RNA-Sequencing. a Venn diagram illustrating the mutational concordance of exonic variants in the primary chordoma tissue (11PT), the
derived primary cell line U-CH11 and the recurrent chordoma cell line U-CH11R. b Deleterious mutations observed in the samples (colour coded,
refer to legend). SIFT, Polyphen2-HDIV and FATHMM represent three examples of all implemented SNP analysis tools (n = 14)
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the corresponding cytogenetic position (MSigDB C1;
Additional file 4). Therefore, we assume that the de-
creased gene expression levels are partially related to the
genomic aberrations, observed in the aCGH analyses of
U-CH11 and U-CH11R (Fig. 1d). By contrast, the upreg-
ulation of gene expression in U-CH11R seems to occur
independently of chromosomal alterations.

U-CH11 and U-CH11R serve as a representative model of
tumor recurrence in chordoma
To further confirm the identified expression differences
between the matched primary and recurrent chordoma
cell lines U-CH11 and U-CH11R, the analysis was ex-
tended to an additional microarray gene expression data

set including unmatched primary (n = 3) and recurrent
(n = 3) sacral chordoma cell lines.
In order to examine the statistically significant overlap

in the gene expression signatures in matched and un-
matched analyses the RRHO-approach was used [27]. A
significant enrichment of gene overlap was detected in
the on-diagonal extremes of the RRHO-plot clearly indi-
cating a high amount of shared gene expression patterns
(Fig. 3d). The concordantly upregulated genes had the
greatest overall significance (hypergenomic p-value (HP)
10− 37). GSEA of these genes revealed an association to
the GO-terms extracellular structure organization, cell
junction organization and cell junction assembly (Fig.
3e). Furthermore, a linkage to extracellular matrix

Fig. 3 U-CH11 and U-CH11R present distinct transcriptomic profiles representative for sacral primary and recurrent chordoma lines. a Volcano
plot showing statistical significance (−log10p-value) versus fold change (log2FC) of microarray gene expression data from U-CH11R (n = 3) versus
U-CH11 (n = 2). The top five diminished (blue) and enhanced (red) genes in U-CH11R are annotated. Cnetplots illustrating the top three enriched
GO-terms and the associated genes of the enhanced (b) and diminished (c) genes in U-CH11R. The fold change of gene expression is indicated
by the color, the size of each node represents the number of linked genes to each term. d Rank-rank hypergeometric overlap (RRHO) heatmap
for matched and unmatched dataset comparison used to identify significantly concordant transcriptional profiles from two independently
conducted microarray gene expression analyses. RRHO was applied to the matched and unmatched data of primary and recurrent chordoma cell
lines revealing high overlap between both datasets. The -log10 transformed hypergeometric p-value indicates the strength of enrichment (refer to
legend). Concordantly up- and downregulated genes are located in A and D, respectively, disconcordantly expressed genes are in B and C. e
Gene set enrichment analysis of the concordantly upregulated genes in recurrent chordoma cell lines. The top six enriched GO-terms and
associated genes are given
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organization and degradation of the extracellular matrix
pathways was observed by applying the MSigDB Reac-
tome gene set C2 (Additional file 5). Interestingly, a high
proportion of HOX genes was included within the en-
hanced expressed genes in recurrent chordoma cell lines,
e.g., HOXA-AS3, HOXB7, and HOXB13. An increased
overlap was also detected in concordantly downregulated
genes. These results support the hypothesis that primary
and recurrent chordoma cell lines have distinct gene ex-
pression signatures, reflected by the U-CH11 and U-
CH11R model.

The miR196a-5p is involved in the regulation of
developmental HOX genes
Due to the high proportion of differentially expressed
HOX genes, the analysis was extended to scientifically
proven regulators of the HOX clusters. Several genes en-
coding miRNAs, including the miR-196a-5p and miR-
196b-5p, are known to be located within the clusters
and to regulate HOX mRNA levels during embryonic de-
velopment (Fig. 4a) [32, 33]. Significantly reduced
miR196a-5p levels (− 4-fold) were detected in U-CH11R
versus U-CH11 (Fig. 4b), correlating inversely with
higher HOX expression levels. This finding was con-
firmed by comparing the miR196a-5p levels of un-
matched primary (n = 3) and recurrent (n = 3) sacral
chordoma cell lines (Fig. 4c). The predicted binding

sequence of miR-196a-5p within the 3’UTR of the two
selected HOX genes HOXA7 and HOXB8 mRNA is
depicted in Fig. 4d.
To confirm these HOX genes as regulatory targets of

miR-196a-5p, dual luciferase reporter assays were per-
formed in U-CH1 chordoma cells (Fig. 4e) and
HEK239T (Additional file 1 (Additional Figure 4)). Lu-
ciferase reporter plasmids that carry human HOXA7–
3’UTR, HOXB8–3’UTR or the antisense sequence of
miR-196a-5p were co-transfected with either miR-196a-
5p mimics or scrambled controls. In U-CH1 overexpres-
sion of miR-196a-5p significantly reduced HOXA7–
3’UTR and HOXB8–3’UTR reporter activity to 29.7 and
34.5%, respectively, compared to scrambled control.
Similar results were observed for the mir-196a-antisense
reporter (24.7%) which served as a positive control.
Furthermore, the effect of miRNA-196a-5p on

HOXA7 protein levels was determined performing
miRNA mimic transfections in the cell line U-CH1.
Quantitative-RT-PCR experiments of the transfected
cells revealed miRNA-196a-5p expression levels of >
1000-fold compared to control (Fig. 4f).
As expected, overexpression of miR-196a-5p signifi-

cantly reduced HOXA7 levels to 44.3% (Fig. 4b) Taken
together, these results suggest that HOX genes are
downstream regulatory targets of the miR-196a-5p in
chordoma.

Fig. 4 The HOX/PBX network is dysregulated by diminished miR-196a-5p levels in recurrent chordoma cell lines. a Scheme of the HOX clusters
and miRNAs of the miR-196 family located within the cluster. Micro-RNA-196a-5p expression levels of matched (b) and unmatched (c) primary
and recurrent chordoma cell lines. Relative fold change levels are given on the y-axis. (d) miR-196a-5p target sites (underlined nucleotides) in the
3’UTRs of HOXA7 and HOXB7 predicted by TargetScan 7.2. (e) Response to miR-196a-5p in U-CH1 cells. Firefly luciferase reporters containing either
the complementary site of HOXA7 and HOXB8 or the perfect antisense sequence of miR-196a were co-transfected with a miR-196a mimic or a
scrambled control, respectively. Firefly luciferase activity was normalized to Renilla luciferase activity. (f) Overexpression of miR-196a-5p in U-CH1
cells confirmed by qRT-PCR. (g) The effect of miR-196a-5p on HOXA7 levels in U-CH1 cells assessed by Western blot analysis. Experiments were
performed in biological triplicates. T-tests were performed to determine statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001). (h) GO-term
analysis of the predicted target genes (n = 50) illustrated as cnetplot. (i) STRING analysis of the predicted miR-196a-5p target genes (n = 50)
revealed an interaction network between HOX transcription factors and PBX co-factors
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In silico analysis was performed to evaluate further
targets of the miR-196a-5p. Therefore, all identified up-
regulated genes in recurrent chordoma cell lines were
compared with the predicted miR-196a-5p target genes.
An intersection of 50 potential target genes was found
(Additional file 6). GO enrichment analysis of these
genes suggested an implication in early developmental
processes, including the GO-terms embryonic skeletal
system, skeletal system morphogenesis and anterior pos-
terior pattern specification (Fig. 4h). STRING database
analysis constructed an interaction network between
HOX and PBX transcription factors (Fig. 4i), suggesting
vulnerability towards HOX-PBX network inhibition in
recurrent chordomas.

Inhibition of dimer formation between PBX and HOX
factors causes cell death in chordoma via enhanced cFOS
expression
HXR9 is a small peptide shown to interfere in dimer
formation of PBX and HOX proteins by mimicking
the PBX binding site of several HOX proteins [20,
34, 35]. Therefore, chordoma cells were treated with
this peptide to elucidate the effect of HOX-PBX
interference regarding cell survival in chordoma.
HXR9 substantially reduced the viability of all cell
lines tested. Significantly lower concentrations of
HXR9 were required for U-CH11R (n = 3; mean
IC50 = 29.59 μM± 5.5) compared to U-CH11 (n = 3;
mean IC50 = 70.26 μM± 17.2; Fig. 5a). In unmatched

recurrent chordoma cell lines, a mean IC50 value of
31.65 μM for HXR9 was computed which was signifi-
cantly lower than the mean IC50 value of primary
chordomas (43.91 μM; Fig. 5b). Significantly higher
levels of the control peptide CXR9 were required to
reduce the cells’ viability. No bottom plateau was
reached and IC50 estimations revealed values of >
100 μM in all cell lines tested (Fig. 5a and b). Fur-
thermore, compared to fibroblasts, chordoma cells
were markedly more susceptible towards HXR9
treatment, substantiating the therapeutic potential of
HOX-PBX-network inhibition (Fig. 5c). Colony for-
mation assays of the primary chordoma cell lines U-
CH19 and U-CH11 as well as the recurrent lines U-
CH1 and U-CH11R were performed to test if a
treatment with HXR9 has an impact on the cell
lines’ ability to form colonies in soft agar. In the re-
current cell lines U-CH1 and U-CH11R the amount
of colonies was significantly reduced to 20% (p <
0.01) and 44% (p < 0.01), respectively. In the primary
chordoma cell lines (U-CH19 and U-CH11) this re-
duction could only be observed in trend (Fig. 5d).
To investigate whether chordoma cells are undergoing

apoptosis due to HXR9 treatment, activation of Caspase
3/7 was measured using a fluorescent Caspase-3/7
in vitro detection assay and compared to CXR9 treated
cells. Figure 6 shows bright-field, corresponding fluores-
cent cleaved Caspase-3/7 staining and composite pic-
tures of U-CH11 (a) and U-CH11R (b) cells treated with
HXR9 or CXR9 following a 24 h treatment with 30 μM

Fig. 5 Recurrent chordoma cell lines are susceptible towards HOX/PBX inhibition. (a) Mean IC50 ± SD of HXR9 in U-CH11 (70.26 μM ±17.2)
compared to U-CH11R (29.59 μM ±5.5) and (b) unmatched primary (n = 3, 43.91 μM ±12.3) versus recurrent (n = 3, 31.65 μM ±10.4) chordoma
derived cell lines. Representative inhibition curves of one representative replicate of the cell lines treated with HXR9 (solid curves) and CXR9
(dotted curves) are depicted. (c) Overall response to HXR9 in chordoma (n = 8; 40.82 μM ±17.2) in comparison to fibroblasts (n = 3; 108.3 μM ±
19.9). The inhibition curves of one representative example of fibroblasts are given. (d) Colony formation assay. Values are normalized to the mean
amount of colonies after CXR9 treatment (n = 3). Statistical differences were determined by Student’s t-tests (*p < 0.05, **p < 0.01, ***p < 0.001)
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CXR9 or HXR9 (Staining of U-CH19 and U-CH1: Add-
itional file 1 (Additional Figure 5)).
In response to HXR9 treatment significantly more cells

appeared Caspase-3/7 positive in the recurrent line U-
CH1 (77.5%) compared to the primary chordoma cell
line U-CH19 (22.5%) and in U-CH11R (69%) compared
to the corresponding line U-CH11 (21%), fitting their
lower sensitivity to the peptide (Fig. 6c). In comparison,
positive cell rates were < 5% due to CXR9 treatment in
all cell lines tested. Similar results were obtained by im-
munohistochemical staining of cleaved Caspase-3 of
chordoma cell lines treated for 4 h with 30 μM of HXR9
and CXR9. (Additional file 1, Figure 6).
Induction of apoptosis was further validated by West-

ern blot analysis of HXR9 and CXR9 (30 μM, 24 h)
treated cell lines. Strong signals of cleaved PARP,
cleaved Caspase-3 and cleaved Caspase-7 were detected
in the recurrent chordoma cell lines U-CH1 and U-
CH11R subsequent to HXR9 treatment confirming the
previous results observed in the NucView Caspase-3/7
assay, whereas the signals were weak in the primary cell
lines U-CH19 and U-CH11. Additionally, HXR9 induced
cleavage of poly (ADP-ribose) polymerase (PARP) in all
cell lines compared to CXR9 control further substantiat-
ing induction of apoptosis (Fig. 6d).
Recently, it has been suggested that the HOX/PBX

inhibition-induced apoptosis is mediated via cFOS [20].
Therefore, CFOS expression analyses in response to a

four-hour treatment with 30 μM of the peptides and a
vehicle control (DMSO) were conducted and normalized
against GAPDH and ACTB (Fig. 6e; Additional file 1
(Additional Fig. 7)). HXR9 significantly increased CFOS
levels compared to the control compounds CXR9 and
DMSO. In line with the higher susceptibilities towards
HXR9 in recurrent chordoma cell lines, a significant in-
crease (4.6-fold) of CFOS mRNA levels was observed in
U-CH11R compared to U-CH11 (Fig. 6e). Additionally,
CFOS expression enhancement was considerably stron-
ger (115-fold) in U-CH1 compared to U-CH19, which
served as representative examples of a primary and re-
current chordoma cell line (Fig. 6f). These results sug-
gest that the HXR9 induced apoptosis is mediated via
enhanced CFOS expression in chordoma.

Discussion
Chordomas are rare tumors with a high tendency to
recur. Due to their low incidence, however, in vitro cell
culture models have been limited to the investigation of
tumorigenesis and metastasis so far. Consequently, an
understanding of the cellular and genetic features of re-
lapsed chordomas and their associated vulnerabilities
has been missing. The chordoma cell lines derived from
the same patient at the time of diagnosis (U-CH11) and
following loco-regional recurrence (U-CH11R) serve as a
unique cell line progression model to overcome this de-
ficiency. Notably, the cell lines were established from

Fig. 6 HXR9-induced apoptosis is mediated via cFOS. Activation of cleaved Caspase-3/7 (488 nm; green channel) in U-CH11 (a) and U-CH11R (b)
treated for 24 h with 30 μM CXR9 or HXR9. The percentage of cleaved Caspase 3/7 positive cells following each treatment was determined by cell
counts of representative image sections (n = 12; c). Immunoblots showing cleaved PARP, Procaspase 3, cleaved Caspase-3 and cleaved Caspase-7
in chordoma cell lines treated with 30 μM of HXR9 or CXR9 for 24 h (d). CFOS expression levels in response to treatment with HXR9 or two
control compounds (CXR9 and DMSO) in U-CH1 versus U-CH19 (e) and U-CH11 compared to U-CH11R (f) cell lines quantified by qRT-PCR and
normalized against GAPDH. Gene expression experiments were performed in technical and biological triplicates. Statistical differences were
determined by Student’s t-tests (*p < 0.05, **p < 0.01, ***p < 0.001)
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patient samples that were not exposed to chemothera-
peutic drugs and radiation. Therefore, an influence on
the tumor biology in response to a systemic tumor treat-
ment is excluded.
Both cell lines exhibited a very similar morphology

and immunocytochemical profile that largely coincided
with the findings in the corresponding tissues. However,
the recurrent chordoma and derived cell line U-CH11R
had a higher Ki-67 index and a shorter PDT in cell cul-
ture than the primary tumor and its corresponding cell
line U-CH11. These findings implicate substantial differ-
ences between the primary and the recurrent tumor de-
tectable in the tissues and being reflected in the
corresponding cell lines.
The aCGH profile of both cell lines was almost con-

gruently altered, including losses of chromosomes 3p,
22q and on chromosome 10, which are frequently re-
ported in chordomas [36]. The profound similarities be-
tween U-CH11 and U-CH11R show that the cells of
both lines are clonally related. Thus, it seems most likely
that cells of the primary and recurrent chordoma ema-
nated from a common progenitor but additionally accu-
mulated a few individual aberrations over time, e.g. loss
of 1p in U-CH11R. Loss of 1p is associated with tumor
progression and recurrence in neuroblastoma, with dis-
tant recurrence and poor prognosis in a range of solid
malignancies [37]. Recently, the 1p36 locus received
growing attention in various cancer entities, suggesting
tumor suppressor genes to reside within this area [38].
Riva et al. suggested the genes CASP9, EPH2A, and
DVL1, located on 1p36.32–36.11, to contribute to onco-
genesis in chordoma [39]. In a series of skull base chor-
domas, loss of heterozygosity (LOH) at 1p36 was
observed in 75% of the cases and was correlated with
poor prognosis [40]. Therefore, loss of 1p could be a
conductive feature to drive chordoma cells towards a
more aggressive phenotype.
We detected a high amount of exonic mutations in the

primary tumor tissue being conserved in U-CH11 and
U-CH11R. Numerous variants were only detected within
the primary chordoma tissue and U-CH11R, but not in
U-CH11. Hence, it can be assumed that cells that gave
rise to the recurrent chordoma and the derived cell line
U-CH11R were already present in the primary tumor.
Interestingly, U-CH11R harbors all mutations that were
predicted deleterious implicating a contribution to
tumor progression. Among them ERCC2, encoding the
Xeroderma Pigmentosum Protein, is frequently altered
in different types of cancer (reviewed in [41]). ABBC1
refers to the multidrug resistance-associated protein 1.
Genetic variations in ABCC1 might affect drug dispos-
ition or efficacy [42].
To explore how the genomic features contribute to

differential gene expression in U-CH11 and U-CH11R,

gene expression patterns were compared. GSEA of the
downregulated genes in U-CH11R revealed an associ-
ation to RNA-Splicing. Although pathologically altered
splicing events and enhanced dependency on the spli-
ceosome in chordoma are yet barely investigated, gene
expression alterations affecting components of the spli-
cing machinery have been recently detected in a wide-
spread of other cancer types and are suggested to
promote cancer development and treatment resistance.
Promising strategies by which pathologic splicing events
may be modulated for cancer therapy are currently
under investigation and may be transferred to chordoma
in the future [43].
Moreover, a high proportion of genes that appeared to

be downregulated in U-CH11R mapped to 1p, such as
the above-mentioned genes CASP9 and DVL1. The up-
regulated genes in U-CH11R, however, could not be ex-
plicitly linked to the chromosomal alterations,
suggesting further key regulatory mechanisms. The high-
est upregulation was observed for genes referring to the
structural proteins caldesmon (CALD) and collagen type
I alpha 2 (COL1A2). Caldesmon and COL1A2 are found
at high levels in various gastrointestinal tumors carcin-
oma [44–47]. To prove whether the expression profile of
U-CH11R is conferrable to other recurrent chordoma
cell lines, a second set of gene expression data of un-
matched primary and recurrent chordoma cell lines was
included. Recently, it was shown that clival and sacral
chordoma cell lines differ substantially in their expres-
sion profiles [13]. Thus, we only included cell lines de-
rived from sacral chordomas. The RRHO method was
applied to identify patterns of concordant transcriptional
changes in the matched (U-CH11 vs. U-CH11R) and the
unmatched dataset (primary vs. recurrent chordoma cell
lines). We found the highest enrichment of gene overlap
close to the on-diagonal extremes indicating that
strongly differentially expressed genes are not explicable
by intrapersonal effects but can be regarded as general
expression differences between primary and recurrent
chordoma cell lines [27]. Interestingly, several HOX
genes appeared to be highly upregulated in recurrent
chordoma cell lines. Shah et al. recently suggested that
aberrant HOX gene expression might contribute to
oncogenesis by promoting the activation of anti-
apoptotic pathways and being involved in cell invasion,
EMT, DNA damage repair and proliferation [48]. More-
over, a transcriptome analysis revealed numerous HOX
genes to be overexpressed in recurrent glioblastomas
[49]. In chordomas, genes of the HOXA cluster have
been reported to be super-enhancer associated in vitro
and in vivo [3]. Furthermore, HOXC8 overexpression
has been shown to promote proliferation, colony forma-
tion, and cell invasion in the recurrent chordoma de-
rived cell lines U-CH1 and U-CH2 [50]. We therefore
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assume a role of HOX factors in chordoma relapse. The
genes HOXB7, HOXB13, and HOXA-AS3 were detected
among the upregulated genes in recurrent chordomas.
Their overexpression has frequently been observed in a
broad range of solid tumors, such as gastric-, prostate-,
and small cell lung cancer and is associated with poor
prognosis [51–53]. Due to the large number of dysregu-
lated HOX genes in recurrent chordoma cell lines, we
assume the same underlying key regulator. We therefore
assessed the expression of the miRNA gene family
MIR196, located within the HOX cluster [33]. The miR-
196a and miR-196b are known to regulate HOX mRNA
levels during embryonic development and to function as
either oncogenes or tumor suppressors in a variety of
tumor entities. A tumor suppressive role was suggested
in osteosarcoma, melanoma, and breast cancer [54–56].
Compatible with the enhanced HOX mRNA levels, we
observed significantly lower miR-196a levels in recurrent
chordoma cell lines. By STRING analysis, we identified
an interaction network between HOX and PBX factors
in recurrent chordomas, potentially regulated by the
miR-196a. The mechanism of HOX-PBX dimerization
and its inhibition using the small peptide HXR9 have
previously been described in several tumor entities [35].
Therefore, we inhibited the HOX-PBX interaction using
HXR9. This induced cell death in all chordoma cell lines
analyzed and reduced the ability of the cells to form col-
onies. Recurrent chordoma derived cell lines were sig-
nificantly more susceptible towards HOX/PBX-
inhibition than primary cell lines. In line with this, a
higher increase of CFOS expression following HXR9
treatment was detected in recurrent chordoma cell lines
[57].

Conclusion
Taken together, our results suggest that transcriptomic
reprogramming occurs during chordoma recurrence,
which does not derive from genomic events. The upreg-
ulation of the HOX-PBX network is, at least in parts,
regulated by the miR-196a in recurrent chordoma and
can be disrupted using the peptide HXR9 in order to in-
duce apoptosis.
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Additional file 1: Figure 1. Results of mycoplasma PCR of cell lines
included in the analyses. (−) negative control; (+) two different
mycoplasma positive controls showing the expected amplicon (~ 500
bp). All cell lines tested were negative. Figure 2. Immunohistochemistry
(IHC) of the primary and the relapsed sacral chordoma in comparison to
the derived cell lines. IHC results were interpreted as follows: “no
immunoreactivity detected” (−), “immunoreactivity ≤ 30%” (+),
“immunoreactivity > 30% and < 70%” (++), “immunoreactivity in ≥ 70%”
(+++) of the total number of chordoma cells analyzed. HE: hematoxylin/
eosin; EMA: epithelial membrane antigen. NOS: not otherwise specified.
Figure 3. Validation of gene expression differences between U-CH11 and
U-CH11R. Expression levels of selected genes were quantified by qRT-PCR
analyses and normalized against GAPDH. Experiments were performed in
technical triplicates and at least in biological duplicates and Student’s t-
tests were performed to determine statistical significance (*p < 0.05,
**p < 0.01, ***p < 0.001). Figure 4. Dual Luciferase reporter assay of miR-
196a-5p in HEK293T cells. Firefly luciferase reporters containing either the
complementary site of HOXA7 and HOXB8 or the perfect antisense se-
quence of miR-196a were co-transfected with a miR-196a mimic or a
scrambled control, respectively. Firefly luciferase activity was normalized
to Renilla luciferase activity. Experiments were performed in technical and
biological triplicates and Student’s t-tests were performed to determine
statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001). Figure 5. Acti-
vation of Caspase-3/7 in U-CH19 and U-CH1. Activation of cleaved
Caspase-3/7 (green channel) in U-CH19 (a) and U-CH1 (b) treated for 24 h
with 30 μM CXR9 or HXR9 investigated by EarlyTox Caspase-3/7 NucView
488 assays. Figure 6. Induction of apoptosis in HXR9 treated chordoma
cell lines assessed by immunocytochemistry of cleaved caspase-3 (red
staining). Cell lines were treated for 4 h with 30 μM HXR9 or the control
peptide CXR9. No cleaved caspase-3 positivity was observed in response
to CXR9 treatment. Figure 7. Expression levels of cFOS normalized
against ACTB. CFOS expression levels in response to treatment with HXR9
or two control compounds (CXR9 and DMSO) in U-CH11 versus U-CH11R
(a) and U-CH19 compared to U-CH1 (b) cell lines quantified by qRT-PCR
and normalized against ACTB. Gene expression experiments were per-
formed in technical and biological triplicates. Statistical differences were
determined by Student’s t-tests (*p < 0.05, **p < 0.01, ***p < 0.001).
Table 1. Antibodies used for immunostainings of chordoma cell lines
and tissue. Table 2. STR profiles of U-CH11R and U-CH11. Table 8. Base-
level expression of selected genes based on microarray gene expression
data. Mean raw intensity values and standard deviations are given.
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recurrent chordoma cell lines.
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