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The spatiotemporal control of programmed cell death (PCD) plays a significant role in
sculpting the limb. In the early avian limb bud, the anterior necrotic zone (ANZ) and the
posterior necrotic zone are two cell death regions associated with digit number reduction.
In this study, we evaluated the first events triggered by the FGF, BMP, and WNT signaling
interactions to initiate cell death in the anterior margin of the limb to establish the ANZ. This
study demonstrates that in a period of two to 8 h after the inhibition of WNT or FGF
signaling or the activation of BMP signaling, cell death was induced in the anterior margin of
the limb concomitantly with the regulation of Dkk, Fgf8, and Bmp4 expression. Comparing
the gene expression profile between the ANZ and the undifferentiated zone at 22HH and
25HH and between the ANZ of 22HH and 25HH stages correlates with functional
programs controlled by the regulatory network FGF, BMP, and WNT signaling in the
anterior margin of the limb. This work provides novel insights to recognize a negative
feedback loop between FGF8, BMP4, and DKK to control the onset of cell death in the
anterior margin of the limb to the establishment of the ANZ.
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INTRODUCTION

Programmed cell death (PCD) is essential to regulate the final morphology and sculpting limbs
(Pajni-Underwood et al., 2007; Montero et al., 2020). PCD participates in separating digits and
zeugopodial elements (Hinchliffe and Thorogood, 1974; Zuzarte-Luis and Hurle, 2005). The anterior
and posterior margins of the avian limb are associated with digit reduction (Saunders and Gasseling,
1962; Zuzarte-Luis andHurle, 2002; 2005). Those regions are called the anterior necrotic zone (ANZ)
and posterior necrotic zone (PNZ) (Saunders and Gasseling, 1962). Meanwhile, PCD in the
interdigital regions takes part in species with free digits.

The process of cell death is under the control of the apical ectodermal ridge (AER); it is well
known that limb truncation and massive cell death occur after the elimination of the AER,
demonstrating that cell survival of mesodermal cells depends on the signals from this
epithelium. The molecular analysis of AER indicates that Fibroblast Growth Factor (FGF) family
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members expressed in the AER govern cell proliferation and cell
survival. FGF8 signaling protects the mesodermal cells from cell
death (Niswander et al., 1993; Sun et al., 2002; Mariani et al., 2008;
Ten Berge et al., 2008; Mariani et al., 2017). Mutant mice for the
Fgf8 gene or the blockade of the function of FGF signaling induces
cell death in the mesodermal cells (Montero et al., 2001; Sun et al.,
2002; Mariani et al., 2008; Mariani et al., 2017). FGF8 participates
promoting a positive feedback loop, inducing the expression of
Fgf10 in the mesoderm whose interaction with the FGF receptor
2b (FGFR2b) in the AER promotes the expression of Wnt3a (Xu
et al., 1998; Danopoulos et al., 2013; Haro et al., 2014; Jin et al.,
2018). WNT3A induces the expression of transcription factors
Sp6 and Sp8 that induce Fgf8 expression in the AER (Kawakami
et al., 2001; Kawakami et al., 2004). WNT signaling from the AER
participates in maintaining the undifferentiated state of
mesodermal cells under AER (Ten Berge et al., 2008). The
function of WNT-ß catenin signaling may be blocked by
DKK, an antagonist of this signaling pathway. Gene deletion
of DKK results in cell death inhibition, and Dkk expression is
observed in cell death regions during limb development
(Grotewold et al., 1999; Mukhopadhyay et al., 2001; Grotewold
and Ruther, 2002a; b).

During limb development, the bone morphogenetic proteins
(BMP) signaling is another pathway controlling cell death. Bmp2,
Bmp4, and Bmp7 expression are observed in the interdigital regions
and the anterior and posterior margins of the limb (Hogan, 1996;
Yokouchi et al., 1996; Macias et al., 1997; Chen and Zhao, 1998;
Merino et al., 1999; Salas-Vidal et al., 2001; Zuzarte-Luis et al.,
2004). The implantation of BMP-soaked beads promotes cell death
in the interdigital tissue, whereas the blockade of BMP signaling
with NOGGIN or GREMLIN inhibits it (Ganan et al., 1996;Macias
et al., 1997; Zuzarte-Luis et al., 2004). BMP stimulates the SMAD1/
5/8 signaling pathway in blood vessels and mesodermal cells,
promoting cell death in mesodermal cells, and inhibiting Fgf8
expression in the AER (Zuzarte-Luis et al., 2004; Monteiro et al.,
2008; Abarca-Buis et al., 2011).

High levels of FGF signaling in the interdigital mesoderm
downregulate Bmp genes, inhibiting cell death (Montero et al.,
2001; Hernandez-Martinez et al., 2009). However, FGF2 signaling
promoted cell death induced by BMP proteins, suggesting that
FGF also works in a feedback loop with BMP signaling (Montero
et al., 2001). Mesodermal cells become competent to signaling
pathways that control cell fate when WNT and FGF signals are
depleted underneath AER (Ten Berge et al., 2008). If cells receive
cell death-promoting factors, presumably BMPs, cells enter the
cell death program (Montero et al., 2001; Hernandez-Martinez
et al., 2009). Otherwise, the cell differentiation program begins if
mesodermal cells receive chondrogenic signals (Chimal-Monroy
et al., 2003; Montero et al., 2008; Marin-Llera et al., 2019). Thus,
FGF and WNT signaling together with BMP signaling establish a
well-known regulatory network to control the undifferentiated
state, cell proliferation, and cell survival during limb development
(Niswander et al., 1993; Montero et al., 2001; Sun et al., 2002;
Mariani et al., 2008; Ten Berge et al., 2008; Hernandez-Martinez
et al., 2009; Mariani et al., 2017). The participation of this
regulatory network is better known during the PCD in the
interdigital regions than in the ANZ or PNZ. A previous study

demonstrated that a BMP-pulse of 4 h was sufficient to induce cell
death in the anterior margin of the limb (Abarca-Buis et al.,
2011). Notably, TUNEL-positive cells show no co-localization of
nuclear phosphorylated SMAD1/5/8 proteins suggesting that
BMP signaling participates in a molecular cascade in the ANZ,
culminating in cell death (Abarca-Buis et al., 2011).

Because a short pulse of BMP is sufficient to induce cell death
in the anterior margin of the limb, this work aimed to determine
how the regulatory network integrated by FGF, BMP, and WNT
signaling pathways participate in the establishment of the ANZ.
The results presented here demonstrated that inhibition of WNT
or FGF signaling or the activation of BMP signaling during a
short period is sufficient to induce cell death in the anterior
margin of the limb and to regulate Dkk, Fgf8, and Bmp4
expression. Thus, the regulatory network of the FGF-BMP-
WNT signaling pathway induces cell death in the anterior
margin of the limb to establishing the ANZ.

MATERIAL AND METHODS

Ethics
This protocol was reviewed and approved by the Institutional
Review Board for the Care and Use of Laboratory Animals of the
Instituto de Investigaciones Biomédicas, Universidad Nacional
Autónoma de México (UNAM, Mexico City, Mexico).

Eggs and Embryo Manipulations
Fertilized White Leghorn chicken eggs (ALPES, Puebla, Mexico)
were incubated at 38°C and staged according to Hamburger and
Hamilton (1951). Eggs were windowed to expose the right limb at
developing stages from 22 to 25 HH for experimental procedures.
Heparin beads (Cat. H6508, Sigma-Aldrich, St. Louis, MO,
United States) or in Affigel (Bio-Rad Laboratories, Hercules,
CA) were soaked in 1 mg/ml FGF8 (cat. 100-25A), FGF10
(100-26), 1 mg/ml DKK (cat. 120-30) BMP4 (cat. 120-05),
BMP7 (cat. 120-30P) or 2 mg/ml NOGGIN (cat. 120-10C)
from Peprotech, Mexico City, Mexico. Ag1-X2 ionic exchange
beads (Cat. 1401231, Sigma-Aldrich, Mexico) were soaked in
4 mg/ml SU502 and placed in the ANZ of embryonic limbs.
Manipulated embryos were incubated for short times according
to the experiments and processed for lysotracker staining, in situ
hybridization, or both.

RNA Probes and in Situ Hybridization
RNA antisense probes were labeled with UTP-digoxigenin
(11209256910, Roche Applied Science, Indianapolis, IN,
United States) and used for whole-mount in situ hybridization
(ISH) as described previously (Merino et al., 1998). Samples were
treated with 60 μg/ml proteinase K for 25 min at 21°C for Bmp7,
Fgfr1, Fgfr2, Fgfr3, Mkp3, Msx2, and Wif. Bambi required 70 μg/
ml proteinase K for 28 min at 25°C; 60 μg/ml was used for 22 min
at 21°C for Bmp4 and Dkk. Fgf8 was treated with 15 μg/ml for
20 min at 21°C. The hybridization temperature was 68°C, and
post-hybridization washes were at 70°C for all genes. The signal of
ISH was visualized with BM-Purple substrate for alkaline
phosphatase (Roche Applied Science). Images were acquired
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with the Nikon Stereoscope Fluorescence Microscope SMZ1500
(Nikon Corporation, NY, United States) or in AxioZoom V.16
microscope (Carl Zeiss, Oberkochen, Germany) using Zen lite
software (Carl Zeiss, Oberkochen, Germany).

Detection of Cell Death With Lysotracker
and Neutral Red Staining
Embryonic limbs were incubated in 1 μMLysoTracker Red DND-99
(Cat. L7528, Molecular Probes) at 37°C for 15min. Samples were
rinsed twice in PBS and fixed in 4% PFA overnight at 4°C. Some
samples were also processed for ISH as described previously (Abarca-
Buis et al., 2011). After ISH, limb buds were dehydrated in increasing
methanol-PBS-Tween series and cleared with 2:1 benzylic alcohol:
benzyl benzoate solution for 1 h each (Parish, 1999). For Neutral Red
staining, limbs were isolated, washed in PBS, and stained with 2%
Neutral Red in PBS time at 37°C. Images were acquired with a Nikon
Stereoscope Fluorescence Microscope SMZ1500 (Nikon
Corporation, NY, United States) and Fluorescence Microscope
Axio Zoom. V16 Carl Zeiss, Göttingen, Germany.

Real-Time RT-PCR
RNA extractions were performed with NucleoSpin RNA
(Macherey-Nagel, cat. no. 740955, Düren, Germany), and
retrotranscription of total RNA was achieved using the
RevertAid RT kit (Thermo Fisher Scientific, cat. no. K1691,
Waltham, MA, United States) according to the manufacturer’s
instructions. Expression levels were analyzed using a real-time
PCR system and quantified with SYBR green (Thermo Fisher).
The Rpl13 gene was used as a normalizer. The expression level
was evaluated relative to a calibrator according to the 2−(ΔΔCt)

equation. Each value represented the mean ± SD of three
independent experiments and was analyzed using Student’s
t-test. Statistical significance was set at p < 0.05.

RESULTS

Anterior Necrotic Zone Appears by the
Progressive Loss of the Apical Ectodermal
Ridge
To associate the gene expression pattern of Fgf8, a survival signal,
and the presence of cell death in the ANZ during limb outgrowth,

embryonic limbs from 22HH to 25HH were stained with
lysotracker and hybridized for Fgf8 (Figure 1). The results
indicated that cell death was observed in the anterior margin
of the limb from stage 23 HH to 25 HH (Figure 1). Concurrently
as the limb outgrowth occurs, the Fgf8 expression is gradually
downregulated in the AER from the proximal to the distal region,
near the ANZ. Thus, these results exhibited a boundary between
the downregulation of Fgf8 from the AER and the appearance of
the ANZ while progressive cell death in mesodermal cells is
observed (Figure 1).

FGF-, BMP-, and WNT-Signaling Pathways
Are Active in the Anterior Margin of the Limb
Bud When the ANZ Is Established
The association of the expression patterns of the genes related
to FGF-, BMP-, and WNT-signaling pathways with the
boundary observed between Fgf8, and the appearance of
progressive cell death was studied at the 24 HH stage. At
this developing stage, cell death and Fgf8 expression are
precisely located at neighboring positions (Figure 2),
allowing us to study how FGF-, BMP-, and WNT-signaling
pathways regulate the onset of cell death and the appearance of
ANZ in the developing limb.

The genes related to FGF signaling, such as Mkp3, a target of
this signaling pathway, and the three receptors of FGF, Fgfr1,
Fgfr2, and Fgfr3 (Figure 2A) were evaluated. Mkp3 and Fgfr1
were expressed in the distal part of the anterior margin and in the
anterior half of the distal position. Besides,Mkp3was expressed in
the central part of the proximal region. Fgfr2 was mainly
expressed in both anterior and posterior margins, whereas
Fgr3 was slightly expressed in an extended way in the
mesoderm (Figure 2A).

Regarding BMP signaling, the expression of Bmp4, Bmp7,
and Bambi was evaluated. Bmp4 was expressed in both anterior
and posterior margins of the limb (Figure 2B). In contrast,
Bmp7 expression was mainly localized in the most distal region
of the limb riming undifferentiated region underneath AER
and the anterior margin of the limb (Figure 2B). Bambi
expression was observed preferentially in the proximal
region of the anterior margin and the most distal region of
the posterior margin of the limb (Figure 2B). In addition, as a
marker of undifferentiated cells and regulated by BMP
signaling, we evaluated the Msx2 gene expression pattern.

FIGURE 1 | Progressive loss of the apical ectodermal coincides with the apparition of cell death in the anterior margin of the limb. In situ hybridization of Fgf8 gene
expression and cell death pattern evidenced by lysotracker stain at limb development stages from 22 to 25 HH. Notice that cell death occurs in regions in which Fgf8
expression is disappearing.
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Results showed that it is expressed in the anterior margin of the
limb (Figure 2B).

On the other hand,Dkk andWif gene expression was analyzed
as genes related to Wnt signaling (Figure 2C). Dkk gene
expression was localized in the anterior and posterior margins
of the limb (Figure 2). Wif gene expression was observed in all
anterior and posterior margins and the distal region of the limb
(Figure 2C). These results showed a dynamic gene expression
pattern suggesting that all three signaling pathways are active
during the process of cell death in the anterior and posterior limb
margins.

FGF, WNT, and BMP Signaling Control the
Induction and Maintenance of Cell Death in
the ANZ
Although the gene expression pattern is quite similar in the
anterior and posterior margin of the limb, here was decided to
determine the minimum time to promote cell death in the ANZ

modulating the function of FGF, WNT, and BMP signaling
pathways. As a first approach, FGF8-soaked beads or FGF
signaling inhibitor (SU5402)-soaked beads were placed in the
anterior margin of the limb at the 24 HH stage (Figure 3A). The
results showed that FGF8 treatments did not inhibit cell death. In
contrast, inhibiting FGF signaling for 6 h was sufficient to
increase cell death in this region (Figure 3A). On the other
hand, the minimal time to induce cell death after inhibitingWNT
signaling with DKK-soaked beads in the anterior margin of the
limb was 8 h. In contrast, as expected, WNT3A soaked beads did
not inhibit cell death (Figure 3B).

It is known that a short pulse of BMP induces cell death in the
ANZ (Abarca-Buis et al., 2011) and because the expression of the
Bmp4 and Bmp7 is observed in the anterior margin. Here the cell
death promoted by both proteins was evaluated. The results
showed that cell death in the ANZ stimulated by BMP4 and
BMP7 occurs after 6 h (Figure 3C) and is inhibited by NOGGIN
after 6 h of treatment (Figure 3C). Taking together, these results
suggest that the minimum time to trigger cell death in the ANZ is

FIGURE 2 | Gene expression pattern of effector genes related with WNT, FGF, BMP signaling in the ANZ and PNZ. Cell death pattern and in situ hybridizations of
(A) Mkp3, Fgfr1, Fgfr2, Fgfr3, Bmp4, Bmp7, Bambi, Msx2, Dkk, and Wif. They were evaluated in the anterior margin of the limb at developing stage 24 HH. (A) Mkp3,
Fgfr1, Fgfr2, and Fgfr3 are genes related to FGF signaling. (B) Bmp4, Bmp7, Bambi, andMsx2 related to BMP signaling, whereas (C)Dkk, Wif, related toWNT signaling.
Notice the dynamic expression of all genes in the ANZ.
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6 h after inhibition of FGF and activation of BMP signaling or 8 h
after inhibiting WNT signaling.

FGF- and BMP-Signaling Are Coordinated
to Regulate Cell Death in the ANZ
The inhibition of FGF or activation of BMP signaling triggers cell
death after 6 h. Thus, to determine the relation between FGF and
Bmp4 and Dkk expression during the induction of cell death, the

gene expression of Bmp4 and Dkk was evaluated after inhibiting
or activating FGF signaling (Figure 4). The results demonstrated
that Dkk expression was inhibited after 2 h of treatment, whereas
Bmp4 inhibition occurred after 4 h (Figure 4A). However, after
the administration of proteins FGF8 or FGF10 to activate FGF
signaling, only FGF10 induced moderately Bmp4 expression
without important changes in the expression of Dkk and
Bmp4 by FGF8 (Figures 4 B, C). Thus, because the inhibition
of FGF signaling for two or 4 h, downregulated Dkk and Bmp4,

FIGURE 3 |Control of PCD in the ANZ by FGF,WNT, and BMP signaling. The cell death pattern was evaluated in the ANZ at limb developing stage 24HH after FGF,
WNT, and BMP signaling treatments. (A) FGF8 treatment for 6 h did not modify the cell death pattern but inhibiting FGF signaling resulted in the promotion of PCD. (B)
WNT3A treatment for 8 h did not alter the cell death pattern, but DKK-treatment to inhibit Wnt signaling induced cell death after 8 h. (C) BMP4- or BMP7- treatment for
6 h promoted cell death, whereas NOGGIN inhibited cell death after 6 h of treatment. Notice that the minimum time to trigger cell death in the ANZ is 6 h after
inhibiting FGF or activating BMP signaling, whereas DKK needed 8 h to promote cell death. The images at the top of each line correspond to samples stained with
Neutral Red, while the images at the bottom are stained with Lysotracker. The axis showed in A can be used for B and C.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7038365

Díaz-Hernández et al. Establishment of the ANZ

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 4 | Inhibition of Dkk and Bmp4 gene expression by treatment with an inhibitor on FGF signaling. Gene expression pattern of Bmp4 and Dkk in the anterior
margin of the limb at developing stage 24HH. (A) Dkk expression inhibition was observed after 2 h of treatment with SU5402, while Bmp4 was inhibited after 4 h. The
gene expression pattern of Dkk and Bmp4 was not modified at least 4 h after (B) FGF8- and (C) FGF10-treatment.

FIGURE 5 | BMP signaling regulates Fgf8, Bmp4, Dkk, Msx2, and Bambi gene expression. Regulation of (A–C) Fgf8, (D–F) Bmp4, (G–I) Dkk, (J–L)Msx2, (M–O)
Bambi gene expression in the anterior limbmargin after BMP4, BMP7, or Noggin. Fgf8 (B, C) and Bmp4 (D, E) are downregulated after 4 h of BMP4 or BMP7. Notice the
stronger effect of BMP4 than BMP7. In contrast, NOGGIN-treatment maintained the expression of both genes after treatments. (G–I) Upregulation of Dkk gene
expression after 4 h of BMP4- or BMP7-treatment and downregulation ofDkk after 4 h of NOGGIN treatment. (J–L)Msx2 and (M–O)Bambi gene expression were
upregulated by BMP4 and BMP7. In contrast, NOGGIN inhibited Bambi expression during the first 4 h of treatment but not Msx2 [Panel (L, O)].
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respectively, it is possible to suggest the expression of Dkk and
Bmp4 in the anterior margin of the limb depends on FGF
signaling.

The next step was to determine the minimum time required
for BMP signaling to regulate Fgf8, Bmp4, and Dkk gene
expression in the anterior margin of the limb for promoting
cell death (Figures 5A–I). The results showed that BMP4 or
BMP7 proteins had regulated Fgf8, Bmp4, and Dkk gene
expression differentially (Figures 5A,B,D,E,G,H). BMP4
protein inhibited Fgf8 in the AER and Bmp4 in the anterior
margin of the limb after 4 h of treatment (Figures 5A,D). In
contrast, BMP7 slightly affected Fgf8 gene expression, and it
faintly inhibited Bmp4 gene expression (Figures 5B,E).
Furthermore, NOGGIN-treatment effects on Fgf8 expression
were minor (Figure 5C), while Bmp4 gene expression was not
affected after 4 h (Figure 5F). RegardingDkk gene expression, the
treatment with BMP4 showed a more significant effect than
BMP7 (Figures 5G,H). Blocking BMP signaling with
NOGGIN demonstrated that Dkk gene expression depended
on BMP signaling (Figure 5I). Msx2 and Bambi are regulated

by BMP signaling (Figures 5J–O). The results showed thatMsx2
was regulated by BMP or NOGGIN treatment (Figures 5J–L). In
contrast, NOGGIN treatment inhibited Bambi expression
entirely, but BMP4 or BMP7 induced it slightly at least 4 h
(Figures 5M–O). These results showed that BMP signaling
self-regulate Bmp4 and regulates Fgf8, Dkk, Msx2, and Bambi
gene expression at short times in the ANZ.

Inhibition of FGF Signaling Is the Last Step in
the Molecular Cascade of Cell Death
To determine the hierarchy of FGF and BMP signaling to
promote cell death and regulate Dkk gene expression, we
performed double treatments to promote or block FGF and
BMP signaling for 6 h. Under these conditions, the dual
treatment of FGF8 and BMP4 promoted Dkk expression
inducing cell death closer to the BMP bead (Figure 6A).
Nevertheless, if FGF signaling is inhibited in the presence of
BMP4, Dkk is still expressed (Figure 6B). In contrast, if BMP
signaling is blocked and FGF8 is present, the expression of Dkk

FIGURE 6 | The last step to induce cell death is the inhibition of FGF signaling.Double treatments were done to promote or block FGF and BMP signaling for 6 h.
Under these conditions, lysotracker staining and Dkk gene expression were evaluated. (A) Double FGF8 and BMP4 treatment promoted Dkk expression, and cell death
was observed closer to the BMP bead. (B) Inhibiting FGF signaling in the presence of BMP4,Dkkwas still expressed. (C) Treatment with NOGGIN and in the presence of
FGF8 significantly inhibited Dkk expression, but it slightly diminished the area of cell death. (D) Double treatment inhibiting FGF and BMP signaling inhibited Dkk
gene expression, but no cell death. (E) Fgf8 gene expression is inhibited in response to DKK protein. Notice that the blue line of the right limb (DKK treatment)—
representing the expression of Fgf8 from the limb posterior margin to the anterior limb margin—is shorter than the contralateral limb.
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was inhibited, and the area of cell death was slightly diminished
(Figure 6C). The double blockade of FGF and BMP signaling
inhibited Dkk gene expression. Under these conditions, cell death
is still induced (Figure 6D). Finally, we evaluated the expression
of Fgf8 in the AER in the response of DKK protein that inhibited
Fgf8 (Figure 6E). These results suggest that FGF signaling must
be inhibited in the ANZ and is probably the last step in the
molecular cascade to trigger PCD by BMP signaling.

Dynamic of Gene Expression in
Presumptive ANZ and ANZ
Once it was established that the onset of cell death requires the
negative loop triggered by FGF signaling, a comparison of an
expression profile of genes related to the maintenance of the
undifferentiated stage and the commitment to cell death was
performed (Figure 7). The tissue of limb primordia from 22 HH
and the ANZ from 25 HH were dissected in two regions: 1) the

mesodermal cells of the anterior margin at stage 22 HH (here
called presumptive ANZ) or the ANZ at stage 25 HH, and 2) cells
from the undifferentiated zone from both developing stages. It
allowed us to clearly distinguish the location of genes expressed
before establishing ANZ (stage 22 HH) and once established the
ANZ (stage 25 HH). In both stages, the profile expression of this
zone was compared with its respective undifferentiated zone.

Regarding genes related to the FGF signaling (Figures 7A,B),
results showed that Fgf10 expression was lower in the
presumptive ANZ and ANZ than in the undifferentiated zone
in both stages. Fgfr1 tends to be upregulated in the presumptive
ANZ than in the undifferentiated zone, but this study found no
difference at both stages (Figure 7A). In the presumptive ANZ,
Fgfr2 expression was lower than in the undifferentiated zone, but
at stage 25HH, the expression levels were similar in the ANZ and
the undifferentiated zone (Figure 7A). However, comparing the
levels of fgf10, Fgfr1 and Fgfr2 expressed between the presumptive
ANZ at 22 HH and ANZ at 25 HH, the Fgf10 expression did not

FIGURE 7 | qRT-PCR analysis and comparison dynamics of gene expression in the presumptive ANZ and the ANZ. qRT-PCR of FGF-related genes (Fgf10, Fgfr1,
Fgfr2, Mkp3, Churchill) and BMP-related genes (Bmp4, Bmp7, Bambi, Mario, Snail). (A, C, E)Comparison of gene expression between the presumptive ANZ in 22 HH vs
its undifferentiated zone (UZ) and between the ANZ versus its UZ. (B, D, F) Analysis of gene expression in the ANZ at 25 HH stage relative to the presumptive ANZ at 22
HH stage (set to 1.0, red line). Data represent three independent experiments. Statistical significance was set as follows: ***p < 0.0001, **p < 0.005, *p < 0.05.
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show significant changes (Figure 7B). In contrast, the expression
levels of both receptors increased at stage 25HH than a stage
22HH, although only Fgfr2 increased significatively (Figure 7A).
Next, the expression of Mkp3 and Churchill was evaluated, two
target genes of FGF signaling (Kawakami et al., 2003; Sheng et al.,
2003). In the presumptive ANZ and ANZ, the expression levels of
Mkp3 decrease compared to the undifferentiated zone, while
Churchill has no significant changes (Figure 7A). Moreover,
comparing the expression levels of both genes, they had a
higher level in the ANZ than in the presumptive ANZ
(Figure 7B). These data showed an interesting dynamic of
FGF signaling.

The next group of genes analyzed was Bmp4, Bmp7, Bambi, and
those regulated by BMP signaling (Figures 7C,D). At stage 22HH,
the Bmp4 expression is higher in the presumptive ANZ than in the
undifferentiated zone. In contrast, the Bmp7 showed lower
expression while Bambi did not show significant differences
(Figure 7C). At stage 25HH, the expression of these genes in the
ANZ was like the observed at stage 22HH (Figure 7D). We also
evaluated the expression of Msx2 and Id2, two genes that are
regulated by BMP signaling. In the presumptive ANZ, the
expression level of Msx2 was lower than the undifferentiated
zone, whereas Id2 did not show changes in both regions. In
contrast, the expression of Msx2 was elevated in the ANZ
regarding the undifferentiated zone (Figure 7C). Id2 expression
levels increased at stage 25HH in the ANZ compared with the
undifferentiated zone, but at stage 22HH, no differences were found
(Figure 7C). Comparing the presumptive ANZwith the ANZ,Msx2
and Id2 presented higher expression levels in the ANZ (Figure 7D).
In contrast, the levels of Bmp4 and Bmp7 were lower, while Bambi is
similar in both developing stages (Figure 7D).

The next group of genes evaluated is either regulated by BMP and
FGF signaling or both (Figures 7E,F). Mario is a gene associated
with the formation of digit 2, and it is induced by FGF and inhibited
by BMP (Amano and Tamura, 2005). Snail is a transcription factor
related to areas of undifferentiatedmesenchyme and cell death; BMP
and FGF signaling induce both genes (Ros et al., 1997;Montero et al.,
2001). Results showed that the expression levels of both genes in the
presumptive ANZ and ANZ are higher than in the undifferentiated
zone (Figure 7E). Comparing the expression levels between the
presumptive ANZ and ANZ, it was found that Snail expression is
higher than Mario (Figure 7F).

DISCUSSION

The AER is a signaling center where FGF, WNT, and BMP
signaling pathways play an essential role in controlling cell
proliferation, cell survival, and cell differentiation (Fernandez-
Teran and Ros, 2008; Ten Berge et al., 2008; Mariani et al., 2017).
During sculpturing of the limb, mesodermal cells underneath
AER in the anterior margin of the limb undergo cell death giving
rise to the ANZ that appears gradually, in coordination with the
progressive loss of the AER (Todt and Fallon, 1987; Fernandez-
Teran et al., 2006; Fernandez-Teran and Ros, 2008).

The intricate regulatory network between BMP, FGF, and
WNT signaling that controls cell death in interdigital tissue is well

known (Ganan et al., 1996; Pizette and Niswander, 1999;
Danopoulos et al., 2013; Haro et al., 2014; Jin et al., 2018).
However, the first events triggered by this regulatory network
to initiate cell death in the anterior limb undergoing ANZ
formation are not well established. The present study aimed to
elucidate the earliest events triggered by the regulatory network of
FGF, WNT, and BMP signaling in the control of cell death to
induce the ANZ formation in the anterior margin of the limb.
Previously, it was reported that a short pulse of BMP is sufficient
to trigger cell death in the anterior margin of the limb (Abarca-
Buis et al., 2011). An interval of two to 8 h is sufficient to induce
cell death after the inhibition of WNT or FGF or the activation of
BMP signaling. Besides, cell death induction is coordinated with
the regulation of Dkk, Fgf8, and Bmp4 expression. Inhibition of
FGF signaling inhibited Dkk expression after 2 h of treatment,
demonstrating that FGF is necessary to induce Dkk gene
expression. In contrast, DKK treatment-induced cell death
after 8 h. Likewise, DKK and BMP4 inhibit Fgf8 expression;
thus, it is possible to postulate that the negative feedback loop
between Bmp4, Fgf8, and Dkk controls the onset of cell death in
the ANZ.

It has been demonstrated that the expression of Fgf8 in the
anterior AER is not redundant with other Fgf genes expressed in
posterior AER (Moon and Capecchi, 2000; Moon et al., 2000;
Delgado et al., 2008). Massive cell death in the anterior margin
results from BMP activation (Yokouchi et al., 1996). The mutant
mouse for Bmpr1a demonstrates that this receptor mediates BMP
signaling in controlling Fgf8 expression (Pajni-Underwood et al.,
2007). Interestingly in the posterior region of the limb deprived of
SHH, signaling massive cell death occurs concomitantly with up-
regulation of Bmp4 (Sanz-Ezquerro and Tickle, 2000). The absence
of SHH signaling increases the repressor form of GLI3 (GLI3R),
which regulates Bmp expression as observed in the anterior margin;
GLI3R is abundant and correlates with an increase in Bmp4
expression (Bastida et al., 2004).

In this work, comparing the expression profile of Fgfr1 and Fgfr2
between the presumptive ANZ with the undifferentiated region at
stage 22 HH showed differential expression. Fgfr1 expression is higher
than Fgfr2 in the presumptive ANZ. In addition, the lower levels of
expression of Churchill orMkp3 that are FGF signaling targets might
suggest that minimal amounts of Fgfr1 or Fgfr2 are enough to avoid
cell death. Furthermore, FGF signaling may be active at low levels
before ANZ formation. However, the levels of Bmp4 might be the
result of a regulation of GLI3R (Bastida et al., 2004), and it is possible
that although higher expression of Id2 andMsx2 together with the low
level ofMkp3 expression observed in the anterior margin of the limb
might be not sufficient to induce cell death. Thus, the balance of FGF
and BMP signaling may favor FGF signaling.

As development progress, the ANZ is established. At stage 25HH,
the expression levels of Fgfr1 and Fgfr2 and Churchill increase.
However, the Mkp3 level maintains slightly higher in the well-
established ANZ than in the undifferentiated region. Interestingly,
levels of Churchill are higher, which might indicate that FGF signaling
is being inhibited (Kok et al., 2010). Other genes such as Mario and
Wif (data not shown) are higher expressed in ANZ, BMP, whereas
FGF signaling induces Mario. It has been involved in the boundary
between non-digit digit two in the chick embryo (Amano and
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Tamura, 2005), whereas Wif is an inhibitor of WNT/β catenin. Wif
together with DKK may inhibit WNT signaling and, consequently,
FGF signaling, promoting cell death. The levels of expression of Bmp7
and Bambi in both stages are lower than the undifferentiated zone
indicating this minor participation in establishing ANZ.

Finally, comparing gene expression levels between the presumptive
ANZ at stage 22HH and the ANZ of 25HH demonstrates that FGF
and BMP signaling is more active in stage 25HH when the ANZ is
well-established. These data suggest that the control of FGF and BMP
signaling is necessary to regulate cell death.

Based on data obtained in the present study and from the
literature, we propose the following model to explain the onset of
cell death in the anterior margin of the limb to give rise to ANZ
(Figure 8). First, it is known that WNT3A mediated by Sp6/Sp8
induces the Fgf8 expression in the AER (Haro et al., 2014). On the
other hand, BMP signaling inhibited Fgf8 expression. Thus,WNT3A
and BMP signaling antagonistically regulate Fgf8 expression and
consequently cell death (Hernandez-Martínez et al., 2009). Because

Bmp4 and other genes such as Churchill andMkp3 depend on FGF
signaling (Kawakami et al., 2003), it is possible to suggest that the
extent and location of cell death depend on the capacity of FGF
signaling to control the levels of Bmp4 expression. High levels of
BMP signaling, presumably BMP4, inhibit Fgf8 in a higher extension
of the AER; consequently, cell death occurs. Also, BMP4 induces
Dkk expression, and thus it is reasonable to speculate that if the levels
of BMP signaling are high, then high levels of DKK are present in the
anterior margin of the limb. DKK inhibits the function of WNT/ß
catenin signaling resulting in an inhibition of FGF8 signaling.
Remarkably as FGF signaling presumably, FGF8 from AER is
necessary for cell survival but is also required for promoting cell
death because it promotes Bmp4 andDkk expression. Thus, different
levels of FGF activity may control the negative loop to promote AER
regression and, consequently, the onset of cell death. As limb
development progress, this negative feedback loop occurs
progressively. Other genes such as Msx2 and Bambi, although
necessary for cell death (Montero et al., 2001), seem not to be
regulated during the early establishment of the ANZ.

In conclusion, this work adds new insights to comprehend the
establishment of a regulatory network by FGF, WNT, and BMP
signaling to induce cell death in anterior mesodermal cells
establishing the ANZ.
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FIGURE 8 | Establishment of the ANZ by the WNT-BMP-FGF regulatory
network. In this model, WNT3A and BMP signaling antagonistically regulate
Fgf8 expression and consequently cell death. WNT3A induces the expression
of Fgf8 in the AER. BMP signaling inhibited Fgf8 expression; meanwhile,
DKK inhibits the function of WNT/ß catenin signaling, and consequently, the
expression of Fgf8 is inhibited. In the presumptive ANZ, the high levels of FGF8
from AER are necessary for cell survival, but FGF8 is also required for
promoting cell death regulating Bmp4 and Dkk expression. The establishment
of ANZ occurs when the levels of FGF signaling are reduced and BMP
signaling increases leading to the inhibition of Fgf8 in the AER inducing cell
death. Fgfr1, Fgfr2, Mkp3, Churchill, Msx2, Id2, and Bambi are expressed
differentially in the presumptive ANZ and the established ANZ.
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