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INTRODUCTION 

Major depressive disorder (MDD) is one of the most dis-
abling mental illnesses and a major public health concern. Ac-
cording to the recent global burden of disease study in 2017, 
the depressive disorder has prevailed as one of the leading causes 
of years lost to disability for the last three decades.1 However, the 
neurobiological mechanisms underlying MDD and its effects 
in the brain are still unclear.

Brain magnetic resonance imaging (MRI) has played a cru-
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cial role in clarifying the structural abnormalities in MDD.2 Pre-
vious studies have traditionally focused on the cortical volume 
using voxel-based morphometry (VBM). However, VBM is 
limited in that it cannot distinguish between different cortical 
morphological properties.3 Advances in neuroimaging data 
processing have made it possible to divide the cortical volume 
into cortical thickness (CTh) and surface area (SA) using sur-
face-based morphometry (SBM). These two morphometric pa-
rameters have been shown to be independent contributors to 
volume measurements and have distinct pathophysiological im-
plications, with different genetic etiologies and developmental 
trajectories.4-7 Based on the hypothesis that neurons within the 
cerebral cortex are arrayed in columns perpendicular to the cor-
tical surface, CTh represents the number of cells within col-
umns, while SA reflects the number of cortical columns.8-11

The pattern of change in the CTh of patients with MDD has 
been reported in numerous studies, and recent meta-analyses 
provide strong evidence for the regional alteration of CTh in 
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patients with MDD.12,13 Recent large meta- and mega-analyses 
of cortical abnormalities performed by the Enhancing Neuro-
imaging Genetics through Meta-Analysis (ENIGMA) neuro-
imaging consortium confirmed that patients with first-onset 
MDD exhibited significant cortical thinning in the fusiform gy-
rus, cingulate cortex, and insula, extending into the frontal cor-
tex.14 On the other hand, SA in relation to MDD has not been 
studied sufficiently. Only a few studies with limited samples 
have reported significant changes in SA among drug-naïve pa-
tients with MDD. The results of one previous research revealed 
that the SA of the left hippocampal gyrus increased in drug-
naïve patients with MDD, based on the data of 46 patients, and 
another group of researchers found that the SA in subregions 
of the cingulate gyrus, parietal and frontal cortices could either 
be increased or decreased, based on the data of 16 patients.15,16 
Although the ENIGMA consortium discovered that adolescent 
patients with recurrent MDD showed reduced SA in broad re-
gions, they could not detect any significant differences in the 
SAs of adolescents with first-onset MDD and that of adults with 
first-onset and recurrent MDD.14

Despite the lack of research on the subject, SA is receiving 
more attention in relation to depression. During a recent anal-
ysis of the genetic correlation between cortical measurements 
and psychological traits, it was found that total SA, but not CTh, 
was negatively correlated with MDD and related psychological 
traits such as depressive symptoms, neuroticism, and insom-
nia.17 In another imaging-genetic study, researchers found that 
SA reduction in the occipito-temporal cluster was significantly 
associated with a high anxiety-depression score in twin sam-
ples.18 Such findings suggest that measuring SA is important 
when studying MDD. The pattern of SA alterations in patients 
with MDD needs to be studied further.

One strong point of our research is that we enrolled a relative-
ly large number of drug-naïve adults with MDD from a single 
clinic to evaluate surface vulnerability in patients with MDD. 
Currently, this study on SA has a relatively large sample size (n= 
535) and follows from the ENIGMA meta-analysis research and 
analyzed the SA of drug-naïve patients with MDD.14 The ex-
clusion of patients with MDD with a history of medication can 
reduce the potential influence of medication status and influ-
ence of chronic or recurrent episodes of MDD.19,20 We exam-
ined SA and CTh separately and analyzed their correlation with 
clinical variables. Our a priori hypothesis was that drug-naïve 
patients with MDD would have alterations in their SAs that ex-
hibit characteristic abnormalities that differ from those of CTh.

METHODS

Participants
The study included 71 patients with MDD and 111 healthy 

controls (HCs). Patients were recruited from the outpatient psy-
chiatric clinic of Korea University Anam Hospital, located in 
Seoul, Republic of Korea, between February 2010 and Decem-
ber 2017. All MDD diagnoses were determined by board-cer-
tified psychiatrists (Ham BJ and Han KM) using the Structured 
Clinical Interview for DSM-IV Axis I Disorders. The patients 
included in the present study were adults aged 19–65 years. In 
addition, two psychiatrists assessed the duration of MDD by 
interviewing patients using the life-chart methodology. The 
exclusion criteria for this study were as follows; 1) primary or 
comorbid psychiatric diagnoses on Axis I or Axis II (based on 
DSM-IV-TR criteria) other than MDD; 2) MDD with psychot-
ic features; 3) history of serious or unstable medical illness; 4) 
primary neurological illness; and 5) any contraindication for 
MRI, including pacemakers, metal implants, and claustropho-
bia. HC participants with no current or past history of psychi-
atric disorders were recruited using advertisements in the com-
munity. HCs were evaluated by two psychiatrists with the same 
set of exclusion criteria applied to the patient group. The age of 
healthy participants ranged from 19 to 65 years, and all partici-
pants were right-handed, as revealed by the Edinburgh Hand-
edness Test.21 the severity of depressive symptoms for patients 
with MDD and HCs was measured using the 17-item Hamil-
ton Depression Rating Scale (HDRS-17) on the day of MRI ac-
quisition.22 The study protocol was approved by the Institution-
al Review Board of Korea University Anam Hospital (IRB No. 
2009AN0105). All participants provided written informed con-
sent to participate in the study in accordance with the Decla-
ration of Helsinki (revised in 2008). 

Image acquisition
T1-weighted images were acquired using a 3.0-Tesla TrioTM 

whole-body imaging system (Siemens Healthcare GmbH, Er-
langen, Germany). T1-weighted images were acquired parallel 
to the anterior-commissure-posterior-commissure line using 
the 3D T1-weighted magnetization-prepared rapid gradient-
echo sequence with the following parameters: repetition time, 
1,900 ms; echo time, 2.6 ms; the field of view, 220 mm; matrix 
size, 256×256; slice thickness, 1 mm; the number of coronal 
slices, 176 (without gap); voxel size, 0.86×0.86×1 mm3; flip 
angle, 16° flip angle; and number of excitations, 1.

Image processing
Analysis of CTh and SA was performed on the three-dimen-

sional model of cortical surface reconstructions computed 
from T1 images using the FreeSurfer 6.0 version (Laboratory 
for Computational Neuroimaging, Athinoula A. Martinos Cen-
ter for Biomedical Imaging, Charlestown, MA, USA; http://
surfer.nmr.mgh.harvard.edu). The details of the technical as-
pects of these procedures have been described in previous pub-
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lications.23-29 Briefly, the implanted processing stream involved 
motion correction of volumetric T1-weighted images, removal 
of non-brain tissue using a hybrid watershed/surface deforma-
tion procedure, automated Talairach transformation of each 
subject’s native brain, segmentation of the gray matter-white 
matter volumetric structures,26 inflation of the cortical surface 
to an average spherical surface to locate both the pial surface 
and the gray matter-white matter boundary, intensity normal-
ization, and automated topology correction.27 The transition of 
gray/white matter and the pial boundary was indicated by detect-
ing the greatest shift in intensity through surface deformation.

We visually checked the cortical reconstruction of each sub-
ject for inaccuracies and manually corrected major topologi-
cal inaccuracies with vertex edits or control points, and subse-
quently repeated the processing. The CTh was calculated as the 
shortest distance between the gray matter/white matter bound-
ary and pial surface at each vertex across the cortical mantle, 
measured in millimeters (mm). Cortical SA was calculated as 
the sum of the area of the vertices falling within a given region 
on the white matter surface. Smoothing with a Gaussian ker-
nel of 20 mm full width at half-maximum was performed on 
the cortical maps of each subject for the entire cortex analyses.28 
In addition to vertex-based reconstruction, FreeSurfer auto-
matically parcellated the cortex into 38 gyral-based regions-of-
interest per hemisphere, according to the Destrieux atlas.30 For 
each of the 76 cortical parcellations in the bilateral hemispheres, 
FreeSurfer calculates 1) the average CTh (in mm), 2) total cor-
tical SA of the pial (mm2).

Statistical analysis
Group differences in the demographic and clinical charac-

teristics of the drug-naïve patients with MDD and HCs were 
analyzed using an independent t-test for continuous variables 
(age, TICV, illness duration, and HDRS scores) and chi-square 
tests for categorical variables (sex and education). All statistical 

analyses were performed using IBM SPSS Statistics for Win-
dows (version 24.0; IBM Corp., Armonk, NY, USA).

As the main analysis, we compared CTh and SA between 
drug-naïve patients with MDD and HCs using a one-way anal-
ysis of covariance. The extracted values of CTh and SA in 76 
cortical parcellations in the bilateral hemispheres were set as 
dependent variables and the groups (MDD vs. HC group) as 
independent variables. Age, sex, education level, and total in-
tracranial volume (TICV), which was manually measured as 
previously described, were included as nuisance covariance in 
the analysis.31 For multiple comparisons, false discovery rate 
(FDR) correction, as described by Benjamini and Hochberg,32 
was applied to each main analysis. 

To determine the relationship between the mean values of 
CTh or SA and disease burden-related clinical characteristics 
(illness duration and severity of depression), a two-tailed Pear-
son’s partial correlation analysis (adjusted for age, sex, educa-
tion level, and TICV) was performed separately for both CTh 
and SA, which revealed significant differences between the 
MDD and HC groups in the main analysis. 

RESULTS

Demographic and genotypic characteristics
We compared age, sex, education level, TICV, illness dura-

tion, and HDRS scores of drug-naïve patients with MDD and 
HCs. The results are presented in Table 1. The drug-naïve MDD 
and HC groups did not differ significantly in terms of age, sex, 
education level, and TICV. A significant difference was observed 
for the HDRS scores between diagnostic groups, with the mean 
(standard deviation) HDRS scores being 18.28 (4.99) and 1.53 
(1.85) for patients and HCs, respectively (p<0.001). The mean 
duration of illness in the patient group was 25.79±37.46 months.

Table 1. Demographic and clinical characteristics of drug-naïve patients with major depressive disorder (MDD) and healthy controls (HCs)

Drug-naïve MDD patients (N=71) HCs (N=111) Significance (p-value)
Age (years) 40.97±12.43 39.11±13.51 0.350
Sex (male/female) 17/54 38/73 0.133
Education level 0.78

Elementary and middle school 15 16
High school or college/university 53 83
Above graduate school 3 12

TICV (cm3) 1426.35±116.08 1452.26±167.03 0.0219 
Illness duration (months) 25.79±37.46 - N/A
HDRS score 18.28±4.99 1.53±1.85 <0.0001*
Significance was evaluated using a two-sample t-test. *denotes significance. TICV, total intracranial volume; HDRS, Hamilton Depression 
Rating Scale
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Analysis of the differences in CTh between patients 
with MDD and HCs

The mean CTh values of the cortical regions in the MDD 
and HC groups with their respective significant differences are 
shown in Table 2. Both significantly decreased and increased 
CTh values were observed in patients with MDD compared 
with those of HCs (at a statistical level of p<0.05, FDR-correct-
ed). The cortical regions with decreased thickness were the left 
and right fusiform gyri (left: F=8.621, pcorr [FDR-corrected p-
value]=0.035; right: F=8.456, pcorr=0.035), left middle occipital 
gyrus (F=8.847, pcorr=0.035), right posterior-ventral part of cin-
gulate gyrus (F=8.817, pcorr=0.035), and left temporal plane of 
the superior temporal gyrus (F=9.087, pcorr=0.035). Cortices 
with increased thickness in the patient group included the left 

and right superior occipital gyri (left: F=22.311, pcorr=0.00038; 
right: F=12.132, pcorr=0.024), left lingual gyrus (F=10.175, pcorr= 
0.035), right middle-posterior cingulate gyrus (F=8.124, pcorr= 
0.037), and right straight gyrus (F=8.5, pcorr=0.035). Correla-
tion analysis performed for regions with a significant change 
in CTh did not reveal a significant correlation between changes 
in CTh and illness duration or HDRS scores (Table 3).

Analysis of the difference in SA between patients 
with MDD and HCs

As shown in Table 4, the mean SA of the left superior occipi-
tal gyrus (L-SOG) of drug-naïve patients with MDD was sig-
nificantly smaller than that of HCs (F=14.87, pcorr=0.012). Cor-
relation analysis performed for the SA of the L-SOG did not 

Table 2. Cortical regions with altered cortical thickness in drug-naïve patients with major depressive disorder (MDD), compared to healthy 
controls (HC)

Cortical regions MDD HC F-value pcorr

MDD<HC
Lt. fusiform gyrus 2.646±0.379 2.795±0.283 8.621 0.035*
Rt. fusiform gyrus 2.663±0.331 2.792±0.247 8.456 0.035*
Lt. middle occipital gyrus 2.499±0.22 2.59±0.19 8.847 0.035*
Rt. ventral part of the posterior cingulate gyrus 2.456±0.374 2.629±0.332 8.817 0.035*
Lt. temporal plane of the superior temporal gyrus 3.180±0.357 3.335±0.322 9.087 0.035*

MDD>HC
Lt. superior occipital gyrus 2.317±0.275 2.144±0.202 22.311 0.00038*
Rt. superior occipital gyrus 2.297±0.276 2.176±0.195 12.132 0.024*
Lt. lingual gyrus 2.085±0.423 1.953±0.227 10.175 0.035*
Rt. middle part of the posterior cingulate gyrus 2.686±0.181 2.612±0.162 8.124 0.037*
Rt. straight gyrus 2.743±0.348 2.627±0.275 8.5000 0.035*

p<0.05 FDR-corrected. *denotes significance. Lt., left; Rt., right

Table 3. Correlation of the cortical thickness with the Hamilton Depression Rating Scale (HDRS) score or illness duration in patients with 
drug-naïve major depressive disorder (MDD)

Cortical regions
Illness duration HDRS

R pcorr R pcorr

MDD<HC
Lt. fusiform gyrus -0.11422 0.82945 -0.11657 0.54709
Rt. fusiform gyrus -0.01064 0.93512 -0.13365 0.54709
Lt. middle occipital gyrus 0.06856 0.85657 -0.05932 0.72194
Rt. posterior-ventral part of the cingulate gyrus -0.01808 0.82945 -0.09676 0.57276
Lt. temporal plane of the superior temporal gyrus -0.15113 0.82945 -0.12464 0.54709

MDD>HC
Lt. superior occipital gyrus 0.09289 0.82945 -0.01547 0.90579
Rt. superior occipital gyrus 0.08849 0.82945 -0.13497 0.54709
Lt. lingual gyrus 0.10703 0.82945 -0.1137 0.54709
Rt. middle-posterior part of cingulate gyrus 0.14985 0.93512 -0.20272 0.54709
Rt. straight gyrus -0.04283 0.92886 -0.17116 0.54709

p<0.05 FDR-corrected. HC, healthy controls; Lt., left; Rt., right
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reveal a significant correlation between changes in SA and ill-
ness duration or HDRS scores (Table 5).

Analysis of the correlation between CTh and SA in 
an altered region 

Since patients with MDD exhibited significant alterations in 
both the CTh and SA of their L-SOG, we conducted an addi-
tional two-tailed Pearson’s partial correlation analysis to deter-
mine the relationship between CTh and SA in this region. We 
performed the correlation analysis separately for patients with 
MDD and HCs. Age, sex, education level, and TICV were con-
trolled as covariates. As shown in Supplementary Table 1 (in 
the online-only Data Supplement), there was a significant pos-
itive correlation between the SA and CTh of L-SOG in the pa-
tient group (R=0.277, p=0.023). In the HC group, CTh and SA 
of the L-SOG exhibited significant inverse correlations (R= 
-0.271, p=0.005).

DISCUSSION

We examined cortical abnormalities in drug-naïve patients 
with MDD by simultaneously investigating CTh and SA. Our 
major finding was that in drug-naïve patients with MDD, CTh 
was altered to a broad extent, mostly affecting the bilateral oc-
cipitotemporal area, and SA was reduced in the L-SOG. To our 
knowledge, this is the first report of significant occipital SA al-
terations in drug-naïve adults with MDD. 

Cortical thickness
The cortical regions with CTh alterations were similar to 

those observed in previous studies that analyzed CTh in drug-
naïve patients with MDD,13,16,28,33,34 although we observed lim-
ited alteration of the occipitotemporal regions in our study. In 

contrast to previous studies, we could not replicate the com-
monly observed alterations in the prefrontal cortex.15,34-36

The results of our study showed that patients with MDD 
had a thinner cortex in the bilateral fusiform gyrus, left mid-
dle occipital gyrus (MOG), left superior temporal gyrus (STG), 
and right ventral posterior cingulate cortex (PCC). In contrast, 
cortical thickening was observed in the bilateral SOG, left lin-
gual gyrus, right middle part of the PCC, and right straight 
gyrus in patients with MDD. Affected cortical regions are as-
sociated with visual perception and the default mode network. 
Several studies on MDD have observed cortical thinning in 
the fusiform gyrus,12,14,37 which plays a key role in distinguish-
ing high-level visual information in face perception.38,39 Sig-
nificant cortical alterations in the lingual gyrus, which is part 
of the visual association cortex, have also been observed in sev-
eral studies on MDD.12,40,41 In the lateral occipital region, the 
medial, superior, and inferior occipital gyri are also mostly part 
of the visual association cortex and are observed to be vulner-
able to depression.12,16,41-43 The STG is also associated with face 
processing and attention to emotion, and plays an important 
role in social and emotional processing.44-46 Such findings sug-
gest that changes in the occipitotemporal region may manifest 
as clinical symptoms of MDD, such as an impairment in social 
perception. The PCC is a core node in the default mode net-
work, which is associated with cognitive control and self-ref-
erential thinking47 and is frequently disrupted in patients with 
MDD.12,13,48,49 Additionally, the PCC is a region that is func-
tionally connected to the occipital region and is de-activated 
when the lateral occipital cortex is activated.50 

The reason for the complex pattern of regional hypertrophic 
and atrophic cortical changes in our study is unclear. However, 
the results of previous studies on patients with untreated MDD 
have often indicated both regional increases and decreases in 
CTh.15,48 A possible explanation for the pathophysiology of cor-
tical thickening is that it is caused by cellular changes result-
ing from reactive gliosis or neurogenesis in the early course of 
MDD to recover from insult.51,52 In contrast, cortical thinning 
may occur due to neurotoxic and/or gliotoxic processes.53,54 The 
heterogeneous pattern of functional dysconnectivity and dif-
fering symptom combinations within the MDD group may 
have contributed to this divergent pattern. Factors that deter-
mine the type of change in the CTh need to be examined in fu-
ture research.

Table 4. Cortical regions with altered surface area in drug-naïve patients with MDD, compared to HC

Cortical regions MDD HC F-value p-value
MDD<HC

Lt. occipital superior gyrus 921.89±123.09 1028.78±205.97 14.87 0.012*
p<0.05 FDR-corrected. *denotes significance. MDD, major depressive disorder; HC, healthy controls; Lt., left

Table 5. Correlation of the cortical surface area with the Hamilton 
Depression Rating Scale (HDRS) score or illness duration in pa-
tients with drug-naïve major depressive disorder (MDD)

Cortical regions
Illness duration 

(mo)
HDRS

R p-value R p-value
MDD<HC

Lt. superior occipital  
  gyrus

0.12887 0.29865 0.07791 0.53088

p<0.05. HC, healthy controls; mo, months; Lt., left
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Surface area
Although both CTh and SA indicated cortical changes in 

the occipital lobe, SA showed a finer result, restricted to the L-
SOG. This is one of the few studies to report a significant re-
duction of SA in drug-naïve patients with MDD to the best of 
our knowledge.15,16 This is the first report of SA reduction in 
the SOG in MDD. Nevertheless, SA reduction in the occipital 
gyrus has been reported in several subgroups of MDD. A re-
cent SBM study revealed that patients with current episodes 
of MDD showed increased SA in the left precuneus and right 
pericalcarine gyrus compared to remitted MDD.55 Moreover, 
one twin study demonstrated widespread SA reduction in an 
occipitotemporal cluster in subjects with high anxiety-depres-
sion score.18 Our finding is partly supported by previous re-
search that showed larger SA in the left lateral occipital cortex 
and postcentral area in MDD patients with a history of suicide 
attempt(s) compared to non-attempters.56 However, our sam-
ple of drug-naïve patients with MDD showed a reduction, not 
an enlargement of the SA.

In our study, the average L-SOG SA decreased while the av-
erage CTh in the same region increased. This inverse change 
has been observed in both HC and patient groups in several 
studies.5,57-60 According to the “balloon model” hypothesis, the 
cortex is stretched out tangentially to the pial surface as a re-
sult of white matter myelin growth like a balloon, resulting in 
a larger SA and lower CTh.61-63 The results of the correlation 
analysis between the patient and HC groups revealed that HCs 
exhibited a significant inverse correlation between CTh and SA, 
supporting the balloon model hypothesis (R=-0.271, p=0.005). 
However, a positive correlation was found within the patient 
group (R=0.277, p=0.023). We speculate that the reduction of 
SA caused by a disease entity cannot be solely caused by the 
concomitant process of cortical thickening. Different patterns 
of correlation between the two parameters in healthy subjects 
and the patient group need to be analyzed in future studies. 

There are plausible explanations for why the L-SOG is spe-
cifically vulnerable to SA reduction. First, this could be due to 
low gamma-aminobutyric acid (GABA) concentration in the 
occipital cortex, which is commonly observed in MDD.64-68 The 
occipital lobe exhibits a high expression of GABA,69,70 and genes 
that modulate GABAergic transmission such as BDNF71,72 and 
GAD6773,74 are subject to epigenetic changes in MDD. A posi-
tive correlation between the GABA concentration and SA size 
of the primary visual cortex was observed,75 supporting our 
hypothesis that alteration of GABAergic neurotransmission in 
MDD might lead to SA reduction. Second, the L-SOG has the 
potential to be an important node in the visual network. Bio-
physical limitations during SA alteration can cause network 
disruption.55,76 The SOG is functionally connected to other re-
gions of the occipital lobe and PCC, comprising the lateral vi-

sual cortical network.50,77,78 The adjacent L-MOG has shown 
decreased activity in several MDD studies,79-81 and left inferior 
longitudinal fasciculus, a white matter tract that connects the 
SOG to the limbic system,50,82 showed disrupted integrity in 
drug-naïve MDD.83 Third, the SA of the L-SOG could be more 
susceptible to genetic factors related to MDD. SA has higher 
heritability than CTh17,84,85 and the occipital cortex has been 
reported to be the region with the highest heritability among 
the cerebral cortex, especially in relation to MDD.18,86 This im-
plies that SA alteration in the L-SOG could be a genetically de-
termined feature that contributes to the etiology of MDD.

Correlations with illness duration and symptom 
severity

We did not detect a significant correlation between cortical 
alteration and illness duration or the HDRS score. This is con-
sistent with the findings of the ENIGMA consortium, imply-
ing that cortical measurements do not directly represent the 
clinical state.14 However, a few studies have reported SA dif-
ferences according to remission state of MDD or in relation to 
the anxiety-depression score.18,55 Therefore, further studies are 
needed to clarify this issue.

Limitation
Our study had some limitations. First, the cross-sectional de-

sign of this study meant that we could not determine whether 
cortical alteration is a causative or secondary phenomenon. 
Longitudinal data are required to understand causal relation-
ships. Second, our analysis was restricted to cortical regions, 
and measurements of subcortical regions such as the thala-
mus, hippocampus, amygdala, and striatum were not includ-
ed. As both cortical and subcortical regions are reportedly in-
volved in MDD, analyzing both the cortical and subcortical 
areas separately may lead to more precise results. Third, we 
could not replicate the previously reported alterations in the 
prefrontal cortex of patients with MDD. This may be due to 
the heterogeneity of the sample or limitations of the atlas-based 
method. Considering that most of the studies that reported sig-
nificant changes in CTh in prefrontal regions used vertex-based 
analyses and compared CTh values at each vertex,28,42,87 our 
method of comparing the mean values of the functionally pre-
defined regions may have averaged out the complex pattern of 
deformity within the region. Furthermore, relatively small sam-
ple size may contribute to null finding regarding the prefron-
tal cortex. In future studies, combining the use of vertex-based 
comparison and atlas-based comparison would strengthen the 
evidence gathered. Integration of anatomical data with func-
tional imaging data or genetic studies in the future may shed 
light on the neural mechanisms underlying SA alterations in 
the occipital cortex.
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In conclusion, our results indicated that drug-naïve patients 
with MDD had a smaller L-SOG SA. Along with the results of 
the CTh analysis, we found that patients with MDD are pre-
disposed to alterations in the occipital area. Furthermore, the 
physiological, functional, and genetic traits of the occipital cor-
tex may explain why SA alterations are more likely to occur in 
the L-SOG. Further studies are required to determine the role 
of SA in MDD.
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Supplementary Table 1. Correlation between the cortical surface 
area and the cortical thickness among patients with drug-naïve 
major depressive disorder (MDD) and healthy controls (HC)

Cortical region R p-value
MDD

Left superior occipital gyrus 0.277 0.023*
HC

Left superior occipital gyrus -0.271 0.005*
p<0.05. *denotes significance


