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The COVID-19 pandemic imposed a series of behavioral changes that resulted in
increased social isolation and a more sedentary life for many across all age groups, but,
above all, for the elderly population who are the most vulnerable to infections and chronic
neurodegenerative diseases. Systemic inflammatory responses are known to accelerate
neurodegenerative disease progression, which leads to permanent damage, loss of
brain function, and the loss of autonomy for many aged people. During the COVID-19
pandemic, a spectrum of inflammatory responses was generated in affected individuals,
and it is expected that the elderly patients with chronic neurodegenerative diseases
who survived SARSCoV-2 infection, it will be found, sooner or later, that there is a
worsening of their neurodegenerative conditions. Using mouse prion disease as a model
for chronic neurodegeneration, we review the effects of social isolation, sedentary living,
and viral infection on the disease progression with a focus on sickness behavior and on
the responses of microglia and astrocytes. Focusing on aging, we discuss the cellular
and molecular mechanisms related to immunosenescence in chronic neurodegenerative
diseases and how infections may accelerate their progression.

Keywords: mouse prion disease, virus infection, exacerbated inflammatory response, prion-like
neurodegenerative diseases, exercise, sedentary lifestyle, microglia hyperactivation, GFAP astrocytes
reactivity

INTRODUCTION

The ongoing viral pandemic has imposed behavioral changes resulting in increased social isolation
and a more sedentary life, which has affected all age groups (Schwabenland et al., 2021; Yang et al.,
2021). However, social isolation during the COVID-19 pandemic especially affected the elderly
population with comorbidities, who were already exhibiting mild or moderate cognitive deficits and
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senile cognitive decline associated with neurodegenerative
diseases (Tangalos and Petersen, 2018; Juan and Adlard, 2019;
Noguchi et al., 2021).

Older adults are more vulnerable to infectious diseases
(Clark et al., 2020; Cunha et al., 2020) due to immune
system dysregulation (Müller et al., 2019), together with cellular
and signaling pathway impairments, which contribute to cell
cycle arrest (Calcinotto et al., 2019), oxidative stress (Liguori
et al., 2018), mitochondrial dynamic abnormalities (Kudryavtseva
et al., 2016), autophagic disruption (Wong et al., 2020),
immunosenescence (Fülöp et al., 2016; Pawelec, 2018), and
neuroinflammation (Ransohoff, 2016). Dysregulation of these
processes is known to be associated with the pathogenesis of
neurodegenerative diseases (Brites, 2015; Schmeer et al., 2019;
Wissler Gerdes et al., 2020). During the COVID-19 pandemic,
these vulnerabilities have led to an increase in mortality rate
that reached 1.4–15% in people in the age group between 65
and 85 years old, as compared with a much lower rate of 0.01–
0.4% in the age group from 25 to 55 years (Levin et al., 2020).
A meta-analysis of the infection-fatality rate has been estimated
to be 0.53–0.82% (Meyerowitz-Katz and Merone, 2020). For
those responsible for implementing the COVID-19 health policy,
it is now clear that COVID-19 pathology extends well beyond
lung pathology (Pannone et al., 2021) as is there now evidence
of kidney damage (Gabarre et al., 2020; Hassanein et al., 2020;
Ronco et al., 2020), pathological sequelae in the hepatobiliary,
gastrointestinal, pancreatic (Jothimani et al., 2020; Lee et al., 2020;
Patel et al., 2020), reproductive (He et al., 2021), cardiovascular
(Bansal, 2020; Spuntarelli et al., 2020), and central nervous
(Fiani et al., 2020; Nagu et al., 2021) systems. As a consequence,
the potential for the interaction between the activated systemic
immune system and neurodegenerative disease pathology is
increased, and the mechanisms are likely to be more complex
than previously envisaged.

The decline in physical activity imposed by restriction of
outdoor activities and sedentary behaviors (Stockwell et al., 2021)
is known to exacerbate chronic illnesses directly and has led to
an increase in stress, anxiety, and depression that is also known
to have an impact on comorbidities. For example, studies have
highlighted that cardiovascular and cerebrovascular dysfunctions
or kidney damage (Lee A. C. et al., 2021), metabolic disorders
(Kullmann et al., 2016; Dye et al., 2017; Li et al., 2017; Bailly
et al., 2021), motor impairments, and other chronic illnesses are
aggravated by an increased sedentary life (Araújo et al., 2021;
Awogbindin et al., 2021; de Boer et al., 2021; Engels et al., 2021;
Salman et al., 2021), and thus these individuals are likely to
require more medical attention and continued monitoring for
potential long-term sequelae.

It is already known that SARS-CoV-2 binds to the receptor
for angiotensin-converting enzyme 2 (ACE2) (Hoffmann et al.,
2020; Zhang et al., 2020; Zhou et al., 2020), which is most
prominently expressed by epithelial and endothelial cells, and,
to a lesser extent, by neurons and glial cells (McQuaid et al.,
2021; von Bohlen Und Halbach, 2021). The presence of SARS-
CoV-2 in droplets in the air enters the upper respiratory tract,
infecting the nasal and pharyngeal epithelia and the bronchial
and alveolar epithelium (Bourgonje et al., 2020). In symptomatic

patients, nasal swabs have shown higher viral loads than throat
swabs (Zhou et al., 2020) owing to the high expression of ACE2 in
the nasal epithelial cells (Sungnak et al., 2020). The viral protein
Spike interacts with the ACE2 receptor in several different tissues,
such as the central nervous system, where it increases angiotensin
II and activates nicotinamide dinucleotide phosphate oxidase2
(NOX2) enzyme with the subsequent release of reactive oxygen
species (ROS) and inflammatory mediators (Sindona et al., 2021).

Patients with SARS-CoV-2 show elevated levels of pro-
inflammatory cytokines mediated by the dysregulation of the
nuclear factor kappa B (NF-κB) signaling pathway (Hammoudeh
et al., 2021; Su et al., 2021) and downstream enhanced
expression of pro-inflammatory genes that translate into
increased neuroinflammation (Liu et al., 2017). Although,
some reports have addressed the potential long-term effects
of chronic mild neuroinflammation in neurodegenerative
diseases and the acceleration of progression rate (Alonso-
Lana et al., 2020; Dewanjee et al., 2021), the persistence
of neuroinflammatory events induced by SARS-CoV-2 on
a background of neuropsychiatric and neurological sequelae
(Carod-Artal, 2020; Dinakaran et al., 2020; Troyer et al., 2020;
Wang et al., 2020; Yachou et al., 2020; Swain et al., 2021) have
the potential to aggravate the pathophysiological aspects in the
survivors (Perry, 2010; Holmes et al., 2011; Amor et al., 2014;
Alam et al., 2017; Idrees and Kumar, 2021; Marques Zilli et al.,
2021; Too et al., 2021).

Thus, we considered it to be of interest to review the
potential consequences of the effects of the COVID-related
inflammatory response on the immune responses linked to
chronic neurodegeneration, associated with central or peripheral
virus infections. To that end, we here revisited the influences
of social isolation, sedentary life, and central or peripheral
infections on mouse prion disease progression, as a proxy
for the exacerbated immune response of prion-like chronic
neurodegenerative diseases (Fernández-Borges et al., 2015;
Armstrong, 2020; Goedert, 2020; Hosseini et al., 2021) under
similar conditions.

Experimental Mouse Prion Disease and
Prion-Like Chronic Neurodegenerative
Diseases
From a neuropathological point of view, several parallels
have been established between prion diseases (Orge et al.,
2021), Alzheimer’s disease (AD), and other prion-like
neurodegenerative disorders (Ransohoff and Perry, 2009;
Alpaugh and Cicchetti, 2021; Annadurai et al., 2021; Contiliani
et al., 2021; Ritchie and Barria, 2021). Although transmissibility
remains a unique characteristic of prion diseases, protein
misfolding disorders share protein aggregation as a common
mechanism as the disease spreads from cell to cell (Diack et al.,
2016; Scheckel and Aguzzi, 2018).

Alzheimer’s and Prion’s pathologies share synaptic
dysfunctions and axonal trafficking defects (Senatore et al., 2013;
Zamponi et al., 2017; Soto and Pritzkow, 2018; Song et al., 2021)
and similar alterations in the processing of neuronal membrane
proteins, together with insoluble deposits of amyloid-β (Aβ)
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peptide and amyloid plaques. Because of the predictable course
of the pathology along with anatomical locations (Braak and
Braak, 1991; Scott et al., 1992; DeArmond, 1993; Eikelenboom
et al., 1994, 2002; Zamponi and Pigino, 2019), prion disease
in the murine model has been proposed as an important tool
for experimental studies searching for mechanisms underlying
chronic neurodegeneration (Betmouni et al., 1996; Diack et al.,
2016).

Prions are proteinaceous infectious pathogens, devoid
of functional nucleic acids that cause a group of fatal
neurodegenerative diseases by self-propagating misfolding
protein deposition and an associated inflammatory response
(Carlson and Prusiner, 2021; Orge et al., 2021). Also known as
transmissible spongiform encephalopathies, they can produce
diseases in several species of mammals, such as Creutzfeldt-Jacob
Disease in humans, scrapie in sheep, and bovine spongiform
encephalopathy (Prusiner, 1996; Ayers et al., 2020). Prion
agents are composed exclusively of a modified form of normal
cellular prion protein (PrPC), which is then converted into
an insoluble form resistant to the action of proteases (PrPSc)
(Bolton et al., 1982; Prusiner, 1982; Carroll and Chesebro,
2019). This altered protein is deposited in the parenchyma
of the central nervous system where it induces a chronic
neuroinflammatory response (Betmouni et al., 1996; Carroll and
Chesebro, 2019). Immunohistochemical studies have shown that
PrP is the main component of the Aβ plaques in mammalian
prion diseases (DeArmond et al., 1985; Priola, 2017). The
experimental prototypic murine model of prion disease is well
established and is generated by injecting the prion agent ME7
into the hippocampus of the inbred C57BL/6J mouse strain
(Betmouni et al., 1996). Distinct mouse strains may show
diverse incubation periods and end-stage neuropathological
features (Borner et al., 2011). However, similar early synaptic
loss precedes neuronal degeneration and associates with early
behavioral deficits in distinct prion disease strains (Bruce
et al., 1991; Cunningham et al., 2005a; Borner et al., 2011;
Hilton et al., 2013). An extended incubation period, together
with astrocyte and microglia activation, neuronal death, and
neuropil vacuolization are typical neuropathological features
of the mouse prion disease models (Williams et al., 1994;
Betmouni et al., 1996). While tau phosphorylation changes are
limited to the end-stage prion pathology (Asuni et al., 2010),
induction of type I interferons (IFN-I) results in significant
phenotypic alterations in microglia that accelerates disease
progression (Nazmi et al., 2019). Neuronal loss develops late in
the disease and occurs topographically through neuroanatomical
pathways that vary according to the prion agent ‘strain’ and
the animal model that is used (Fraser et al., 1989; Jeffrey
et al., 2000; Reis et al., 2015). Heparan sulfate proteoglycan is
associated with Aβ plaques (McBride et al., 1998), and neuronal
loss seems to be associated with oxidative stress (Brown,
2005; Bettinger and Ghaemmaghami, 2020) and apoptotic
mechanisms via the proteolytic activation of the protein kinase
Cδ (Harischandra et al., 2014).

The mechanisms underlying prion-induced
neurodegeneration have been widely investigated (Hughes
and Halliday, 2017). Most of these studies point to the fact that

the PrPC protein has important roles as an antioxidant molecule
and an apoptotic regulator, and that its depletion in the course
of the disease can induce direct neurotoxic effects by oxidative
stress (Collinge, 2001; Shah et al., 2018). Recently, it has been
demonstrated that chronic neuroinflammation, shared by many
neurodegenerative disorders (Amor et al., 2014; Obst et al.,
2017), is generated through the dysregulation of the NLRP3
inflammasome, a central component of the innate immune
system that induces pro-inflammatory cytokine production and
cell death (Coll et al., 2016; Holbrook et al., 2021).

Social Isolation and Behavioral Changes
in Chronic Neurodegenerative Diseases
The forced and prolonged social isolation caused by the COVID-
19 pandemic has aggravated the psychiatric symptoms of older
people with cognitive impairments (Barguilla et al., 2020; Manca
et al., 2020). In fact, demented patients worsened in their
cognitive, behavioral, and psychological symptoms, and the
mortality rate associated with SARS-Cov-2 infection among these
patients is very high (Toniolo et al., 2021b). The detrimental
effects of social isolation on human health and cognition have
been highlighted previously (House, 2001; Friedler et al., 2015).
Despite these warning signs, there is a huge growth in the number
of people who still live alone (Snell, 2017).

Evidence from both animal models and humans demonstrated
the physiological benefits of social interaction (Krueger et al.,
2009; Andrew and Rockwood, 2010; Karelina and DeVries,
2011; Holt-Lunstad, 2018). Therefore, detrimental effects of
social isolation have been recognized systematically as a source
of chronic stress associated with the increased prevalence
of vascular and neurological diseases (Friedler et al., 2015).
In addition, it has been suggested that reduction of social
engagement between midlife and late-life periods can be
predictive of functional disabilities (Guo et al., 2020), cognitive
decline (Huang et al., 2020), and dementia and mortality
(House et al., 1988; Saczynski et al., 2006; Daffner, 2010;
Krivanek et al., 2021). Social isolation also increases the risk
of chronic neurodegenerative diseases (Heneka and O’Banion,
2007; Amieva et al., 2010; Heneka et al., 2010; Lyman et al., 2013;
Hajek et al., 2021) with differential neuro-immune markers for
social engagement and loneliness (Walker et al., 2019). Previous
findings in a mouse model of prion disease identified early
behavioral and neuropathological changes associated with the
inbred (C57Bl6J), as compared to the outbred (albino Swiss
mouse) model of prion disease (Cunningham et al., 2005a; Borner
et al., 2011). Nevertheless, little is known about the influence of
social isolation on the progression of such diseases.

Previous studies using environmental manipulations in the
triple transgenic mouse model of AD (3xTg-AD) were effective
in modifying several behaviors but did not change genetically
determined AD-like symptoms (Pietropaolo et al., 2009).

Sedentary Life and Chronic
Neurodegenerative Diseases
Environmental enrichment (EE) and physical exercise have
been used to mimic an active lifestyle in humans and
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previous findings demonstrated that an active life slows AD
progression (Silveira et al., 2018; de Freitas et al., 2020) and
Huntington’s disease progression (van Dellen et al., 2000;
Hockly et al., 2002; Spires et al., 2004), and extends the
disease time course in experimental models. These animal
models include the transgenic mice co-expressing familial AD-
linked mutations on the amyloid precursor protein (APP) and
presenilin 1 (PS1) (Lazarov et al., 2005), 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-
OHDA) Parkinson’s disease model (Faherty et al., 2005; Jadavji
et al., 2006), and the mice expressing the human SOD1(G93A)
gene mutation, the most common model of amyotrophic lateral
sclerosis (Stam et al., 2008) and in the mouse prion disease
(Bento-Torres et al., 2017).

Because EE and exercise moderate immune responses
(Burtscher et al., 2021; Chastin et al., 2021; do Brito Valente
et al., 2021; Filgueira et al., 2021; Proschinger et al., 2021;
Sellami et al., 2021), and aging dysregulates immune responses
(Brites, 2015; López-Ortiz et al., 2021; Martinez et al., 2021;
Mathot et al., 2021), we previously hypothesized that EE and
aging would, respectively, delay and accelerate prion disease
progression (Bento-Torres et al., 2017). However, we found
that after intracerebral injection of the ME7 agent into the
dorsal striatum, aged mice exhibited significantly reduced disease
progression when compared to young mice injected with ME7
(Bento-Torres et al., 2017).

To illustrate the effects of exercise and EE on disease
progression after intraperitoneal injection, we selected two
hippocampal-dependent tasks: burrowing (Deacon et al., 2001;
Deacon, 2009) and the Morris water maze (Morris et al., 1982;
Morris, 1984). Burrowing behavior was found to be the most
sensitive task to detect early hippocampal dysfunction in mouse
prion disease, which coincided with the onset stage (Deacon et al.,
2001; Cunningham, 2005). Similarly, the Morris water maze task
in rat AD models was found to detect subtle impairments in aged
mice (Sun et al., 2019).

A systematic review dedicated to the identification of the
beneficial effects of physical exercise in AD suggests that aerobic
exercises are an effective intervention that can attenuate the
neuropsychiatric symptoms as the disease progresses (Mendonça
et al., 2021). Evidence also indicates that physical exercise leads
to the release of-induced myokines, a group of peptides produced
and secreted by skeletal muscles during exercise (Pedersen, 2009),
which have been shown to haveneuroprotective roles (Petersen
and Pedersen, 2005; Astrom et al., 2010; de Freitas et al., 2020; Lee
B. et al., 2021). Similarly, EE seems to prevent microglia-mediated
neuroinflammation (Almutairi et al., 2016).

Exacerbated Inflammatory Response
and Sedentary Lifestyle
Chronically activated neuroinflammatory processes in
neurodegenerative diseases play a central role in their
pathogenesis (Heneka et al., 2015; Ransohoff, 2016). Because
microglial proliferation is a major component in the progression
of chronic neurodegeneration (Gómez-Nicola et al., 2013;
Subhramanyam et al., 2019; Azam et al., 2021) and the microglial

innate immune response in prion disease (Peggion et al., 2020) is
also considered to contribute to the activation of the peripheral
immune system at draining lymph nodes and the spleen
(Vincenti et al., 2015), it is thought that interactions with
other immune cell populations may accelerate the spread of
neurodegeneration in prion disease brain (Mabbott et al., 2020).
Indeed, splenectomy before intraperitoneal prion infection was
shown to extend survival times but had no effect on disease
pathogenesis when intracerebral injections of prions were
performed (Fraser and Dickinson, 1970; Mabbott et al., 2020).
Following peripheral exposure, many prions replicate in the
lymphoid tissues before entering the central nervous system, and
prion pathogenesis is impaired dramatically in aged mice when
compared with young animals (Brown and Mabbott, 2014).
Thus, owing to the compromised immunosenescence microglial
response in aged mice (Brites, 2015; Carvalho-Paulo et al., 2021),
a stronger inflammatory response would be expected in young
mice (Bento-Torres et al., 2017).

Previous findings in the triple transgenic mouse model of
AD, which develops both Aβ plaques and neurofibrillary tangles
mimicking the temporal- and regional-specific profile of the
human disease, suggested that impairment of the peripheral
immune system and neuroimmune communication contribute
to premature aging of these mice (Giménez-Llort et al., 2012).
Similar cross-talk between peripheral immune cells and microglia
has been described in AD and these peripheral immune cells
may help in Aβ peptide clearance and modulation of microglia
response (Dionisio-Santos et al., 2019). In addition, chronic
neuroinflammation in normal aging (Groh et al., 2021) and age-
related chronic neurodegenerative diseases, such as AD (Gate
et al., 2020) and Parkinson’s disease (Galiano-Landeira et al.,
2020), have been found to include innate and adaptive immune
cell dysfunction (Carrasco et al., 2021; Lutshumba et al., 2021).

Thus, the intense microglial activation in chronic
neurodegenerative diseases, under influence of both peripheral
and central homeostatic changes, damages healthy neural
tissue, and then, in response to the factors secreted by dead or
dying neurons, microglial activation is chronically maintained
and the associated neuroinflammation leads to progressive self-
propagating damage (Xu et al., 2016; Subhramanyam et al., 2019).

Microglial activation and neuroinflammation have been
shown to be modulated by voluntary exercise and EE (Duggan
and Parikh, 2021), which can slow down disease progression.
Indeed, we have previously demonstrated that EE and exercise
in a dose-dependent way can attenuate neuroinflammation in the
ME7 mouse model of prion disease (Bento-Torres et al., 2017).
It has been also described that the microglial response in the
3xTg-AD mouse model is differentially modulated by voluntary
wheel running and enriched environments, as evidenced by the
presence of hypertrophic microglia (increased surface, volume,
and somata volume) in the standard environment of laboratory
cages, as compared with mice preserved in enriched cages
(Rodríguez et al., 2015).

Previous consensus established that oxidative stress, DNA
damage, mitochondrial dysfunction, excessive accumulation
of misfolded proteins, synaptic impairment, and damage to
microRNA (miRNA) processing and inflammation (Brites, 2015;
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Lutshumba et al., 2021) maybe associated with age-related
changes in microglia (Koellhoffer et al., 2017; Costa et al., 2021;
Triviño and von Bernhardi, 2021). Indeed, the immunosenescent
phenotype of microglia is marked by dystrophic morphology,
elevated expression of inflammatory markers, reduction in
the release of neuroprotective factors, alterations in the
transcriptomic profile and phagocytic activity, together with
modifications in their secretome cargo (Niraula et al., 2017;
Angelova and Brown, 2019; Greenwood and Brown, 2021). These
alterations may explain the reduction of morphological changes
in the aged ME7 prion-infected mice (Bento-Torres et al., 2017).

Astrocytes can also change their homeostatic phenotypes in
response to acute and chronic pathologies, showing reactive
subtypes with increased expression of the glial fibrillary
acidic protein (GFAP) (Anderson et al., 2014). In the ME7
prion disease mouse model, the analysis of the hippocampal
proteome revealed a predominantly activated astrocyte signature
(Asuni et al., 2014).

Astrocyte reactivity in the ME7 prion disease mouse
model is influenced by EE and exercise, which decreases
neuroinflammation and cell reactivity (Bento-Torres et al., 2017).
This is also true for AD models (Kelly, 2018). In fact, the enriched
environment and physical exercise have been widely used in
experimental models of chronic neurodegenerative diseases
to slow the progression and to investigate the mechanisms
underlying this protection (Rodríguez et al., 2011; Do et al., 2018;
Kim et al., 2019; Pena et al., 2020). Exercise on the treadmill
for 5 days per week reduced disease progression in the 3xTg-
AD mice, which was associated with lower Aβ plaque burden
and neuroinflammation, and improved mitochondrial function
and neurogenesis (Kim et al., 2019). Similarly, beneficial effects
were described after regular resistant training in 3xTg-AD mice
with reduction of the Aβ peptide in the hippocampus and
increased concentration of insulin-like growth factor 1 (IGF-
1) (Pena et al., 2020). Although less explored, the Huntington’s
disease mouse model R6/1HD submitted to voluntary exercise,
using running wheels and subsequently enriched environment,
seemed to synergistically increase hippocampal neurogenesis
with old adult-generated neurons, microglia, and astrocytes,
without revealing mutant huntingtin immune reactive aggregates
(Ransome and Hannan, 2013).

Astrocyte reactivity by upregulation of the glial fibrillary acidic
protein astrocyte reactivity in chronic neurodegenerative diseases
is associated with nuclear factor kappa B (NF-κB) activation
and remodeling of chromatin with subsequent transcription
of proinflammatory genes (Villarreal et al., 2021). Sustained
inflammatory signaling by activated microglia in to astrocytes
and the established crosstalk known to exist between microglia
and astrocytes induce astroglial pathological remodeling and the
exacerbation of neuronal death (Jha et al., 2019; Verkhratsky
et al., 2019; Matejuk and Ransohoff, 2020).

Infection and Chronic Neurodegeneration
Among the infectious diseases, there has been emerging evidence
that infectious agents can be part of the environmental
risk factors for the aggravation of neurological disorders
(Toniolo et al., 2021a; Wouk et al., 2021). This is the case of

chronic neurodegenerative disorders, such as AD (Itzhaki and
Wozniak, 2010; Giridharan et al., 2019; Lopez-Rodriguez et al.,
2021; Mathis et al., 2021), Parkinson’s (Munoz-Pinto et al., 2021;
Rosen et al., 2021), and experimental prion diseases (Lins et al.,
2016; Nazmi et al., 2019). Pre-existent inflammatory conditions,
such as those associated with chronic neurodegenerative diseases
in humans and mice, seem to be aggravated by both peripheral
and central infections (Combrinck et al., 2002; Cunningham
et al., 2005b; Holmes and Butchart, 2011; Naughton et al.,
2020; Zhou et al., 2021). Indeed, cognitive deficits of patients
with AD are further increased after a systemic infection, and
this is preceded by an increase in the release of interleukin-1β

(Holmes and Butchart, 2011). In addition, mouse prion disease
shows more intense neuropathological features and faster disease
progression after systemic and central endotoxin challenges
(Combrinck et al., 2002; Cunningham et al., 2005b; Hennessy
et al., 2015, 2017; Lins et al., 2016; Nazmi et al., 2019).

Previous findings using an intranasal Piry neurotropic virus
infection, intrahippocampal injection of ME7 prion strain,
or normal brain injection, demonstrated that virus-infected
prion-diseased mice exhibited higher microglial morphological
reactivity and more severe behavioral outcomes than ME7
prion-diseased mice not infected with virus (Lins et al.,
2016). Although virus infection per se did not change the
number of microglia in CA1, virus infection in prion-diseased
mice (at 17 weeks post-injection) induced changes in the
number and morphology of microglia. We suggested that
virus infection exacerbated microglial inflammatory response in
prion-infected mice, thus aggravating chronic neurodegeneration
(Lins et al., 2016).

SARS-CoV-2 has been found to invade the brain via the
olfactory, gustatory, and trigeminal pathways, especially at the
early stage of infection (Liu J. M. et al., 2021). Its neuroinvasion
route through nasal epithelium (Yachou et al., 2020) is similar
to that of many other RNA viruses (Freitas et al., 2020;
Awogbindin et al., 2021), including the Piry arbovirus used to
infect the mouse prion disease model (de Sousa et al., 2015).
We found that the Piry virus interaction with ME7-associated
chronic neurodegeneration induces progressive exacerbation of
microglia and astrocyte morphological alterations. These findings
demand further exploration and discussion of the potential
mechanisms by which microglia and astrocyte dysregulated
responses (Murta et al., 2020) may contribute to post-COVID-
19 neurological sequelae (Mishra and Banerjea, 2020) that are
associated with the aggravation of chronic neurodegenerative
diseases (Sita et al., 2021).

Neuropathological examination of many areas of the
central nervous system in aged patients infected with
SARS-CoV-2 who died during the disease revealed signs of
neuroinflammation with astrogliosis and microglial activation.
Microglial nodules and neuronophagia, most prominent in
the brainstem, with hypoxic/ischemic changes in many areas
of all examined brains, were also evident (Matschke et al.,
2020; Thakur et al., 2021). In this study, it is important
to highlight that 44% of the elderly patients also revealed
neuropathological signs of ongoing neurodegenerative diseases
(Thakur et al., 2021).

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 749595

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-749595 October 21, 2021 Time: 14:3 # 6

Leite et al. Unwelcome Exacerbated Immune Response

Following SARS-CoV-2 respiratory infection, choroid
plexus epithelial cells are affected by signals from peripheral
inflammation followed by activation of the immune system of the
brain, such as differential expression of microglial and astrocytic
inflammatory-associated genes, dysregulated homeostasis, and
peripheral T-cell neuroinvasion (Schwabenland et al., 2021;
Yang et al., 2021). These studies showed no molecular traces
of SARS-CoV-2 in the brain, but broad cellular perturbations
of the choroid plexus leading to the spread of peripheral
inflammation mediators into the brain. These findings suggest
that the severity of the neuropathological changes is not caused
by direct infection of the virus in the brain parenchyma, but
rather from systemic inflammation. Thus, it remains open the
possibility that similar pathological changes in patients who
survived from COVID-19 may aggravate ongoing chronic
neurodegenerative diseases.

It has been noted that elderly patients infected with
COVID-19, who had episodes of delirium, showed significant
hyperactivation of microglia in the hippocampus. Together
with the inflammatory lesions of the brainstem and the
presence of topographic signs and symptoms, in the absence
of specific signs of encephalitis associated with SARS-
CoV-2, such features constitute the so-called COVID-19
encephalopathic syndrome (Poloni et al., 2021). While delirium
in humans and sickness behavior in experimental models are
transient, there is compelling evidence that such systemic
immune responses and inflammation give rise to long-lasting
consequences for the brain, particularly in aged individuals
(Lutshumba et al., 2021). This condition of long-lasting
symptoms experienced by many patients who have suffered
from acute COVID infectious is now referred to as the
long COVID syndrome (Hugon et al., 2021; Taribagil et al.,
2021).

It is, therefore, reasonable to infer that a patient who
has survived from COVID-19 encephalopathic syndrome,
experiencing or not experiencing long-COVID symptoms,
may suffer exacerbated neuroinflammation that will
accelerate/aggravate the progression of pre-existing chronic
neurodegenerative disease.

It is important to highlight, however, that although pathogenic
mechanisms of age-related neurodegenerative disorders include
the seeded aggregation of disease-specific proteins, as in
the prion disease model (Walker and Jucker, 2015), the
incomplete similarity of events observed in these diseases
does require a cautionary approach to the generalized use of
prion disease as a proxy for immune response investigation
in all prion-like disorders (Guest et al., 2011). In addition, the
possibility of differential mechanisms by which peripheral or
central infections interact and aggravate abnormal disease-
specific protein aggregation and damage to the brain tissue
remains to be investigated in detail in each of those diseases.
Finally, it is also imperative to investigate if exogenous
and endogenous risk factors for each disorder interact
with infections, and how this interaction contributes to
misfold and progressive accumulation of protein clumps. It is
expected that future studies may reveal new opportunities for

therapeutics and also for new public health risk identification
(Cashman, 2015).

Chronic Neurodegeneration, Virus
Infection, and miRNAs
miRNAs can regulate innate and adaptive immunity by
regulating microglia activation, astrocyte reactivity, and by
controlling the egress of peripheral immune cells, such as
neutrophils, macrophages, T cells, and B cells (Gaudet et al.,
2018). miRNAs play an emerging and important role in the
interplay between viruses and host cells (Liu W. et al., 2021;
Pandey et al., 2021), and potential interaction between SARS-
CoV-2 and human miRNAs have been predicted and tested
(Marchi et al., 2021; Siniscalchi et al., 2021). Neurodegenerative
diseases, such as AD, Parkinson’s disease, Huntington’s disease,
multiple sclerosis, and prion-like diseases, are characterized
by the deposition of misfolded proteins, such as Aβ, tau,
α-synuclein, huntingtin, and prion proteins (Khan et al.,
2021). Deregulated miRNA profiles are associated with the
development and progression of AD. They are known to induce
the activation of microglia into disease-associated polarized
phenotypes that aggravate neurodegeneration. However, the
modulation of the inflammatory-associated miRNAs may also
encourage microglia to engage in reparative mechanisms
(Fernandes et al., 2018; Brites, 2020). The communication
between microglia and astrocytes is mediated through exosomes,
which are small extracellular vesicles, and by soluble factors
as cytokines. Exosomes are enriched in lipids, proteins, and
genetic material, and their cargo in miRNAs was shown to
have an important effect on the behavior of recipient cells.
Dysregulated production of miRNA has been reported to cause
neuroimmune dysfunction (Yang and Zhu, 2019) and encourage
neurodegenerative processes in AD mouse models and patients
(Guedes et al., 2014; Brites, 2020; Kim et al., 2020). It has
been proposed that the SARS-CoV-2 gene product Spike is
able to modify the host exosomal cargo, thus, facilitating
its transportation to distant uninfected tissues and organs
initiating a severe inflammatory cascade (Mishra and Banerjea,
2021). Spike transfected cells release a significant number of
exosomes enriched in miRNA(miR)-148a and miR-590 that
are internalized by microglia and are able to upregulate the
proinflammatory gene expression, such as tumor necrosis factor
alfa (TNF-α) and interferon beta (IFN-β), which can promote
the unwanted exacerbation of inflammatory microglia responses
(Mishra and Banerjea, 2021).

CONCLUDING REMARKS

Social isolation, sedentary life, and infection are all associated
with the restrictions imposed by the COVID-19 pandemic rules
and the presence of the virus. In this study, we have revisited the
effects of sedentary life and infections on mouse prion disease
progression, as a proxy for the exacerbated immune response
of prion-like chronic ongoing neurodegenerative diseases. Our
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previous study with mouse prion disease has demonstrated that
these influences contribute to the undesirable aggravation of
astrocyte reactivity and microglial activation, which results in
more severe behavioral outcomes, and acceleration of disease
progression. We anticipate that the SARSCoV-2 infection may
similarly potentiate ongoing chronic neurodegenerative disease
progression in patients surviving to COVID-19. Our findings,
and those of other researchers, have demonstrated the benefits
of EE and physical exercise, while emphasizing that an active
lifestyle may reduce neuroinflammation, cognitive decline, and
behavioral abnormalities and may slow disease progression.
Thus, a more physically active lifestyle might also be expected
to positively impact on the downstream sequelae associated with
SARS-CoV-2 infection.
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