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Antroquinonol was investigated as antioxidant and inhibition of inflammatory responses. Our study was to evaluate its
immunosuppressive effect on CD8+ T cells and protective effect on depigmentation. CD8+ T cells were treated with
antroquinonol in vitro, and C57BL/6 mice were treated with antroquinonol with or without H2O2 in vivo for 50 consecutive
days. We found antroquinonol could inhibit proliferation of CD8+ T cells and suppress the production of cytokines IL-2 and
IFN-γ and T cell activation markers CD69 and CD137 in vitro. H2O2 treatment induced depigmentation and reduced hair
follicle length, skin thickness, and tyrosinase expression in vivo. Whereas, antroquinonol obviously ameliorated depigmentation
of mice skin and resisted the reduction of hair follicle length, skin thickness, and tyrosinase expression induced by H2O2.
Antroquinonol decreased CD8+ T cell infiltration in mice skin, inhibited the production of IL-2 and IFN-γ, and decreased the
expression of CXCL10 and CXCR3. Summarily, our data shows antroquinonol inhibits CD8+ T cell proliferation in vitro. It also
reduces CD8+ T cell infiltration and proinflammatory cytokine secretion and suppresses the thinning of epidermal layer in vivo.
Our findings suggest that antroquinonol exerts immunosuppressive effects on CD8+ T cell proliferation and activation to resist
depigmentation induced by H2O2.

1. Introduction

Vitiligo is a common dermatological disorder characterized
by the progressive depigmentation caused by a loss of mela-
nocytes in the epidermis. Absence of melanocytes in the skin
lesion has been considered as a core event in the pathogenesis
of vitiligo [1]. A single dominant pathway appears unable to
explain all causes of vitiligo. Obviously, loss of melanocytes
in vitiligo seems to occur through a complex interaction of
several mechanisms including environmental, biochemical,
immunological, and genetic events that act in concert [2].
In vitiligo epidermis, the increased levels of reactive oxygen
species (ROS) were observed [3, 4]. −89 A/T polymorphisms
of catalase in vitiligo patients showed significantly increased
lipid peroxidation levels [5]. Increased malondialdehyde
and decreased catalase were found in vitiligo patient blood

[6]. Higher activity of superoxide dismutase has been dem-
onstrated in both lesional and nonlesional epidermis [7].
Lymphocyte analysis to peripheral blood of patients with vit-
iligo showed the total levels of T-cells are normal, but the
ratio of CD4+/CD8+ is decreased. The decreased CD4+/
CD8+ ratio of skin-infiltrating T cells and CD8+ T cells from
vitiligo skin are observed in progressive disease [8]. Signifi-
cantly higher number of circulation CD8+ T cells was shown
in progressive generalized vitiligo [9]. Decreased CD4+/CD8+

ratio was shown in active generalized vitiligo patients, which
is involved in the pathogenesis of vitiligo [10]. Increased
ROS are thought to be involved in onset of vitiligo, and
the infiltration of melanocyte-specific cytotoxic CD8+ T
cells into the perilesional margin directly result in melano-
cyte loss [11, 12]. One study [13] reported that oxidative
stress leads to chemokine production and causes CD8+ T
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cell skin trafficking and melanocyte destruction in vitiligo.
Blockade of oxidative stress can ameliorate melanocyte
apoptosis through anti-inflammatory and antiapoptotic
processes. CXC chemokine ligand10 (CXCL10) was highly
expressed in the skin and serum of patients with vitiligo
and is critical to the progression and maintenance of depig-
mentation in a mouse model of vitiligo. CXCL10-CXCR3
(CXC chemokine receptor 3) axis is critical to both the
progression and maintenance of depigmentation in vitiligo
mouse models [14, 15].

Antrodia camphorate is a mushroom growing on
camphor tree in Taiwan forests. It is a traditional Chinese
herbal medicine with several pharmacological effects, such
as antioxidant and free radical-scavenging activities [16, 17]
and inhibition of inflammatory responses [18, 19]. Antro-
quinonol is a major active component of Antrodia camphor-
ate and was identified with its anti-inflammatory activity
and anticancer potential [20–22]. Antroquinonol displayed
anticancer potential for human hepatocellular carcinoma
cells by adenosine 5′-monophosphate- (AMP-) activated
protein kinase (AMPK) and mammalian target of rapamy-
cin (mTOR) pathways [23] and could protect the kidney
from immunologic damage via blocking tumor necrosis
factor-α (TNF-α) and interleukin-1β- (IL-1β-) mediated
inflammatory process [24]. Antroquinonol differentially
modulates T cell activity and reduced IL-18 production
of murine accelerated severe lupus nephritis [25]. How-
ever, it remains to be determined whether antroquinonol
is capable of preventing the various depigmentation histo-
pathologic features of C57BL/6 mice treated by hydrogen
peroxide (H2O2). Immunosuppressive effect of antroquino-
nol on CD8+ T cells is still unknown.

We hypothesize that antroquinonol might exert immu-
nosuppressive effect on CD8+ T cell proliferation and acti-
vation to resist depigmentation induced by H2O2. To test
this, we investigated effects of antroquinonol on depig-
mentation model induced by H2O2 that mimics vitiligo
in vivo.

2. Materials and Methods

2.1. Study Subjects. This study was approved by the ethics
committee of the third people’s hospital of Hangzhou.
Twenty healthy control’s blood samples (Table 1) whose
CD+ T cells are outrange of reference were collected ran-
domly from physical examination center of the third people’s
hospital of Hangzhou. Informed consent was obtained, and
this study was approved by local ethics committees.

2.2. Animals and Treatment. Four-week-old female
pathogen-free C57BL/6 mice (weighing 18–20 g) were

purchased from Changzhou Cavens Experimental Animal
Co. Ltd. (Changzhou, Jiangsu, China) and fed in the labo-
ratory animal research center of Zhejiang Chinese medical
university. Mice were housed in groups under specific
pathogen-free conditions (22± 2°C, RH 50–60%, and a 12h
light/dark cycle). Each mouse was individually weighed and
randomly assigned to an experimental group. The mice were
housed in polycarbonate cages and fed a standard animal diet
with water. All mice were treated in strict accordance with
the Zhejiang Chinese Medical University Animal Care and
Use committee’s guidelines for the care and use of labora-
tory animals. Before treatment, the back skin of all mice
was shaved (area: 2× 2 cm) and a depilatory cream (Veet,
London, UK) was applied to areas. This is aimed to promote
hair follicle transferred from telogen stage to anagen stage.
Mice were grouped into three: One group of mice was
smeared with 1ml of PBS as control. One group of mice
was smeared with 1ml of 5% H2O2 in the experimental skin
area for 3 minutes at 3 pm. The third group of mice was
administered with antroquinonol at 50mg/kg per day by
intragastric administration at 9 am, and H2O2 was smeared
at 3 pm. The mice were treated once per day for continu-
ous 50 days and shaved daily. Three mice were used in
one group.

2.3. Measurement of Hair Growth, Skin Thickness, and
Pigmentation. The distance from the dermal papilla to
the epidermis was measured using straight line as hair
follicle (HF) length. The width of the surface of the epi-
dermis to the muscle in the photomicrograph was mea-
sured as skin thickness. Irregular shape simulated the
depilation area, and repigmentation percentage was esti-
mated. All data were normalized to the controls and
analyzed statistically.

2.4. Antibodies and Reagents. The primary antibodies
for immunostaining against CXCL10 (ab8098), CXCR3
(ab71864), tyrosinase (ab54447), and CD8 antibody
(ab25478) were purchased from Abcam (Cambridge, USA).
ELISA kits for testing interleukin-2 (IL-2) and interferon-γ
(IFN-γ) were obtained from R&D system (Minneapolis,
USA). Antibodies for detecting CD69 (MHCD6918) and
CD137 (11-1379-42) were purchased from eBioscience
(eBioscience, CA, USA). Positive selection using magnetic
beads coated with an anti-CD8 monoclonal antibody was
purchased from Miltenyi (Bergisch Gladbach, Germany).
Antroquinonol was purchased from Golden Biotechnology
(Beijing, China).

2.5. Preparation of CD8+ T Lymphocytes. Peripheral blood
mononuclear cells (PBMC) were isolated by density

Table 1: Information of the study subjects.

Sex of subjects Number Age CD8+ T cells Reference range of CD8+ T cells

Female 10 36.40± 6.28 1564.60± 68.01
190–1440Male 10 37.50± 7.15 1535.00± 64.46

Total 20 36.95± 6.57 1549.80± 66.26
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centrifugation using lymphocyte separation media (Media-
tech, Herndon, VA) according to the manufacturer’s
instructions. CD8+ T cells were isolated from PBMC by
positive selection using magnetic beads coated with an
anti-CD8 monoclonal antibody.

2.6. CD8+ T Cell Proliferation Assay. CD8+ T cells were
washed in PBS and immediately labeled by incubation
with 10μM CFSE (5-(and-6)-Carboxyfluorescein Diacetate,
Succinimidyl Ester) (Invitrogen, Life Technologies Corpo-
ration, Saint-Aubin, France) in PBS for 30 minutes at
37°C. After CFSE labeling, CD8+ T cells were cultured in
96-well plates coated with anti-CD3 and anti-CD28 for
various conditions treated with various dosage of antroqui-
nonol (0, 1.25, 2.5, 5.0, 10, 20, and 40μM) or different
time points (0, 12, 24, 48, and 96 h). After completion of
respective incubation time, cells were harvested and washed
in PBS. The proliferation of CD8+ T cells was evaluated by
flow cytometry. Each group was triplicated.

2.7. ELISA. The concentrations of IL-2 and IFN-γ in collected
mice serum and cell culture supernatant were quantified
using enzyme-linked immunosorbent assay (ELISA) kits
(R&D Systems, Minneapolis, USA) by following the manu-
facturer’s instructions. The absorbance at 405nm was
recorded using a microplate reader. The experiments were
repeated for 3 times.

2.8. Flow Cytometry. After the different experimental condi-
tions mentioned above, the cells were resuspended in 300μl
of 1x PBS and stained with FITC-labelled CD69 (CH/4)
and CD137 ((4-1BB)) for 20min at 4°C. Then, the cells were
fixed in 1% paraformaldehyde for further analysis. After
incubation and washing, cells were resuspended in 1x PBS
and analyzed by FACSCanto II flow cytometer (BD Biosci-
ences, San Diego, CA, USA). The experiments were repeated
for 3 times.

2.9. Immunohistochemistry. For immunohistochemistry, skin
sections of mice placed on slides (MASCOAT, Matsunami,
Osaka, Japan) were deparaffinized with immersion in
dimethylbenzene, rehydrated, heated in citrated buffer
(0.01M, pH6.0) for 5min at 100°C, and then treated with
endogenous peroxidase (3% hydrogen peroxide solution)
for 5min at room temperature. After blocking in 10% goat
serum for another 1 h at room temperature, the sections
were immunostained with primary antibodies for CXCL10,
CXCR3, and tyrosinase diluted in 0.01M PBS containing
0.3% (v/v) Triton X-100 and 5% bovine serum albumin
overnight at 4°C. The sections were washed with 0.01M
PBS, incubated with biotinylated anti-rabbit IgG before
being incubated with the avidin-biotin-peroxidase complex
for 30min at room temperature, and finally visualized using
aminoethyl carbazole (AEC) as a peroxidase substrate.
Images were captured under an Olympus BX51 microscope
installed with ImageJ software.

2.10. Immunofluorescence. To detect CD8+ T localization,
frozen sections of the mice skin were washed with 0.01M
PBS, preincubated with 10% normal goat serum in 0.01M

PBS for 30min, and then incubated overnight at 4°C with
rabbit anti-CD8+ T polyclonal antibody (1 : 1000 dilution)
in the following solution: 10% normal goat serum in 0.01M
PBS with 0.3% (v/v) Triton X-100. Sections were washed
with 0.01M PBS, preincubated with 10% normal rabbit
serum in 0.01M PBS for 30min, and then incubated over-
night at 4°C with goat anti-rabbit polyclonal antibody
(1 : 5000 dilution) in the following solution: 10% normal
rabbit serum in 0.01M PBS with 0.3% (v/v) Triton X-100.
They were washed with 0.01M PBS and then incubated
for 3 h at room temperature with a mixture of Alexa Fluor
546F(ab′)2 fragment of goat anti-rabbit IgG (H+L) (1 : 1000
dilution) (Molecular Probes). The slips were washed 5min
for 3 times in PBS and mounted using a mounting medium
and observed with confocal laser scanning microscope
(TCS SP2, Leica, Germany).

2.11. Statistical Analysis. SPSS13.0 software (SPSS, Chicago,
IL) was employed for statistical analysis. The data are
presented as the mean± SD. One-way analysis of variance
(ANOVA) was performed for comparing means across
multiple groups. P values less than 0.05 were considered
statistically significant.

3. Results

3.1. Effects of Antroquinonol on Proliferation of Human
CD8+ T Cells. To determine the effect of antroquinonol
on proliferation of human CD8+ T cells, a CFSE assay was
performed quantificationally. CD8+ T cells were treated with
antroquinonol (0–40μM) for 48h, and the results indicated
that antroquinonol exhibited inhibition in CD8+ T cell pro-
liferation. Treatment of antroquinonol at 20μM showed
35% growth inhibition, and treatment of antroquinonol at
20 and 40μM indicated similar inhibitory effect on cell pro-
liferation. Compared with control, treatment of antroquino-
nol at 20μM for 48h effectively enhanced the proliferation
by 4 times (P = 0 0001). Whereas, similar increase at 20μM
for 48 h and 96h was observed (data not shown). Taken
together, the results suggested that treatment of antroquino-
nol at 20μM for 48h was used for following experiments
(Figure 1).

3.2. Antroquinonol Reduced Production of Cytokines in
Human CD8+ T Cells. To investigate the effect of antroquino-
nol on the production of cytokines associated with CD8+ T
cells, levels of IL-2 and IFN-γ were analyzed by ELISA
(Figure 2). The amounts of IL-2 (26.43± 4.63 pg/ml) and
IFN-γ (38.87± 0.88 pg/ml) in the antroquinonol-treated
CD8+ T cells were significantly lower compared with those
in the control group IL-2 (63.98± 2.98 pg/ml) (P = 0 0002,
Figure 2(a)) and IFN-γ (61.52± 0.96 pg/ml) (P = 0 0004,
Figure 2(b)). Additionally, as activator of CD8+ T cells,
CD69 and CD137 play an important role in CD8+ T cell
activation. Therefore, we also examined the levels of
CD69 and CD137. The results demonstrated that the
concentration of CD69 (14.87± 0.67) and CD137 (11.83
± 0.78) was less in the CD8+ T cells treated with
antroquinonol than that in the control CD69 (31.16
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± 0.40) (P = 0 0003, Figure 2(c)) and CD137 (20.43± 0.60)
(P = 0 0004, Figure 2(d), Supplemental figure 1).

3.3. Mice Observation. The pigmentation and hair growth of
mice treated with antroquinonol were evaluated. In the
antroquinonol/H2O2 group, pigment islands were observed
in about 70% of the experimental area and black hair grew
from the pigment islands. In the control group, pigment
islands were observed in about 57% of the experimental area
and black hair grew from the pigment islands. Whereas, a
little of pigment islands in the experimental area of the
H2O2 group were shown and few black hair grew from the
pigment islands (Figure 3). This indicated that H2O2 could
induce depigmentation, whereas antroquinonol could inhibit
the induction of H2O2 in depigmentation.

3.4. Antroquinonol Resists Inhibition of Hair Growth and
Skin Thickness Induced by H2O2. To investigate the role of
antroquinonol on the growth of hair and skin, we performed
H&E staining to visualize hair follicle length and skin thick-
ness (Figure 4(a)). On the 50th day after depilation,
the hair follicle length of the mice in the control group
(P = 0 0001) and the antroquinonol/H2O2 group (P =
0 0001) was significantly larger compared to the mice
in the H2O2 group (Figure 4(b)). Similarly, skin thickness

in the control group (P = 0 005) and the antroquinonol/
H2O2 group (P = 0 0004) was significantly higher than that
in the H2O2 group (Figure 4(c)). Collectively, antroquinonol
could resist inhibition of hair growth and skin thickness
induced by H2O2.

3.5. Antroquinonol Induced Expression of Tyrosinase.
Tyrosinase is the key enzyme of melanogenesis. We
detected its expression in the skin with immunohisto-
chemistry (Figure 5). The results showed that the expression
of tyrosinase was obviously reduced in the H2O2 group. In
the control group, amounts of tyrosinase are mostly
expressed in the hair follicle. Similarly, much tyrosinase was
detected in the antroquinonol/H2O2 group. This indicates
that H2O2 could inhibit the expression of tyrosinase, whereas
antroquinonol could resist the inhibition of H2O2 to the
induction of tyrosinase.

3.6. Antroquinonol Could Inhibit Infiltration of Mouse
CD8+ T Cells. In order to investigate whether antroquinonol
exert immunosuppressive effect on CD8+ T cells, immuno-
fluorescence assay was performed to detect the infiltration
of CD8+ T cells. As shown in Figure 6, amount of CD8+ T
cells were observed in the experimental area in the H2O2
group. A few of CD8+ T cells were shown in the skin in
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Figure 1: Effects of antroquinonol on proliferation of CD8+ T cells. CD8+ T cells were cultured with antroquinonol at 20μM for 48 h. The
cellular proliferation was determined by CFSE. The value is shown as mean± SD. (n = 3). P < 0 05 is regarded as statistical difference.
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the antroquinonol/H2O2 group. Few CD8+ T cells were
detected in the control group. This indicated that H2O2
could enhance the infiltration of CD8+ T cells, whereas
antroquinonol could inhibit the infiltration of CD8+ T cells
induced by H2O2.

3.7. Antroquinonol Reduced Production of IL-2 and IFN-γ.
Production of cytokine IL-2 and IFN-γ was determined
with ELISA (Figure 7). Among the three groups, the low-
est level of IL-2 (359.50± 43.85 pg/ml) and IFN-γ (578.46±
115.69 pg/ml) was detected in the control group, and the
highest level of IL-2 (653.00± 144.07 pg/ml) and IFN-γ
(1096.93± 151.55 pg/ml) was detected in the H2O2 group.
Significant difference of IL-2 (P = 0 0003) and IFN-γ (P =
0 0002) between the control group and the H2O2 group was
observed. Significance between the level of IL-2 (482.67±
22.62 pg/ml) (P = 0 028) and IFN-γ (677.20± 49.84 pg/ml)
(P = 0 154) in the antroquinonol/H2O2 group and that in
the control group was observed, but significantly lower
level of IL-2 (P = 0 004) and IFN-γ (P = 0 0004) than that
in the H2O2 group. It indicated that H2O2 could promote
the production of IL-2 and IFN-γ, but antroquinonol
could ameliorate the effect of H2O2.

3.8. Antroquinonol Could Reduce Expression of Chemokine
CXCL10 and Its Receptor CXCR3. Immunohistochemistry
was performed to investigate the expression of CXCL10 and

CXCR3. As demonstrated in Figure 8, high expression of
CXCL10 and CXCR3 was observed in the H2O2 group. Con-
trast to the H2O2 group, obviously reduced expression of
CXCL10 and CXCR3 was observed in the antroquinonol/
H2O2 group. The expression of CXCL10 and CXCR3 was
lower in the mice of the control group. This indicated that
H2O2 could promote the expression of CXCL10 and CXCR3,
whereas antroquinonol could inhibit the increase of CXCL10
and CXCR3 induced by H2O2.

4. Discussion

Vitiligo is a common dermatological disorder of the epider-
mis characterized by the acquired loss of melanocytes and
melanin. The interplay between oxidative stress and the
immune system plays significant roles in the pathogenesis
of vitiligo. Increased evidence supported that oxidative
stress plays a critical role in the autoimmune initiation
in vitiligo [2, 26]. Higher level of H2O2 was demonstrated
in vitiligo epidermis than that in healthy controls [4].
Here, we induce depigmentation with H2O2 in mouse to
simulate vitiligo. 5% H2O2 was applied to smear topically
in the skin of mice for inducing depigmentation [27].
After 50 days, mice in the H2O2 group showed white skin
in the experimental area and yellow hair grew from the
experimental area. This indicated that H2O2 could induce

0

20

40

60

80

Control Antroquinonol

P = 0.0002

IL
-2

 (p
g/

m
l)

(a)

0

20

40

60

80

Control Antroquinonol

P = 0.0004

IF
N

-𝛾
 (p

g/
m

l)

(b)

0

10

20

30

40

P = 0.0003

CD
69

 (%
)

Control Antroquinonol

(c)

0

5

10

15

20

25

Control Antroquinonol

P = 0.0004

CD
13

7 
(%

)

(d)

Figure 2: Effects of antroquinonol on cytokine production and T cell activation marker expression of CD8+ T cells. CD8+ T cells were
stimulated with anti-CD3/anti-CD28 in the absence or presence of antroquinonol (20 μM) in a 24-well plate, and the culture supernatants
were collected at 48 h for measuring the levels of IL-2 and IFN-γ by ELISA, and the expression of CD69 and CD137 by flow cytometry.
Levels of IL-2 (a), IFN-γ (b), CD69 (c), and CD137 (d) in the antroquinonol-treated CD8+ T cells were less than those in the untreated
CD8+ T cells. The values are presented as mean± SD. (n = 3). P < 0 05 means statistical difference.
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depigmentation. In further, H&E staining was applied to
investigate the hair follicle length and skin thickness in
the experimental area. In the H2O2 group, hair follicle
length and skin thickness were significantly lower than
those in the control group. In mice, melanocytes grow in
hair follicles which provide lieu to melanocyte survival
and subsequent melanogenesis. Inhibition of hair follicle
growth suppresses biological activity of melanocyte. Tyros-
inase has a key role in pigmentation process, and which
could be impacted by a range of materials on its activity.
Tyrosinase activity in vitiligo patients’ lesional skins was
lower than that in vitiligo patients’ nonlesional skins
[28]. In this study, tyrosinase expression is dramatically
decreased in the mice treated with H2O2, which is similar

to that in vitiligo patients’ lesional skins. Together, it indi-
cates that mice treated with H2O2 could simulate vitiligo
patients. Therefore, we used this model to detect antroqui-
nonol effect on the vitiligo.

Several biological activities of natural food-derived com-
ponents were reported for their promising anti-inflamma-
tory, antioxidant, and antiapoptotic modulatory potential
[29–31]. Flavonoids present in fruits, vegetables, and herbs
exert a positive health effect in neurodegenerative disorders
and cancer, owing to their free radical-scavenging activities
[32]. Antioxidants, oral vitamins, and supplements have
also gained increased interest in the treatment of vitiligo
for their antioxidant properties. Ginkgo biloba, resveratrol,
and zinc have all been studied either as monotherapies or
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in combination with other treatments with varying efficacy
in improving vitiligo repigmentation [33–36]. Our previ-
ous study also showed that quercetin (3,5,7,3′,4′, pentahy-
droxyflavone) could attenuate the effects of H2O2 on the
tyrosinase export from the endoplasmic reticulum in mela-
nocytes [37].

Antrodia camphorata, a parasitic fungus on rotting trees
of Cinnamomum kanehirai Hay in Taiwan [20], which is
used as a folk medicine and has been shown to have several
pharmacologic effects, including antioxidant and free
radical-scavenging activities [16], inhibition of the inflamma-
tory response [19], and antitumor cytotoxicity activity [38].
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Figure 4: Antroquinonol counteracted inhibition of HF length and skin thickness induced by H2O2. (a) H&E staining was performed on skin
samples harvested after 50 days. HF length and skin thickness were measured. The black dotted line represented the HF. The area within the
blue dotted line represents the skin thickness. The black arrows indicated the hair shaft. Scale bar = 100μm. (b) HF length is presented as the
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P < 0 05 means statistical difference.
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with anti-tyrosinase antibody. Contrast to the control group, lower expression of tyrosinase was observed in the H2O2 group, and a little
higher expression of tyrosinase was shown in the antroquinonol/H2O2 group. The black arrows indicated the hair follicle. Scale bar = 50μm.
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IFN-γ by standard ELISA protocols. (a) Level of IL-2. (b) Level of IFN-γ. Contrast to the H2O2 treated mice, decreased levels of IL-2 and
IFN-γ were shown in the antroquinonol-treated mice and the untreated mice. Levels of IL-2 and IFN-γ were higher in the antroquinonol-
treated mice than those in the untreated mice. The values are presented as mean± SD (n = 3). P < 0 05 means statistical difference.
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Antroquinonol, a major active component of Antrodia cam-
phorata, has been shown to inhibit T cell activation/prolifer-
ation and production of ROS and suppress NF-κB activation
and NF-κB-dependent inflammation and activation of Nrf2
[25, 39]. In this study, we provide the first demonstration that
antroquinonol can inhibit the CD8+ T cell infiltration and
reduced tyrosinase induced by H2O2.

Firstly, we investigate the function of antroquinonol on
human CD8+ T cells in vitro. About 20μM of antroquino-
nol was incubated in human CD8+ T cells for 48 h. The
results showed antroquinonol could inhibit CD8+ T cell
proliferation and activation of CD8+ T cells by suppressing
production of CD69, CD137, IL-2, and IFN-γ. And then
in vivo investigation was performed. The results indicated
that antroquinonol could suppress the proliferation and
production of cytokines of CD8+ T cells. Moreover, effect
of antroquinonol on CD8+ T cells in mice treated with
H2O2 was detected. In the antroquinonol/H2O2 group,
pigment islands were observed in 80% of the experimental
area and black hair grew from the pigment islands. In the
control group, pigment islands were observed in 50% of
the experimental area and black hair grew from the
pigment islands. Whereas, in the H2O2 group, a little of
pigment islands in the experimental area was shown and
few black hair grew from the pigment islands. This indi-
cated that H2O2 could induce depigmentation, whereas
antroquinonol could inhibit the induction of H2O2 in
depigmentation. In further, H&E staining was applied to
investigate the hair follicle length and skin thickness in
the experimental area. In the H2O2 group, hair follicle
length and skin thickness were significantly lower than
those in the antroquinonol/H2O2 group and the control

group. There was no significant difference of hair follicle
length between the antroquinonol/H2O2 group and the
control group. Skin thickness in the antroquinonol/H2O2
group was higher than that in the control group. Expres-
sion of tyrosinase was examined in all groups. In the
H2O2 group, a little of tyrosinase was observed in the hair
follicle. Contrast to the H2O2 group, increased expression
of tyrosinase was detected in the control group and the
antroquinonol/H2O2 group. These results showed that
antroquinonol could promote hair follicle growth, expres-
sion of tyrosinase, and repigmentation. It indicates that
antroquinonol could be a potential candidate for interference
in depigmentation.

In vitiligo, CD8+ T cells are involved in autoimmune
responses, resulting in depigmentation of the skin [40].
Cytokines released by lymphocytes, including IL-1, IFN-γ
or TNF-α, can initiate apoptosis of both melanocytes and
keratinocytes [41, 42]. IFN-γ, as one important cytokine
associated with the Th1 immune response, induced protein
CXCL10 to express in various cell types, such as lympho-
cytes, fibroblasts, neutrophils, and other epithelial cells. Some
studies have proposed that IFN-γ–induced CXCL10–CXCR3
chemokine pathway plays a vital role in CD8+ T cell skin
infiltration [14, 15, 41, 43]. CXCL10 binds to its specific
receptor CXCR3 to recruit and activate T cells for regulating
immune responses. Increased expression of CXCL10 and
CXCR3 was shown in various autoimmune diseases, and they
play fundamental parts in leukocyte homing into the
inflamed tissues to accelerate the process of tissue damage
[44, 45]. Highly induced CXCL10 and CXCR3 were found
in vitiligo patients [14]. Here, cytokines IL-2 and IFN-γ were
examined with ELISA. H2O2 significantly enhanced the level

Control

CXCL10

CXCR3

H2O2 Antroquinonol/H2O2

Figure 8: Antroquinonol decreased the expression of CXCL10 and CXCR3 induced by H2O2. Skin sections were examined with
immunohistochemistry staining with anti-CXCL10 and anti-CXCR3 antibodies. Contrast to the control group, obvious high expression of
CXCL10 and CXCR3 was detected in the H2O2 group, and a little higher expression of CXCL10 and CXCR3 was observed in the
antroquinonol/H2O2 group. Scale bar = 50μm.
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of IL-2 and IFN-γ in mice, and antroquinonol could inhibit
the production of IL-2 and IFN-γ. In further, we investigated
the IFN-γ-induced expression of CXCL10 and CXCR3. In
consistent, highly increased expression of CXCL10 and
CXCR3 was found in the mice treated with H2O2. A little
increase expression of CXCL10 and CXCR3 was detected in
the mice treated with antroquinonol/H2O2.

5. Conclusions

According to our findings in this study, it is suggested that
antroquinonol has a potential therapeutic effect on depig-
mentation. Antroquinonol significantly attenuated histo-
pathologic changes in the mice skins and inhibited the
infiltration of CD8+ T cells and expression of chemokines
CXCL10 and CXCR3. In addition, antroquinonol could
decrease the production of cytokines IL-2 and IFN-γ obvi-
ously and promote tyrosinase expression. These results
suggest that antroquinonol might be a treatment of choice
for preventing depigmentation.
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