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ABSTRACT

Subcellular localization is essential to RNA biogenesis, processing, and function across the gene expression life cycle.
However, the specific nucleotide sequence motifs that direct RNA localization are incompletely understood.
Fortunately, new sequencing technologies have provided transcriptome-wide atlases of RNA localization, creating an op-
portunity to leverage computational modeling. Here we present RNA-GPS, a newmachine learningmodel that uses nucle-
otide-level features to predict RNA localization across eight different subcellular locations—the first to provide such awide
range of predictions. RNA-GPS’s design enables high-throughput sequence ablation and feature importance analyses to
probe the sequencemotifs that drive localization prediction.We find localization informativemotifs to be concentrated on
3′′′′′-UTRs and scattered along the coding sequence, and motifs related to splicing to be important drivers of predicted lo-
calization, even for cytotopic distinctions for membraneless bodies within the nucleus or for organelles within the cyto-
plasm. Overall, our results suggest transcript splicing is one of many elements influencing RNA subcellular localization.
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INTRODUCTION

Subcellular localization of RNA transcripts is critical to cel-
lular function, development, and organization (Lécuyer
et al. 2007; Buxbaum et al. 2015; Chin and Lécuyer
2017). For example, mRNA transcript localization has
been found to be an efficient mechanism for controlling
spatial gene expression and localization of subsequently
translated proteins (Martin and Ephrussi 2009; Jung
et al. 2012). Transcript localization is also a widely ob-
served phenomenon; the majority (∼80%) of RNA tran-
scripts exhibit asymmetric distribution across the cellular
volume in both human and Drosophila cells (Benoit
Bouvrette et al. 2018). Errant transcript localization may
also play a pathogenic role; errors in transcript localization
have been found in patients with various diseases like spi-
nal muscular atrophy, fragile X syndrome, and Alzheimer’s
disease (Chin and Lécuyer 2017). Such errors have also
been implicated in various forms of cancer (Cooper et al.
2009; Smart et al. 2018). Refining our understanding of
this key cellular process would have great implications

for basic biology, and possibly even for downstream bio-
medical applications. In this paper, we set out to achieve
this by developing and interpreting a machine learning
model that predicts RNA localization from nucleotide
sequences.
It is currently accepted that transcript sequence plays a

large role in driving transcript localization. Experimental
studies have shown that RNA binding proteins (RBPs) typ-
ically interact with either primary sequence motifs or sec-
ondary structures to guide localization (Ryder and Lerit
2018). Since secondary structure is itself largely deter-
mined by primary sequence (Capriotti and Marti-Renom
2010), both localization mechanisms ultimately depend
on the transcript sequence. Additional studies have identi-
fied Alu repeats that drive localization of long RNAs in hu-
man cells (Lubelsky and Ulitsky 2018), along with other
sequence motifs that specifically drive nuclear localization
of long noncoding RNAs (lncRNAs) (Zhang et al. 2014),
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further highlighting the role of transcripts’ primary se-
quence in determining their localization.

Consequently, several works use transcript sequence
and/or sequence-derived features to computationally
model RNA localizationpatterns.Most of theseworks focus
on predicting broad nuclear versus cytoplasm localization.
For example, deepLncRNA predicts nuclear versus cyto-
plasmic localization of lncRNAs with a neural network that
considers k-mer features, the presence of RBP sequence
motifs, and genomic loci information (Gudenas and
Wang 2018). Recent approaches, such as RNATracker,
aim to predict localization to multiple sites by applying
complex neural networks to the transcript sequence, which
may be further annotated with computationally inferred
secondary structure (Yan et al. 2019). Measures of splicing
activity have been leveraged inmodels predicting localiza-
tion as well (Zuckerman and Ulitsky 2019). Other related
works like lncLocator focus on predicting localization of a
subclass of RNA corresponding to lncRNAs (Cao et al.
2018).

Despite recent progress, relatively little is known about
sequence factors that drive localization to more specific
cellular compartments—beyond simple nucleus versus cy-
toplasm—for RNA broadly. Moreover, of the aforemen-
tioned works, only RNATracker provides a meaningful
attempt at model interpretation in an effort to relate its
performance to biological mechanisms. As the promise
of large data sets, in biology or otherwise, often lies be-
yond simply building a model, but in the insights gained
through understanding the nuances of that model, this
lack of focus on model interpretation represents a missed
opportunity to elucidate the biological mechanisms un-
derlying localization.

We aim to address these challenges in this paper. We le-
veraged the recently developed APEX-seq technology
(based on proximity biotinylation of endogenous RNAs)
and data (Fazal et al. 2019) to develop a new model,
RNA-GPS, that can predict transcript localization for eight
different localizations simultaneously. This is the first meth-
od that can predict such highly granular RNA localization,
to the best of our knowledge. RNA-GPS incorporates
biological knowledge in its design and is directly interpret-
able. We demonstrate that RNA-GPS predicts localization
more accurately compared to several neural network-
based approaches, which are also more challenging to in-
terpret (Ghorbani et al. 2019; Gilpin et al. 2019). We pre-
sent evidence that RNA-GPS not only achieves strong
performance but does so by learning meaningful colocal-
ization patterns. The results of our interpretation methods
consistently implicate splicing, splicing factor proteins,
and the effects of splicing as factors in transcript
localization.

RNA-GPS contributes to multiple types of analysis. Its
prediction framework quantifies how much subcellular lo-
calization information is contained in different parts of

the RNA. This suggests interesting biological insights.
For example, we find that the localization signal concen-
trates around the 3′-UTR and splicing motifs. RNA-GPS
also enables researchers to carry out in silico perturbations
to estimate how certain RNA sequence modifications alter
localization preference. This leads to new biological hy-
potheses and can even help design synthetic transcripts
with prescribed localization tendencies. Similar types of
in silico analysis have recently been shown to be powerful
applications of machine learning in other areas of geno-
mics (Zou et al. 2019). Finally, RNA-GPS broadens the
scope of RNA subcellular analysis by predicting localiza-
tion in new sequences and in new environments, where ex-
perimental data is not currently available.

RESULTS

RNA-GPS predicts the localization of an RNA transcript to
eight subcellular compartments—the cytosol, endoplas-
mic reticulum, mitochondrial matrix, outer mitochondrial
membrane, nucleus, nucleolus, nuclear lamina, and nucle-
ar pore (Fig. 1A). For each transcript, RNA-GPS creates a
set of features by first segmenting the transcript sequence
into the 5′ untranslated region (UTR), coding sequence
(CDS), and 3′-UTR, and then quantifies the length-normal-
ized k-mer frequencies within each, for k equals to 3, 4, and
5 (Fig. 1C). This featurization method critically captures im-
portant spatial information regarding where in the tran-
script a k-mer is present. RNA-GPS then predicts the
probability that the transcript localizes to each of the eight
compartments using a random forest model. Note that
transcripts often localize to multiple compartments
(Supplemental Fig. S1C,D), and hence we make an inde-
pendent prediction for each compartment.

RNA-GPS accurately predicts localization to the
eight subcellular compartments

We trained RNA-GPS to predict these eight localizations
using a data set of n=3660 transcripts derived from
APEX-seq results measuring transcript localization in hu-
man HEK293T cells (Fazal et al. 2019). Most (but not all)
of our transcripts are protein coding (Supplemental Fig.
S1E), and each localizes to one or more of eight subcellular
compartments: cytosol, endoplasmic reticulum,mitochon-
drial matrix, outer mitochondrial membrane, nucleus, nu-
cleolus, nuclear lamina, and nuclear pore. The first four
of these localizations are cytoplasmic, whereas the latter
four are nuclear (Fig. 1A), and the proportion of transcripts
localizing to each compartment is shown in Figure 1B. We
split this data set into training (80%, n=2928), validation
(10%, n=366), and test (10%, n=366) sets. The validation
set was used for model architecture and hyperparameter
tuning, and the test set was used to perform a final evalu-
ation; all subsequent results and interpretations in the
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primary text are reported on the test set (and in some cas-
es, with additional cross-validation).
RNA-GPS achieves an overall area under the receiver

operating characteristic curve (AUROC) of 0.77 and an
area under the precision-recall curve (AUPRC) of 0.49 on
the held-out test transcripts (Fig. 2A). RNA-GPS’s perfor-
mance is highly consistent when performing 10-fold cross
validation (Supplemental Fig. S4C) and is also consistent
across a range of transcript lengths (Supplemental Fig.
S4E). To ensure that the prediction performance was not
artificially inflated by sequence similarity across train and
test sets, we removed all test sequences with significant
similarity to training sequences according to BLAST
(Altschul et al. 1990) (n=110), and found a very similar
overall AUROC of 0.75 and AUPRC of 0.43 on the remain-
ing sequences (n=256). For individual compartments,
RNA-GPS also achieves consistently high AUROC and ac-
curacy values (Fig. 2B).
To contextualize RNA-GPS’s performance, we per-

formed several additional analyses. First, we compared
RNA-GPS to a previous state-of-the-art method, deep-
LncRNA (Gudenas and Wang 2018), which we adapted,
reimplemented, and retrained (see Materials andMethods

section). Since deepLncRNA can only
predict binary nuclear versus cytoplas-
mic localization, we “collapsed” and
retrained RNA-GPS to predict this bi-
nary output as well. On this simplified
task, RNA-GPS substantially outper-
forms deepLncRNA with an AUROC
of 0.85 versus 0.74, as evaluated on
the test set (Fig. 2C; Supplemental
Fig. S3A). RNA-GPS also outperforms
deepLncRNA’s original reported test
set AUROC of 0.787 (Gudenas and
Wang 2018). This shows that RNA-
GPS’s design inherently surpasses
that of previous approaches, even on
relatively simple localization predic-
tion tasks.

We then sought to contextualize
the eight-compartment localization
performance of RNA-GPS using a sim-
ple baseline (“Baseline” in Fig. 2A).
For this, we trained a random forest
classifying binary nuclear versus cyto-
plasmic localizations and combined
its predictions with random sublocali-
zations to nuclear and cytoplasmic
compartments. This baseline reflects
the performance of a model that is ca-
pable of distinguishing nuclear from
cytoplasmic sequences, but not
much else. The performance of this
baseline is substantially worse than

RNA-GPS though it does significantly outperform a purely
random classifier. This demonstrates that predicting fine-
grained transcript localization is a nontrivial extension of
nuclear versus cytoplasmic prediction, and one that
RNA-GPS successfully learns.
Next, we benchmarked several additional machine

learningmodels—state-of-the-art convolutional and recur-
rent algorithms, as well as other tree-based methods. We
trained and tested each of these methods on the same
multilocalization data set as RNA-GPS. We adapted
RNA-GPS’s segment-wise featurization for the boosted
tree and Basset-3 models, in hopes of teasing apart the im-
pact of featurization versus modeling strategies. RNA-GPS
significantly outperforms all evaluated deep learning
based approaches, likely because its featurization strategy
elegantly captures local sequence patterns in a way that is
largely agnostic of transcripts’ highly variable sequence
lengths (Supplemental Fig. S1B)—an intrinsic property of
RNA transcripts that deep learning networks often struggle
with. The boosted tree model, consisting of eight individ-
ual boosted trees each trained to predict localization to
one compartment, achieves the most comparable perfor-
mance. It is also interesting to note that Basset-3, with its

BA

C

FIGURE 1. Summary of the RNA localization data and RNA-GPS. (A) RNA-GPS is trained on
APEX-seq data which localizes transcripts to eight subcellular compartments. Localizations
considered cytoplasmic lie within the green cytoplasmic region, and nuclear localizations lie
within the red nuclear region in the upper left. (B) The number of positive transcripts for
each localization, as well as the corresponding proportion. In total, there are n=3660 tran-
scripts. (C ) Schematic of RNA-GPS workflow. The algorithm first partitions the sequence into
the 5′ untranslated region (UTR), CDS, and 3′-UTR. For each segment, we generate a k-mer fea-
turization for k=3, 4, 5 (left), which is then used as input to a random forest that outputs a vector
of predicted probabilities of localization to each compartment that need not sum to 1 (right).
The orange arrows trace a possible path through the random forest.
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segment-aware featurization, outperforms the default
Basset implementation, which lends support to the effec-
tiveness of our featurization strategy. We further evaluated
the boosted tree model (highest performing in-house
competitor), RNATracker (highest performing existing
model), and RNA-GPS across cross-validation folds
(Supplemental Fig. S4C). We found that while RNA-GPS
and the boosted tree both perform consistently well across
folds, RNATracker exhibits large variability in its perfor-
mance, likely due to overfitting.

We can go beyond summary statis-
tics like AUROC to show that RNA-
GPS better captures true biological
signal, compared to the aforemen-
tioned boosted tree. By clustering
cellular compartments based on
colocalization patterns, we see that
RNA-GPS successfully recapitulates
true colocalization patterns (Fig. 2D).
Examining the hierarchical clustering
of cellular compartments based on
observed colocalizations (left), we
see that the first split separates nuclear
and cytoplasmic localizations, a dis-
tinction concordant with biological
intuition. Hierarchical clustering of
RNA-GPS’s predictions (center) mirrors
this split, but clustering the boosted
tree’s predictions incorrectly separates
the cytosol and nuclear pore from their
cytoplasmic and nuclear relatives
(right). Furthermore, RNA-GPS fully
reproduces the ground truth relation-
ship between all eight compartments,
even past the initial nuclear/cytoplas-
mic split. Quantifying this difference,
RNA-GPS’s localization clustering has
a Robinson-Foulds distance of 0—
which is optimal—compared to the
true clustering, whereas the boosted
tree clustering has a Robinson-Foulds
distance of 4. Across all cross-valida-
tion folds, we see that RNA-GPS
achieves comparable or better dis-
tance on 80% of the folds compared
to the boosted tree (Supplemental
Fig. S4D). This suggests that RNA-
GPS successfully learns localization
patterns across multiple cellular local-
izations, likely as a consequence of
having a single, unified internal repre-
sentation in its model.
Given the apparent importance of

the distinction between cytoplasmic
and nuclear compartments, we also

experimented with tiered models that incorporate this
separation as a “biological prior.” We did this by training
a random forest predicting cytoplasmic and nuclear local-
ization and combined its predictions with two subsequent
random forest models, one trained only to predict cyto-
plasmic sublocalizations and one trained only to predict
nuclear sublocalizations, thus mimicking the presumed hi-
erarchical localization process. This is similar to the afore-
mentioned baseline model, except with trained models
for sublocalization instead of randompredictors. We found

BA

C

D

FIGURE 2. Summary of RNA-GPS prediction results. (A) Test performance for RNA-GPS and
several additional models we developed. RNA-GPS exhibits the best performance for both
overall AUROC and AUPRC. See Supplemental Figure S4C for cross-validation results, and
Materials and Methods section for detailed description of each model. (B) Detailed perfor-
mance breakdown of RNA-GPS on each of eight different localizations in the test set.
AUROC is consistently high, while there is more variance in AUPRC; these curves are shown
in Supplemental Figure S4A,B. (C ) Heatmaps visualizing the output of RNA-GPS (center)
and deepLncRNA (right) on test data for binary nuclear/cytoplasmic localization prediction,
where each row represents one of 916 test set genes. The left plot shows the ground truth col-
ored by (clipped) log2 fold changes normalized to [0, 1]. For RNA-GPS, we see clear regions of
nuclear/cytoplasmic predictions, whereas the vast majority of deepLncRNA’s predictions are
“ambivalent” with only small differences separating positive and negative predictions.
(D) Hierarchical clustering of eight localization compartments using colocalization patterns.
Plots are colored to indicate predominantly nuclear (red) or cytoplasmic (blue) subtrees and lo-
calizations. Note that although the boosted tree achieves high AUROC and AUPRC, it discor-
dantly separates the cytosol and nuclear pore from the cytoplasmic/nuclear subtrees,
respectively. RNA-GPS exactly mirrors the ground-truth clustering, suggesting that its perfor-
mance is achieved via learning a biologically relevant understanding of localization patterns.
This pattern is consistent across cross-validation folds (Supplemental Fig. S4D).
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that this “biological prior” approach did not outperform
RNA-GPS. This suggests that RNA-GPS is already learning
the biological distinction between nuclear and cytoplas-
mic localizations without explicit encouragement.
Another known biological property of transcript localiza-

tion is the mechanistic role of RNA binding proteins (RBPs)
in regulating this process (Ryder and Lerit 2018)—a prop-
erty included in the featurization schemes of models like
DeepLncRNA (Gudenas and Wang 2018). We attempted
to improve RNA-GPS’s performance by augmenting our
feature space with similar features quantifying enrichment
of known RBP binding sites but did not see an improve-
ment (Supplemental Fig. S2). This suggests that RNA-
GPS has already learned signals correlated with these
motifs, despite having access to only relatively short, unor-
dered k-mer features.
Finally, we evaluate how well RNA-GPS generalizes to

cell types other than the HEK293T cell line that it was
trained on (Supplemental Fig. S3B). As most publicly avail-
able transcript localization data sets distinguish only
between nuclear versus cytoplasmic localizations, we eval-
uated the reduced version of RNA-GPS predicting this bi-
nary outcome. Given n=7641 localized transcripts
measured on the HeLa-S3 cell line (ENCODE Project Con-
sortium 2012), RNA-GPS achieves an AUROCof 0.83. Sim-
ilarly, on a set of n=6359 localized transcripts measured
from the K562 cell line (ENCODE Project Consortium
2012), RNA-GPS achieves an AUROC of 0.82. Both these
values are quite similar to the AUROC of 0.85 on the
held-out APEX-seq test set, suggesting that RNA-GPS
and its predictions can generalize to cell types that it has
never before encountered.
Overall, we see consistent evidence of RNA-GPS’s

strong performance across a variety of RNA localization
prediction tasks and contexts. RNA-GPS outperforms pri-
or, often highly complex models, and does so without in-
corporating prior biological knowledge like known RBP
binding sites or assumptions regarding hierarchies in local-
ization. RNA-GPS manages to even recapitulate colocali-
zation patterns, suggesting that it is recognizing true
biological signals based on sequence features alone.

Segment-level interpretation of RNA-GPS

RNA-GPS featurizes the 5′ UTR, CDS, and 3′-UTR transcript
segments separately (see Materials and Methods section).
This scheme naturally lends itself to an ablation study eval-
uating the relative impact of each segment on localization,
wherewe zero-out each segment’s corresponding features
and observe, for each transcript, changes to our eight pre-
dicted localization probabilities (without retraining), the re-
sults of which are shown in Figure 3A. These P-values are
computed using paired t-tests that separately evaluate
the impact to positive (exhibiting significant enrichment)
and negative (no significant enrichment) localizations (to

avoid Simpson’s paradox). Overall, ablating the 5′ UTR
has no significant effect, while ablating the CDS or
3′-UTR both result in a significant drop in model perfor-
mance (α=0.05), both in causing the positive localizations
to receive lower, less confident scores and the negative lo-
calizations to erroneously receive higher scores. For each
of the three segment ablations, we also evaluated its im-
pact to RNA-GPS’s overall performance in predicting local-
ization to each compartment. These results are shown in
Figure 3B and echo the importance of the CDS and
3′-UTR.
For further validation, we also performed the reverse

study—training and evaluating variants of RNA-GPS using
only features from the 5′ UTR, CDS, or 3′-UTR—and ob-
served similar results. TheAUROCandAUPRC for themod-
els trained on each segment is shown in Supplemental
Figure S5B. We see that the model trained using features
derived from the 5′ UTRhadoverall performance far poorer
than those trained using only the CDS or the 3′-UTR. These
results strongly indicate that not only dodifferent segments
of the transcript indeed play different roles in localization,
but that the 5′ UTR appears to play the least role in driving
this process, corroborating prior studies emphasizing the
role of the 3′-UTR (Mayr 2018), and supporting our choice
to featurize each segment separately.

Motif-level interpretation of RNA-GPS

We take advantage of RNA-GPS’s tree-based architecture
to identify important k-mer features and subsequently as-
semble them into human-comprehensible sequence mo-
tifs (see Materials and Methods section and Fig. 4A).
From an original feature space of 4032 features, we iden-
tified ∼150–300 k-mer features important for predicting
each localization (exact counts shown in Fig. 4B). After re-
assembling these k-mers into motifs and annotating them
with known RNA binding protein (RBP) binding sites, we
found several hits for each localization (Fig. 4B,C). We
find that a majority of these localization-driving RBPs
have been previously implicated in splicing. Using
DAVID (version 6.8) (Huang et al. 2009a,b) to match these
RBPs against biological process terms produces, as a top
hit, “mRNA splicing, via spliceosome” with an associated
P=3.6×10−15, along with several other significant splic-
ing-related terms. These splicing-oriented results are ro-
bust and reproducible across different choices of
hyperparameters used in the k-mer assembly methodolo-
gy (Supplemental Fig. S6). We see a few RBPs that are par-
ticularly highlighted (with more than 10 of their binding
sites occurring across our reconstructed motifs): HuR,
PTBP1, RBM4, and TIA1, all of which have been experi-
mentally implicated in splicing. HuR, or Hu antigen R,
has been found to help stabilize transcripts and directly fa-
cilitate their transport (Tran et al. 2003; Doller et al. 2008),
but more importantly has also been found to play a role in
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regulating transcript splicing (Izquierdo 2008; Akaike
et al. 2014). PTBP1, or polypyrimidine tract binding protein
1, regulates mRNA splicing during neuronal differentiation
(Yap et al. 2012; Vuong et al. 2016). RBM4 (RNA binding
motif protein 4) couples with SRSF1, which is also identi-
fied by our interpretation method albeit at a lower en-
richment, to form an antagonistic splicing regulation
mechanism (Chang and Lin 2019). TIA1 is a well-known
splicing factor (Del Gatto-Konczak et al. 2000) that might
even auto-regulate splicing of its own isoforms (Le
Guiner et al. 2001).

In order to determine whether these reconstructed mo-
tifs were truly probing the internal logic of RNA-GPS, or

simply “lucky” artifacts of the interpretation and/or model-
ing methods, we ablated occurrences of the motifs we
identified by replacing them with “N” bases (Fig. 5A).
Making 385 such ablations spanning our test set tran-
scripts, we found a consistent drop in classifier AUROC
for all eight localizations. To contextualize the magnitude
of this performance drop, we constructed a baseline of
1000 different random sequence ablation experiments,
each containing an average of 426 individual sequence ab-
lations with similar properties (e.g., length) to our original
motifs. We found that ablating the identified motifs result-
ed in a more significant performance drop than nearly
96.6% of random ablations based on t-statistics (Fig. 5B).

B

A

FIGURE 3. Summary of segment ablation results. (A) Barplots showing negative-log P-values for observed changes in model predictions upon
ablating each segment, computed using paired t-tests for positive and negative localizations, on the test set. The significance level of α=0.05 is
shown by the dotted line. Bars that exceed this indicate that the associated ablation causes a significant impact to RNA-GPS’s ability to correctly
predict the corresponding (positive or negative) localization. Ablating the 5′ UTR does not result in any significant changes in positive or negative
predictions across the board, whereas ablating the CDS and 3′-UTR both result in significant losses in the model’s confidence in correct/positive
localizations, and significant (erroneous) gains in our model’s predictions for incorrect/negative localizations. Exact P-values can be found in
Supplemental Figure S5A. (B) Barplots showing per localization model performance upon ablating each segment of the transcript, compared
to no-ablation, full sequence baseline. We see that ablating the CDS and 3′-UTR both result in consistent drops in performance, while this is
not the case for the 5′ UTR. Asterisks indicate ablations that cause significant changes in model predictions (i.e., having a significant impact to
compartment-wise AUROC or AUPRC, respectively). This shows that the example-level impact shown in A also manifests when evaluating our
data set holistically.
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Thus, the P-value associatedwith identifying a set of motifs
as impactful as our set by chance is P=0.034. This sug-
gests that the specific motifs we isolated significantly influ-
ence RNA-GPS’s localization predictions, much more so
than a randomly chosen set of RBP motifs would.
We used a second, computationally complementary in-

terpretation of RNA-GPS to further validate our findings.
Rather than piecing together sequence k-mers and anno-
tating them using RBPs’ position weighted matrices
(PWMs), we directly ablate all known RBP PWMs, observ-
ing which RBPs have the largest impact (see Materials
and Methods section). The process is conceptually similar
to that shown in Figure 5A, except using all RBP PWMs in-
stead of assembled sequence motifs. Doing so, we de-
rived a list of 55 RBPs whose individual ablation resulted
in weakened localization signals (Supplemental Fig. S7A).
As before, DAVID returns a top hit of “mRNA splicing,
via spliceosome” with an associated P-value of 5.2 ×

10−19. We see the emphasis on HuR
recapitulated here, along with an em-
phasis on one of aforementioned
RBM4’s related proteins, RBM5. In ad-
dition, there appears to be a strong
enrichment for RBPs in the serine
and arginine rich splicing factor
(SRSF) proteins, especially SRSF1,
SRSF10, and SRSF9, as well as for
LIN28A, another well-known splicing
factor (Yang et al. 2015). These similar
splicing-focused results obtained
from two different interpretation tech-
niques suggest that RNA-GPS learns
to use splicing factor binding sites to
inform its predictions.

To verify the generalizability of our
observations, we perform the same
PWM ablation study on the GRU neu-
ral network model. GRU uses the orig-
inal nucleotide sequence instead of
k-mers, and thus represents a very dif-
ferent approach to predicting locali-
zation. Despite the different features
used by RNA-GPS and GRU, ablating
the GRU model recapitulates the em-
phasis on splicing factors, particularly
highlighting the HuR and SRSF RBPs,
and with DAVID reporting the same
top hit of “mRNA splicing, via spliceo-
some” with P=2.1×10−31 (Supple-
mental Fig. S7B). While this does not
directly evaluate RNA-GPS, this does
corroborate the sequence patterns
that RNA-GPS appears to be learning,
suggesting that this is indeed a signal
useful for predicting localization.

We investigated whether the computationally identified
splicing motifs from RNA-GPS directly correlate with ex-
perimental data on localization. We focused on the inter-
section of motifs identified by both interpretations of
RNA-GPS (n=11, requiring intersected motifs to have
been identified with respect to the same transcript part
and localization compartment). We used each to stratify
the APEX-seq transcripts into two categories: those that
contained the motif in the prescribed transcript region (ac-
cording to the samemethodology as in the ablation study),
and those that did not. Using a Chi-squared test to com-
pare localization patterns across these groups, we found
that in all cases, presence of the motif was significantly
associated with increased localization (Supplemental
Fig. S8). This further supports the finding that the splic-
ing-based motifs identified by RNA-GPS are correlated
with localization, though there are likely to be other
determinants.

B

A

C

FIGURE 4. Summary of motif interpretation results. (A) Methodology for reconstructing con-
sensus motifs (green) from k-mer features that have been flagged as significant (blue).
Significant k-mer features are first aligned back to a transcript sequence, and neighboring k-
mers are then computationally “ligated” to create candidate motifs (gray). By doing this for
many transcript sequences, we create many candidate motifs (gray), which are collectively
used to construct a multiple sequence alignment that lets us isolate conserved consensus se-
quence motifs (green). (B) Table of counts showing the number of significant features and re-
sulting consensus motifs they generate for each localization, as well as the number of known
RNA binding protein binding motifs that occur within those consensus motifs. These specific
RBPs are then visualized inC; RPBs with only one hit are omitted for clarity. Counts in this heat-
map represent the number of RBP binding sites found in the motifs driving localization to each
compartment. RBPs experimentally implicated in splicing regulation are in bold. Overall, the
RBPs we identified significantly enrich the “mRNA splicing, via spliceosome” ontology term
with P=3.6×10−15.

An interpretable model of RNA localization

www.rnajournal.org 857

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.074161.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.074161.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.074161.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.074161.119/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.074161.119/-/DC1


Validating RNA-GPS’s predictions with retained
intron isoforms

Experimental data on retained intron sequences provides
a good opportunity to further test RNA-GPS’s predictions.
We took n=1434 APEX-seq transcripts with measurable
intron retention in the nucleus, using rMATS (Shen et al.
2014) to identify these differential splicing events. We
then evaluated the binary nucleus/cytoplasm version of

RNA-GPS on the intron-free isoforms of these transcripts,
compared to its predictions on the isoforms with retained
introns (considered to be part of the CDS for featurization).
We found that without retained introns, 69.3% of sequenc-
es were predicted to be nuclear, whereas with retained in-
trons, this proportion rose to 80.4%. This increase mirrors
experimental observations whereby retained introns corre-
spond to greater nuclear localization (Yap et al. 2012;
Braunschweig et al. 2014; Yoshimoto et al. 2017).

BA

C

D

FIGURE 5. Evaluating statistical and biological significance of the motifs identified in Figure 4. (A) Shows procedure for taking consensus mo-
tifs (from Fig. 4C) and ablating them in silico, which allows us to evaluate how important they are for predicting localization. The motif (green) is
scanned across each transcript sequence (blue). Each match is ablated by replacing with “N” bases (red), and we compute the difference in
predicted probabilities. We use this methodology to construct B, which shows how important the motifs from Figure 4C (black line) are relative
to ablating random motifs (blue distribution). We reject the null hypothesis that we are assembling and identifying random motifs with P=
0.034; this suggests that the motifs we identified containing splicing-focused RBPs are relevant for predicting localization. To further validate
RNA-GPS, we asked whether the nucleus–cytoplasm version of RNA-GPS could distinguish different splice isoforms of the same transcript,
specifically those with and without retained intron (RI) sequences. These results are shown in C. Each point represents a single transcript’s
predicted nuclear localization with and without RI; left and right subplots depict transcripts localizing to the cytoplasm or nucleus according
to their RI-free isoform, respectively. Adding RI increases RNA-GPS’s predicted nuclear localization, especially for transcripts originally mea-
sured to be localized to the cytoplasm (Supplemental Fig. S9, left subplot). (D) An example of this behavior. DDX39B predominantly localizes
to the cytosol, but has an isoform with retained introns (blue boxes) that localizes to the nucleus, which is identified by APEX-seq and correctly
predicted by RNA-GPS.
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Furthermore, this increase in RNA-GPS predicted nuclear
localization was most pronounced in transcripts previously
predicted and/or measured to be cytoplasmic (Fig. 5C;
Supplemental Fig. S9). Transcripts like DDX39B (Fig. 5D)
show that in the original APEX-seq data, there are substan-
tial differences in splicing patterns for transcripts localizing
to different regions of the cell—differences recapitulated
by RNA-GPS. Recall that RNA-GPS normalizes its features
by transcript length, and thus responds directly to shifts in
sequence composition (and not to inflated k-mer counts
from longer transcripts); this, combined with the fact that
RNA-GPS was not exposed to any intronic sequences dur-
ing its training, makes this analysis a strong experimental
validation of the algorithm’s inference on the role of splic-
ing for nuclear localization.

DISCUSSION

Here we present RNA-GPS, a computational model capa-
ble of predicting, simultaneously, an RNA transcript’s lo-
calization to eight different subcellular localizations given
only sequence-based k-mer information. While RNA-GPS
provides unprecedented granularity in predicting localiza-
tion, it also outperforms prior computational models of
localization on simpler nuclear/cytoplasm prediction.
RNA-GPS’s success can largely be attributed to a featuriza-
tion strategy that leverages natural segmentation of tran-
scripts to encode spatial sequence information without
resorting to complex machine learning models that are of-
ten relatively difficult to train and interpret. As a result,
RNA-GPS sets a new benchmark for both model perfor-
mance and interpretability. We further show that, within
the scope of additional available data sets, RNA-GPS ap-
pears to generalize well to other cell lines, and thus may
be useful as a tool for predicting localization of yet unquan-
tified transcripts in a variety of cells.
The success of our model also highlights several key as-

pects regarding the biology of RNA transcript localization
within the cell. Notably, our ability to predict localization
based solely on k-mer features indicates that much of the
signal driving localization can be found within transcripts’
primary sequence. This echoes findings from prior compu-
tational works (Zuckerman and Ulitsky 2019) and indicates
some degree of modularity with regard to transcript local-
ization mechanisms in the cell. Furthermore, we showed
that within a transcript, localization signals are not evenly
distributed across the entire sequence but are rather con-
centrated about the coding sequence and 3′-UTR seg-
ments. Indeed, the relative importance of the 3′-UTR has
been documented in numerous studies (Sylvestre et al.
2003; Andreassi and Riccio 2009; Tushev et al. 2018;
Ciolli Mattioli et al. 2019). Put more generally, knowing
that a motif appears at all in a transcript is not sufficient
to predict its localization—where the motif appears is
also important.

In addition to predicting localization, we also subse-
quently applied various interpretation techniques to
RNA-GPS as a lens for understanding the precise mecha-
nisms driving localization. Specifically, we find one signal
consistently emphasized by RNA-GPS and corroborated
by interpretation of auxiliary models: the role of splicing
factors in subcellular localization. This phenomenon is fur-
ther highlighted by the fact that the addition of retained in-
trons to the transcripts substantially increased RNA-GPS’s
prediction for nuclear localization. This result is consistent
with previous experiments, where intron retention has
been found to result in nuclear retention of transcripts
(Yap et al. 2012; Braunschweig et al. 2014; Yoshimoto
et al. 2017). Similarly, Fazal et al. identified cases where dif-
ferent isoforms of the same transcript localized to different
regions, which is suggestive of the impact of splicing (Fazal
et al. 2019). Transcript splicing has been found to play a di-
rect role in localization of many transcripts, including
ESRP1 (Yang and Carstens 2017) and DROSHA (Link
et al. 2016), as well. In their computational localization
model, Zuckerman and Ulitsky found splicing efficiency
(i.e., the relative proportion of transcripts that have been
spliced) to be a predictor of nuclear versus cytoplasmic lo-
calization (Zuckerman and Ulitsky 2019). Compared to
these prior works, our results go further by suggesting
that the role of splicing goes well beyond binary nuclear/
cytoplasmic localization, influencing transcript targeting
to regions as specific as the nuclear lamina for example.
Such a splicing-driven paradigm, if truly responsible for

some degree of transcript localization, could have several
implications. Firstly, as splicing occurs early on in the pro-
cess of RNA biogenesis, its importance lends support to
the theory that localization is largely determined upon
transcript maturation. Furthermore, just as different exons
can be alternatively spliced to create different versions of
proteins, a similar underlying combinatorial process could
allow for highly complex and specific addressing of tran-
scripts using different combinations of address/zip codes.
Onemight even reasonably speculate that increased cellu-
lar diversification and increased cytotopic locations in dif-
ferent cell types might necessitate increasingly complex
splicing patterns, a correlation that has been noted and
reaches its apex in brain tissues (Pan et al. 2008).
In the broader scheme of RNA localization, it is impor-

tant to keep in mind that the splicing signal we have iden-
tified and discussed is likely but one of many pieces of the
puzzle. For example, given a localization signal (splicing-
related or otherwise), how do transcripts physically trans-
port to the correct localization? A popular notion is that
these transcripts are transported along the cytoskeleton
by motor protein complexes (Delanoue and Davis 2005;
Soundararajan and Bullock 2014). This raises the question
of what is actually signaling the recruitment and “address-
ing” of these complexes to go to the right places; in the
presumed context of splicing, might the combination of
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splice junctions and retained intron sequences contain
such information? Furthermore, since increased RNA tran-
script length has been observed to affect transcript degra-
dation (and thus their ability to accumulate and apparently
localize in a region) (Neymotin et al. 2016), how does vary-
ing transcript length induced by differential splicing inter-
act with transcript localization?

While our work makes strides in computational model-
ing of transcript localization, it is worth pointing out its
limitations, as well as additional angles for exploration.
Computational works, including this one, cannot compre-
hensively distill all underlying mechanisms; such model
interpretations should be viewed as hypotheses-genera-
tion for experimental follow-up and suggestive evidence,
not as definitive proof. One of the simplifications we
made was to represent each gene with a single, most high-
ly expressed transcript. The primary motivating factor for
this was that transcript-level expression quantification
was noisy, owing in part to poorly characterized isoforms.
This simplification may be hiding valuable sequence infor-
mation, especially information related to splice variants.
Additional featurization strategies, such as the inclusion
of secondary structure information, or features regarding
chemical modifications to RNA transcripts (Roundtree
et al. 2017) may also further improve model performance
and shed more light on the mechanisms of localization.
Our methodology for assembling k-mer features into con-
tiguous motifs is also a point of potential improvement and
could further sharpen our findings. An additional layer of
complexity is that RNA binding proteins themselves may
localize to different areas of the cell, thus influencing their
ability to interact with RNA transcripts in pre or post-splic-
ing states. Finally, while our interpretation focuses on iden-
tifying short motifs that are correlated with localization, it
would also be interesting to investigate larger sequence
motifs and interactions across the transcript that could im-
pact localization.

In summary, RNA-GPS is a computational model of
transcript localization that, when compared to existing ap-
proaches, provides more granular predictions of localiza-
tion while remaining a relatively simple, intuitive model.
We leverage the interpretability of RNA-GPS to probe bi-
ological mechanisms underlying transcript localization
and implicate splicing as possible mechanism driving lo-
calization. While splicing’s involvement in transcript local-
ization has been previously studied, we provide new
evidence suggesting that its role may be more important
than initially understood. We then discuss potential impli-
cations of a splicing-driven paradigm of localization. Our
work can lead to follow-up studies, both computational
and experimental, that further elucidate our understand-
ing of RNA transcript localization. Some of the methods
and modeling strategies we presented here may be
more generally applicable to other sequence analysis
problems.

MATERIALS AND METHODS

Data set

Our primary data set is drawn from the APEX-seq results produced
by Fazal et al. (2019). This data set measures localization of 20,852
transcripts at the cytosol, endoplasmic reticulum, mitochondrial
matrix, outer mitochondrial membrane, nucleus, nucleolus, nuclear
lamina, and nuclear pore. The first four of these localizations are cy-
toplasmic, whereas the latter four are nuclear (see Fig. 1A for illus-
tration). This data set provides an expression value for each
localization/transcript pair, which we then convert to a log2 fold
change score and corresponding adjusted P-value quantifying tran-
script enrichment at that cellular compartment compared to the rest
of the cell usingDESeq2 (Love et al. 2014) (version 3.9).Wedefine a
transcript to be significantly enriched at a cellular compartment if it
has a log2 fold change greater than 0, along with an adjusted P-val-
ue less than 0.05. Figure 1B lists the number of significantly en-
riched transcripts at each localization in our full data set; these
values are broken down for different data splits in Supplemental
Figure S1A. In cases where we have more than one transcript iso-
formmeasured for a givengene, we use themost abundant isoform
to simplify ourmodeling.We retain only transcripts with at least one
positive localization, which leaves 3660 significantly localized
genes/transcripts for our eight-way localization problem. These
transcripts are predominantly protein-coding; the exact proportion
of transcript types in our data set is shown in Supplemental Figure
S1E. Many of these transcripts have more than 1 localization
(Supplemental Fig. S1C,D); we thus formulate ourmachine learning
task as a multilabel prediction problem. For our binary cytoplasm
versus nucleus classification problem, this same process yields a
set of n=9155 APEX-seq transcripts that localize either to the nu-
cleus or cytoplasm, with approximately half the transcripts localiz-
ing to each. For processing ENCODE data, we follow an identical
process for computing differential expression and identifying signif-
icantly localized transcripts, which results in n=7641 transcripts for
the HeLa-S3 cell line and n=6359 transcripts for the K562 cell line.
For both these cell lines, approximately 25% of the transcripts are
also observed in our APEX-seq data set.

We do not include an explicit set of negative examples (i.e.,
transcripts with no significant localization). This is because it is dif-
ficult to definitively say that a transcript does not localize to any
compartments due to limitations inherent to the data. Thus, in-
stead of including transcripts with no significant localization to
any compartment, we use transcripts with significant localizations
to other compartments as negative examples.

Within the APEX-seq data sets, we reserve 10% of the data for
testing and 10% for validation, leaving 80% of the examples for
training. ENCODE data sets were only used for testing, and
thus were not split. As is common practice, we used the validation
set to tune modeling approaches and hyperparameters, and the
test set to perform a final evaluation and model interpretation.
When performing 10-fold cross-validation, we rotated our testing
and training folds such that data point was used exactly once as a
testing example, and exactly once as a validation example.

Featurization

The basis of our featurization scheme is k-mer featurization.
Canonically, k-mer featurization splits a sequence of length l
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into subsequences of length kwhere k≪ l, using a stride length of
1 (such that each k-mer subsequence overlaps k−1 bases with the
previous k-mer). Totaled k-mer counts are then normalized by the
total number of k-mer subsequences, such that the sum over the
feature vector equals 1. This normalization helps prevent input se-
quence length from drastically altering k-mer featurization, which
is especially important in our case given the large variability in
transcript lengths (Supplemental Fig. S1B).

We make several key modifications to the canonical k-mer fea-
turization scheme. Firstly, instead of using a single value of k, we
instead featurize using three different values of k∈ [3, 4, 5]. Sec-
ond, and perhaps more importantly, instead of featurizing the en-
tire transcript sequence at once, we isolate the 5′ untranslated
region (5′ UTR), coding sequence (CDS), and 3′ untranslated re-
gion (3′-UTR), and featurize each segment individually. This lever-
ages the biological intuition that the samemotifs can have varying
functionality basedon their location in a transcript. Priorworks also
suggest that different regions of the transcript play distinct roles in
localization, with many citing the 3′-UTR as a particularly key reg-
ulator of localization (Sylvestre et al. 2003;Mayr 2018). At the same
time, this segment-wise approachhelps restore some spatial infor-
mation regarding where motifs occur in a sequence, information
that is usually lost in canonical k-mer featurization approaches.
Overall, our featurization strategy produces 43+44+ 45 =1344
values for each of the aforementioned three transcript regions,
for a total of 1344×3=4032 features. A schematic of our featuri-
zation strategy is shown in left portion of Figure 1C.

Modeling

We built our model using Python 3.7.3 using the random forest
implementation from scikit-learn (version 0.21.3). We use a single
random forest model to predict eight probabilities, each corre-
sponding to the predicted likelihood that the transcript localizes
to that region (note that these probabilities need not sum to 1,
as localization to one compartment does not preclude localization
to others). Intuitively, using a single model encourages the model
to learn a single “understanding” of the data common to all local-
izations, hopefully resulting in a more general and biologically
meaningful model. Since we have a large feature space, we limit-
ed each tree to use only

��

n
√

features to avoid overfit, where n de-
notes the number of features. In addition, we performed
hyperparameter tuning over the number of estimators, tree crite-
rion, maximum tree depth, and minimum samples per leaf, with
the objective of maximizing the area under the receiver operator
characteristic (AUROC) on the validation set. For reference, a toy
illustration of a random forest is shown in the right portion of
Figure 1C. Combined with the aforementioned featurization
scheme, this completes RNA-GPS.

Additional reference models

All subsequentmodels, like RNA-GPS, predict eight probabilities,
one corresponding to each localization compartment, without re-
quiring that those probabilities sum to 1. Whenever possible, we
include models (or model variants) that also leverage the featuri-
zation-by-transcript-segment approach described above, in order
to better tease out the impact of modeling decisions versus fea-

turization decisions. The followingmodels are included to contex-
tualize performance of RNA-GPS relative to other approaches.
A biologically intuitive way to understand subcellular localiza-

tion is to frame it as a hierarchical process: A transcript might first
need to “decide” if it is to remain in the nucleus or export to the
cytoplasm, before subsequently localizing to compartments with-
in the nucleus or cytoplasm. We use this view of localization to
build our naive baseline model. Several works have previously
demonstrated the viability of predicting cytoplasmic versus nucle-
ar localization of RNA sequences (Gudenas and Wang 2018;
Zuckerman and Ulitsky 2019), so we start by training a random for-
est to predict nuclear and cytoplasmic localization using the same
4032-dimensional, transcript-segment-aware feature space, and
subsequently use a random uniform distribution U(0, 1) to predict
further localization within each general localization area. This es-
tablishes a “half-guessing” baseline for our models, a perfor-
mance level that indicates having learned nothing beyond
coarse nuclear and cytoplasmic localization.
As an additional tree-based approach, we used boosted trees

to model our localization problem. This model utilizes the same
featurization as RNA-GPS. Since the implementation of boosted
trees provided by XGBoost (Chen and Guestrin 2016) (version
0.82) does not support multilabel predictions, we trained eight in-
dependent boosted tree models, one corresponding to each lo-
calization. The resulting model provides a reference not only for a
different tree methodology, but also for comparing the effective-
ness of having eight independent models versus the single-mod-
el approach adopted by RNA-GPS.
We also benchmarked several neural network model architec-

tures, all of which were implemented using PyTorch (version
1.0.1). The neural network models we tried can be categorized
into fully connected, convolutional, and recurrent approaches.
Fully connected networks are, as their name implies, a series of
fully connected layers. Convolutional networks learn sets of “re-
ceptive fields,”which are applied across the input to produce pre-
dictions; in the context of sequence analysis, these receptive
fields are similar to position weight matrices (PWMs) that are
scanned across the sequence. The architecture of convolutional
models often requires fixed-size inputs, though strategic usage
of pooling layers can enable processing of variable-sized inputs.
Recurrent networks are a class of models specifically designed
to handle an ordered input of information, whether that is a sen-
tence or a sequence of nucleotide bases. Recurrent networks are
designed from the ground up to handle variable sized inputs.
For fully connected models, we adapted the featurization and

architecture approaches of deepLncRNA (Gudenas and Wang
2018). This architecture does not make any design choices specif-
ic to lncRNA, and thus should generalize well beyond long non-
coding RNA transcripts. Specifically, we apply the same k-mer
featurization they described with k∈ [2, 3, 4, 5] combined with
an RBP PWM hit count featurization using the set of RBP PWMs
described by Ray et al. (2013), creating a total feature space of
1553 features (versus 1582 for deepLncRNA itself). We exclude
deepLncRNA’s features describing genomic position, as some
of these labels are highly correlated with our transcript localiza-
tions. We applied the same training procedure as described in
the original paper: using the same dropout rates, using stochastic
gradient descent, coupled with L1 and L2 regularization,
with hyperparameters tuned to optimize accuracy on the valida-
tion set.
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For convolutional models, we adopt the Basset architecture, as
it has seen much success in understanding sequence motifs in
DNA (Kelley et al. 2016) and theoretically is capable of learning
nucleotide sequence motifs in general. The vanilla Basset archi-
tecture requires a fixed-length input of one-hot encoded nucleo-
tide bases, and we give it the trailing 1000 bp on the 3′ end of
each transcript sequence. We also develop several in-house var-
iants of this architecture. Just as we designed RNA-GPS to lever-
age information across the 5′ UTR, CDS, and 3′ UTR, we likewise
developed a derivative of Basset that consumes the trailing 250
bp of those same three transcript segments, for a total of 3 ×
250=750 input bases; we call this approach Basset-3. We also
modified Basset to process arbitrary-length input sequences by
introducing a pooling layer to aggregate information across the
entire sequence, and by increasing the number of kernels learned
by the model to compensate for the resulting loss in positional in-
formation; we call this approach Basset-pool. We trained all of our
convolutional models using the Adam optimizer (Kingma and Ba
2014) with a learning rate of 0.001, using binary cross entropy as
our loss function. Vanilla Basset and Basset-3 were trained using
minibatches of 64 examples, while Basset-pool was trained using
single examples.

For recurrent models, we experimented with long short-term
memory (LSTM) and gated recurrent unit (GRU) style architec-
tures, both of which consume raw nucleotide sequences of vari-
able length. Both LSTMs and GRUs feature a “gating”
mechanism that helps networks more easily handle long inputs
(Chung et al. 2014). For the LSTM, we use an embedding layer
of 32 dimensions, followed by a LSTM layer with 64 dimensions,
followed by a fully connected layer mapping the 64 dimensions
to our eight-dimensional output space. For the GRU, we use an
embedding layer of 32 dimensions, followed by two GRU layers
with 64 hidden dimensions, followed by a fully connected layer
and sigmoid activation to map the 64 hidden dimensions to our
eight-dimensional output space. Our recurrent models were
trained using stochastic gradient descent with a learning rate of
0.001, using binary cross entropy as our loss function. No batch-
ing was used in training for either architecture, as we found that
batching resulted in inferior performance on the validation set.

Finally, we reimplemented RNATracker (Yan et al. 2019), a prior
work that merges convolutional and recurrent LSTM layers, along
with an attention layer. We closely followed the authors’ Keras-
based implementation to recreate, in PyTorch, the “canonical”
RNATracker network architecture with a fixed-size input of 4000
bases from the 3′ end of the input sequence (shorter sequences
are 0-padded), but used a sigmoid activation for our final output
rather than a softmax activation, as this better matched our multi-
label classification problem. Similarly, while the original authors
used Kullback–Leibler (KL) divergence for their loss function, we
use binary cross-entropy to fit our multilabel context. We also in-
corporated RNATracker’s featurization scheme, which encodes
“N” bases as a vector of [0.25, 0.25, 0.25, 0.25] rather than a vec-
tor of [0, 0, 0, 0].

Model interpretation via feature importance

We performed feature ablation studies to evaluate feature impor-
tance for tree-based models. Using the test set, we take each fea-
ture, shuffle its values across examples, and evaluate the

difference in AUROC for each localization. Shuffling preserves
the distribution of each feature’s values but removes the correct
correspondence between examples and that feature’s value.
We repeat this procedure 15 times to calculate a mean, standard
deviation, and z-score for each feature’s impact to each localiza-
tion’s AUROC. We consider z-scores z≤−2 to denote significant
features, that is, features that carry significant localization signals
whose loss has a deleterious effect on the model’s ability to cor-
rectly predict localization.

Given a set of “significant” k-mer features, we then tile these
short sequences back to each transcript, linking together consec-
utive (i.e., being separated by 1 bp or less) k-mers together to
form longer sequences, which we call candidate motifs. Recall
that we featurize the 5′ UTR, CDS, and 3′-UTR separately; tiling
and linking together features is done separately as well, where
a k-mer found to be “significant” for the CDS is only tiled against
CDS regions. We then use these candidate motifs to construct a
multiple sequence alignment (using ClustalO version 1.2.4
[Sievers et al. 2011]), and retain only subsequences consistently
found across ≥3 candidate motifs and are at least 7 bp long.
These conceptually represent motifs that are consistently ob-
served across multiple examples. Figure 4A illustrates this pro-
cess. Finally, we use TomTom (version 5.0.2, [Gupta et al. 2007])
to annotate these motifs with known RBP binding sites, using a
database of 102 such RBP PWM matrices (Ray et al. 2013). Note
that a single motif may contain multiple RBP binding sites.

We can then evaluate the importance of these sequence motifs
by ablating them and observing the difference in localization pre-
dictions. This ablation is done by replacing exact matches to the
motif with “N” bases and observing the difference in model out-
put, as illustrated in Figure 5A. As we previously discussed, a lack
of significant localization does not necessarily indicate lack of lo-
calization; thus, we only track differences in true positive localiza-
tions when performing these ablations in order to obtain a cleaner
signal.

Model interpretation via motif ablation

We also interpret models by ablating RBP PWMs, using the same
set of PWMs as we did for annotation (Ray et al. 2013). Note that
while the previously discussed motifs are assembled from k-mers,
and do not account for positional variation, PWMs are precom-
puted and do account for positional variation. The process for
PWM ablation is very similar to that of motif ablation: We scan
each PWM across each transcript, ablate high-scoring PWM
hits, and observe the impact tomodel prediction. To findmatches
between the PWM matrix of probabilities and a given transcript,
we adapt the methodology proposed by Gudenas and Wang
in their DeepLncRNA model (Gudenas and Wang 2018).
Specifically, we calculate a background base distribution for
that transcript and normalize the PWMmatrix by this distribution.
We then take the log2-transform of the normalized matrix and cal-
culate the maximum possible score s of this log-transformed
PWM by summing, across columns, the largest value in each col-
umn (which correspond to positions). We then “slide” the log-
transformed PWM across the query sequence with a stride length
of 1, flagging any hits of greater than 0.9× s (Gudenas and Wang
use a cutoff of 0.8 instead, which we elevate to increase specificity
of the hits). We ablate these hits by replacing the corresponding
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bases with “N” bases and run the ablated transcript sequence
through the model (refeaturizing if necessary), observing the dif-
ference in model output. After performing these PWM ablations,
the question remains: Which ones have a significant effect? To
this end, we use cutoffs to identify PWMs that either elicit a large
drop in probabilities, or a consistent drop, or both; namely, we
flag PWM motifs that either cause at least an average reduction
of 0.01 in predicted probabilities, or cause a nonzero drop in pre-
dicted probabilities for at least 72/366 (∼20%) of test examples.

Metrics and plotting

Metrics were generated using functions available in scikit-learn,
and plots were generated using a combination of matplotlib (ver-
sion 3.0.3) and seaborn (version 0.9.0). P-value correction for mul-
tiple hypothesis testing was performed using the statsmodels
package (version 0.11.1). We primarily evaluated models based
on the area under the receiver operator characteristic (AUROC),
area under the precision recall curve (AUPRC), and accuracy.
When reporting overall (i.e., not per-class) AUROC and AUPRC
values, we average across the per-class performance metric for
each class, so as not to downplay the impact of less common lo-
calizations (that are likely to bemore difficult to predict). When re-
porting test set accuracy, we use the validation set to determine a
threshold for positive/negative predictions that maximizes
Youden’s J-statistic and use those thresholds to determine accu-
racy on the test set. Conceptually, this method finds the optimal
cutoff where the true positive rate is high, and the false positive
rate is low.

DATA DEPOSITION

All APEX-Seq data used to train and evaluate RNA-GPS is avail-
able through the Gene Expression Omnibus (GEO) under acces-
sion GSE116008. Additional data used to validate nuclear versus
cytoplasmic localization is available from ENCODE. The RNA-
GPS software is available at https://github.com/wukevin/rnagps.
Some preprocessed files (such as those pertaining to retained in-
trons) are available on GitHub as well.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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