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The cancer cell proteome and transcriptome predicts
sensitivity to targeted and cytotoxic drugs
Mattias Rydenfelt1,*, Matthew Wongchenko2,* , Bertram Klinger1,3 , Yibing Yan2, Nils Blüthgen1,3

Tumors of different molecular subtypes can show strongly de-
viating responses to drug treatment, making stratification of
patients based on molecular markers an important part of cancer
therapy. Pharmacogenomic studies have led to the discovery
of selected genomic markers (e.g., BRAFV600E), whereas tran-
scriptomic and proteomic markers so far have been largely ab-
sent in clinical use, thus constituting a potentially valuable
resource for further substratification of patients. To systemati-
cally assess the explanatory power of different -omics data types,
we assembled a panel of 49 melanoma cell lines, including ge-
nomic, transcriptomic, proteomic, and pharmacological data,
showing that drug sensitivity models trained on transcriptomic or
proteomic data outperform genomic-based models for most
drugs. These results were confirmed in eight additional tumor
types using published datasets. Furthermore, we show that drug
sensitivity models can be transferred between tumor types, al-
though after correcting for training sample size, transferred
models perform worse than within-tumor–type predictions. Our
results suggest that transcriptomic/proteomic signals may be
alternative biomarker candidates for the stratification of patients
without known genomic markers.
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Introduction

Current cancer therapies often have low patient benefit-to-risk
ratios, where negative side effects might be severe even when
efficacy is only moderate. To determine which patients would (or
would not) benefit from a given therapeutic, great efforts have been
directed into discovering and validating biomarkers for therapeutic
response, often within the mutational landscape of tumors.
However, success has been limited to few examples. Cancer cell line
panels can be useful in vitro tools to derive relevant biomarkers
(Barretina et al, 2012; Garnett et al, 2012; Cook et al, 2014; Costello
et al, 2014; Klijn et al, 2014; Aben et al, 2016; Haverty et al, 2016; Li et al,
2017) pertaining to intracellular processes. Through significant cost

reductions in performing high-throughput experiments and ad-
vancements in laboratory automation, such panels can now cover
hundreds or even thousands of cell lines and drugs (Barretina et al,
2012; Garnett et al, 2012), providing ample data to search for new
biomarkers, and also to address mechanistic questions, such as
finding the mechanism of drug action or understanding synthetic
lethality (Rees et al, 2016; McDonald et al, 2017). However, as these
large screens typically pool cell lines from different tumor types,
biomarkers often significantly co-occur with specific tumor types. A
recent study has shown that such “cross-entity” biomarkers are
rarely predictive within a panel of cell lines from a single tumor
type, but only across different tumor types (Iorio et al, 2016). For
example, the BRAFV600E/K mutation is a predictive biomarker for MEK
inhibitor sensitivity across multiple tumor types, but not within
melanoma cell lines specifically (Iorio et al, 2016), although
BRAFV600E/K is predominantly found in melanoma (Hodis et al, 2012).
This often renders cross-entity biomarkers too unspecific to be
used to stratify patients, as the tissue of origin has similar pre-
dictive power.

Tumor cells are products of microevolution by which new ca-
pabilities are sequentially acquired through accumulation of both
genomic and epigenomic alternations, resulting in aberrant acti-
vation of signaling pathways (commonly targeted by novel drugs).
As different mutations or epigenetic alterations may result in a
similar transcriptomic or proteomic state, we reasoned that these
states themselves might be better predictors of drug sensitivity
than genomic data. Indeed, in a recent study they predict, and
experimentally verify, drug sensitivity of the MEK inhibitor trame-
tinib from proteomic markers in melanoma cell lines (Rožanc et al,
2018). To systematically compare genomic, transcriptomic, and
proteomic data as predictor of drug sensitivity for many different
drugs within a given tumor type, we collected these data in a large
panel of melanoma cell lines. For melanoma, multiple targeted
drugs (BRAF/MEK inhibitors) have been approved in recent years
and extended survival for patients with BRAFV600E/K mutations. Yet,
BRAFmutation status is the only known biomarker of BRAF inhibitor
sensitivity and no biomarker exists for BRAF wild-type melanoma
patients. Furthermore, even within the BRAF-selected populations,
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many patients fail to respond to targeted treatments, suggesting
that additional biomarkers could help to further personalize
treatment options. Using our dataset, we set out to systematically
investigate which data category has the most explanatory power of
drug sensitivity and derive predictive within-tumor–type bio-
markers using cross-validated machine learning. We also used
publically available data from pan-cancer cell line panels to val-
idate our findings.

Results

BRAFV600E/K mutation status predicts drug sensitivity of BRAF
inhibitors but not of other targeted or cytotoxic drugs

In a panel of 49 melanoma-derived cell lines, we sequenced on-
cogenes that are commonly mutated (Tsao et al, 2012) in melanoma
(BRAF, NRAS, KRAS, see Fig 1A). In agreement with what has been
observed in melanoma patients (Hodis et al, 2012), we found that
the dominating mutation in this cell line panel was BRAFV600E/K (34
of 49), whereas other mutations in BRAF, NRAS, or KRAS were less
common (5/49, 8/49, and 1/49). To study the relationship between
biomarkers such as BRAF mutation status and drug sensitivity, the
cell line panel was subjected to 109 different drugs, representing a
wide range of substances targeting, among others, the MAPK
pathway, the PI3K/Akt pathway, as well as mitotic and metabolic
processes. Drug sensitivities were summarized as themean viability
across evenly spaced drug concentrations in log-space (illustrated
in Fig 1B), or equivalently the area under the response curve (AUC), a
measure that has proven more reliable in larger drug screens than
IC50 (Haverty et al, 2016), and which does not show saturation
effects such as maximum inhibition. Since many of the screened
drugs showed similar responses across all cell lines, we selected
the 27 drugs with highest coefficient of variation in AUC for further
analysis. Normalized AUC data for the selected drugs are shown in
Fig 1C (Supplemental Data D5), where corresponding unsupervised
hierarchical clustering shows that drugs sharing targets pre-
dominantly cluster together. Drug sensitivities correlate strongly for
drugs that target the same molecule, moderately for drugs that
target the same pathway, and little or not at all for drugs targeting
different pathways (examples in Fig 1D).

We divided the cell lines into two groups based on BRAFV600E/K

mutation status and compared the AUC distributions for each drug
using Welch’s t test, corrected for multiple hypothesis testing
(Benjamini & Hochberg, 1995) (Figs S1 and 1E inset). For the BRAF
inhibitors, vemurafenib and dabrafenib, BRAFV600E/K mutation
status was a strong predictor of AUC (adjusted P = 4.2 × 10−7 and P =
1.9 × 10−5, respectively), as expected. Response to cobimetinib, a
drug that targets MEK, a protein kinase immediately downstream of
BRAF in the MAPK pathway, showed some correlation to BRAFV600E/K

mutation status, albeit much weaker and not significant after
multiple hypothesis correction. For responses to other drugs,
BRAFV600E/K was unpredictive (P > 0.05). Our results show that the
key driver mutation in melanoma, BRAFV600E/K, was only a strong
predictor of drug sensitivity for drugs that target the mutated
molecule itself.

Of the 49 cell lines in the panel, some originated from the same
patient and could hence not technically be regarded as in-
dependent. However, as is shown in Fig S23, removing these du-
plicates (nine excluded cell lines), did not affect the main
conclusions of Figs 1, 2, 3, and 4.

Full-exome sequencing state still only predicts drug sensitivity of
BRAF inhibitors

Exome sequencing data were acquired for 45 out of 49 cell lines in
the panel (Supplemental Data D7). We selected mutations reported
in at least three but not more than 42 of the cell lines. After ad-
ditional filtering (see the Materials and Methods section), a total of
1,716 mutations remained. To find a relationship between mutation
pattern and drug sensitivity, we decided to build a regression tree
(Breiman et al, 1984) model from the 45 × 1,716 dimensional input
space, consisting of only ones (“mutated”) and zeros (“not mu-
tated”), to predict AUC, as such a model mimics the nonlinear
nature of genetic interactions. For each drug, the agreement be-
tween measured and predicted AUC after repeated 10-fold cross-
validation was quantified by the fraction of variance explained
R2 = 1 − Æðâi − aiÞ2æ

Æðai − aÞ2æ , where ai; âi are the measured and predicted drug
AUC for cell line i, and �a is the mean drug AUC across all cell lines.
The observed R2 values were compared with randomized back-
ground distributions, where the AUCs of each drug were randomly
shuffled before applying the regression tree model (N = 8,192), thus
breaking the underlying relationship between input and output (Fig
1E). Again, only the BRAFV600E/K-dependent drugs vemurafenib and
dabrafenib could be predicted significantly above background
(adjusted P < 3.3 × 10−3). These two drugs constituted positive
controls, showing that the regression tree model was indeed ca-
pable of selecting appropriate markers that predict drug sensitivity
from exome sequencing data.

To reduce the number of unpredictive passenger mutations, we
tried to limit our list of mutations to those reported in the COSMIC
Cancer Gene Census (Forbes et al, 2015); this, however, did not lead
to an improvement in drug sensitivity predictions (result not
shown). We also tried alternative definitions of “mutation” either at
the gene or base pair level, but again without any improvements
(Fig S2). Taken together, for 27 drugs in our melanoma cell line
panel, genomic biomarkers could only be found for BRAF inhibitors,
whose drug sensitivity were predicted from oncogenic BRAF itself.

Proteomic signaling clusters defined by AKTS473/PTEN levels do
not predict drug sensitivity in melanoma cell lines

To see if drug sensitivities could be predicted for more drugs using
other biological data, we acquired proteomic data (Supplemental
Data D3) and characterized it using unsupervised hierarchical
clustering (Fig 2A). The clustering revealed two distinct groups of
cell lines with either high PTEN+low AKTS473 or vice versa. Principal
component analysis showed that these two groups indeed cap-
tured the dominant source of variance across the cell line panel (Fig
2B and C). The switch-like behaviour between PTEN/AKTS473 em-
phasizes the role of PTEN as a strong AKT pathway inhibitor
(Maehama & Dixon, 1998; Georgescu, 2010) (Fig 2D). To test whether
there was a difference in drug AUCs between the two groups of cell
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lines, we compared the AUC distributions for each drug using
Welch’s t test, but none of the 27 tested drugs showed a differential
response between the AKTS473/PTEN clusters (Fig 2E). However,
when we tested the AKT inhibitor ipatasertib (GDC-0068), a drug
which had a low coefficient of variation across the cell lines, we

found that it inhibited the growth of cell lines in the AKTS473 high
cluster more effectively than in the PTEN high cluster (adjusted P =
3.8 × 10−3). This is consistent with previous reports demonstrating
increased sensitivity to ipatasertib in cell lines with an activated
PI3K/AKT pathway (Lin et al, 2013). Despite having only a modest

Figure 1. Predicting drug sensitivity from mutation status.
(A)Melanoma cell line panel with mutation status for commonly mutated oncogenes (BRAF, NRAS, and KRAS). (B) Three different drug sensitivity measures defined from a
dose–response curve. Throughout this work, we use mean viability, defined as the mean response across evenly spaced drug concentrations in log-space, or equivalently
the area under the drug response curve (AUC), as primary proxy of drug sensitivity. (C) Normalized drug AUCs for drugs with highest coefficient of variation across the cell
line panel (missing values gray). Unsupervised clustering shows that drugs targeting the same molecule or pathway predominantly cluster together. (D) AUCs for the two
BRAF inhibitors vemurafenib and dabrafenib are strongly correlated and separate cell lines based on BRAFV600E/K mutation status (blue circles). AUCs for vemurafenib and
cobimetinib, targeting different molecules in the MAPK pathway, correlate weaker but still substantially. AUCs for vemurafenib and the cytotoxic drug DM1 show no
correlation. (E) Drug sensitivity predictions from exome sequencing data using a regression tree model. Performance is quantified by fraction of variance explained by the
model after repeated 10-fold cross-validation and compared with a background distribution, where AUCs for each drug are randomly shuffled (N = 8,192) before running
the regression tree algorithm. Gray lines indicate upper 95th percentile of the background distributions. Inset: Cell lines with/without BRAFV600E/K mutation show, as
expected, differential response after vemurafenib or dabrafenib treatment. Unless stated otherwise, box plot whiskers define 10th and 90th percentile, and error bars
define SD with respect to repeated 10-fold cross-validation throughout the article.
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effect on drug sensitivity in vitro, PTEN loss could still be clinically
relevant, for example, by modulating the rate of metastatic out-
growth (Dankort et al, 2009; Gonzalez-Angulo et al, 2011; Wikman
et al, 2012; Zhang et al, 2015).

Proteomic state predicts drug sensitivity for 12 of 27 drugs

The lack of correlation between AKTS473/PTEN proteomic clusters
and drug sensitivity suggests that a more refined modeling effort to
uncover signaling states predictive of drug sensitivity is necessary.
Constructing a predictive model directly from the (phospho)pro-
teins (88 antibodies) to drug AUC (49 cell lines), however, presents a
challenge because the number of “observations” is smaller than
the number of predictors, of which some might be correlated.
Partial least squares (PLS) is a statistical method (de Jong, 1993;
Wold et al, 2001; Pérez-Enciso & Tenenhaus, 2003; Boulesteix &
Strimmer, 2007; Fallahi-Sichani et al, 2015) designed for these sit-
uations and reduces the risk of overfitting by dimensionality

reduction of the input space, such that the new dimensions are
maximally correlated with the output (Fig 3A and see the Materials
and Methods section). By increasing the number of PLS compo-
nents, defined as linear combinations of the original variables, one
can successively reduce the model (training) error.

A separate PLS model was trained for each drug across cell lines
and the agreement between measured and predicted AUC after
repeated 10-fold cross-validation was quantified using Spearman
rank correlation (examples in Fig 3B).

The observed correlations were compared with random back-
ground distributions where the drug AUCs were randomly shuffled
(N = 8,192) among the cell lines for each drug before running the PLS
algorithm (Fig 3C). Of 27 tested drugs, the PLS model predicted AUC
significantly above background (P < 0.05) for 12 drugs, of which 10
drugs had adjusted P < 0.05. For four drugs, the Spearman corre-
lation exceeded ρs > 0.5, namely, the MAPK pathway inhibitor
dabrafenib, the cytotoxic drugs MMAE and DM1, and the HDAC in-
hibitor trichostatin A. For some drugs, a negative Spearman rank

Figure 2. Predicting drug sensitivity from proteomic
(RPPA) data clusters.
(A) Proteomic data of the 10 most variable (phospho)
proteins across the cell line panel. Unsupervised
hierarchical clustering reveals two distinct groups of
cell lines with either high PTEN and low AKTS473 or vice
versa. (B, C) Principal component analysis of proteomic
data. The two AKTS473/PTEN clusters separate in the first
principal component, which is dominated by AKT
pathway signals. (D) Mutually exclusive expression of
PTEN and AKTS473. (E) Drug AUCs shown separately for
cell lines in the AKTS473/PTEN clusters. Only the AKT
inhibitor ipatasertib (GDC-0068), which was included as
a control, showed a differential response between the
two clusters.
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correlation was observed, indicating a nonpredictive model after
cross-validation (see Supplemental Information, Section 1).

PLS produced for each drug a linear model from proteomic state
to AUC. For normalized proteomic data, the magnitude of each
linear coefficient can be taken as a proxy of the relative importance
of the corresponding (phospho)protein (see Figs 3D and S3–S5 and
Supplemental Table T1). Interestingly, the PLS coefficients clustered
according to drug type. For MAPK pathway inhibitors, MEK inhibitors
and BRAF inhibitors formed distinct but similar clusters. Fig 3E
depicts the most important markers for these inhibitors, as well as
the most differential markers between MEK and BRAF inhibitors.
Increased levels of Elk-1S383, MEK1/2S217+221, Erk1/2T202+Y204, and cMyc
were associated with drug sensitivity, whereas increased levels of
EGFR, ERCC1, MEK1S298, and FAKY576+577 were associated with drug
resistance. The observed correlation of Elk-1S383, a direct target of
ERK, and MEK double phosphorylation with sensitivity to MAPK
inhibitors merely reflects the expected effect of increased activity
when MAPK signalling is more active. Among the resistance markers
to MAPK inhibitors, high expression of EGFR, which is normally
expressed in very low levels in melanoma, is a known resistance
mechanism to counteract BRAF and MEK inhibitors (Klinger &
Blüthgen, 2014; Sun et al, 2014). MEK1S298 is reduced by active
ERK through phosphorylation of the neighbouring site T292 on MEK
(Eblen et al, 2004), thus this mark indirectly indicates low ERK
activity and consequently resistance to drugs inhibiting the RAF/
MEK/ERK cascade. FAK has been directly linked to MEK inhibitor
sensitivity in melanoma cell lines (Rožanc et al, 2018). Stat3Y705 and
CofilinS6 were among the group of markers that were associated
with sensitivity to BRAF inhibitors, but resistance to MEK inhibitors.
In contrast, higher expression of CREBS133 and eIF4eS209 were as-
sociated with sensitivity for MEK inhibitors, but resistance to BRAF
inhibitors. Stat3Y705 activation has previously been linked with
resistance to MEK inhibition in lung cancer cell lines (Dai et al, 2011).
For cytotoxic or HDAC drugs, increased levels of FAKY576+577, HSP90,
and RPS6S235,236 were associated with drug sensitivity, whereas
increased levels of PTEN and CDK4 were associated with drug re-
sistance (Fig 3F and G).

Apart from PLS, we tried five other algorithms to predict drug
sensitivity: PLS2 (multi-output), elastic net, Lasso, regression tree,
and a “maximum correlation” model, which performs linear re-
gression on the variable that is most correlated with drug sensi-
tivity. We found PLS to be the best performing method among the
six for various datasets and, therefore, decided to use it as the
primary method (see the Materials and Methods section and Figs S6
and S7).

PLS predicts drug sensitivity from a linear combination of input
data that more accurately describes the state of the cell than

individual signals, which also leads to a reduction of noise by
averaging over multiple measurements. However, from a clinical
perspective, a complex biomarker might be of limited use in
practice. Hence, finding a balance between predictability and
simplicity is an important issue to address. From cross-validated
Lasso regression, it is possible to determine how the prediction
quality is affected when limiting the number of nonzero co-
efficients. In Figs S8–S11, we show that for the drugs vemurafenib
and MMAE one can use as few as 5–10 (phospho)proteins and still
be close to optimal performance.

Transcriptomic state predicts drug sensitivity for 11 of 27 drugs

The set of measured (phospho)proteins corresponds only to a
small fraction of all genes expressed in the cell; therefore, we also
decided to make drug sensitivity predictions from full tran-
scriptomic states for comparison. We acquired transcriptomic
(RNAseq) data for 46 of 49 cell lines in our panel, covering 26,378
genes (Supplemental Data D4). Running PLS on mean+variance
filtered transcriptomic data (6,286 genes) yielded 11 drug AUC
predictions above randomized background (P < 0.05; N = 1,024),
eight of which had adjusted P < 0.05. The most predictive (ρs > 0.05)
drugs were the HDAC inhibitor trichostatin A, and cytotoxic drugs
MMAE and paclitaxel (Fig 4A). The linear PLS models from gene
expression to drug AUC can be found in Supplemental Table T2.

Of the measured genes, we expected a majority to be unrelated
to drug sensitivity, merely feeding noise into the predictions. To
reduce the input space, we tried various subselections, including
using only genes reported in the COSMIC Cancer Gene Census
(Forbes et al, 2015), genes present in the proteomic dataset, sig-
nature genes in key cellular pathways as reported in SPEED (Parikh
et al, 2010) (H2O2, IL-1, JAK-STAT, MAPK, MAPK+PI3K, PI3K, TGFb, TLR,
TNFa, VEGF, and Wnt), using mean+variance filtering, and using
randomly selected genes as a control. Somewhat surprisingly, all
subselections, except random selection of fewer than 500 genes,
showed on average similar predictiveness of drug sensitivity (Figs
S12 and S22). For the remainder of this report, we use mean +
variance filtered transcriptomic data for drug sensitivity pre-
dictions. In the case of transcriptomic data, we found that PLS and
PLS2 outperformed elastic net and Lasso for most drugs (Fig S7 and
see the Materials and Methods section).

Our results show that transcriptomic and proteomic states are
about equally predictive of drug sensitivity in our melanoma cell
line panel, both being more predictive than genomic state, which
was only predictive of BRAF inhibitor response. The proteomic data
weremore predictive of MAPK pathway inhibitor sensitivity than the
transcriptomic data. Combining the transcriptomic and proteomic

Figure 3. Predicting drug sensitivity from proteomic data using PLS.
(A) PLS predicts drug AUC from proteomic (RPPA) data by defining new variables as linear combinations of the original (phospho)proteins, such that the new dimensions
are maximally correlated with AUC. The agreement between measured and predicted AUC after repeated 10-fold cross-validation was quantified using Spearman rank
correlation. (B) Selected drug AUC predictions for MMAE (cytotoxic), dabrafenib (BRAFi), vemurafenib (BRAFi), and gemcitabine (cytotoxic, failed prediction).
Predictions are averaged over 100 repeats. (C) Drug AUC predictions compared with randomly shuffled background distributions (N = 8,192). (D) PLS defines a
linear model from proteomic data to AUC for each drug. The (normalized) PLS coefficients suggest associations between (phospho)proteins and drug sensitivity or
resistance. Unsupervised hierarchical clustering of the linear drug sensitivity models predominately clusters drugs sharing common targets. (E) Most important
markers for MAPK inhibitors, as well as the most important differential markers between MEK and BRAF inhibitors. (F) Most important markers for cytotoxic drugs.
(G) Most important markers for HDAC inhibitors.
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models, by either simply augmenting the input before running PLS
(early integration) or by weighting the two resulting PLS models by
their inverse RMS (late integration), resulted in drug sensitivity
predictions, which were typically between the two separate models
(Figs 4B, S13, and S14). Because there was a noticeable co-
occurrence of drugs that could be predicted from either tran-
scriptomic or proteomic data, we reasoned that the two datasets
likely were correlated. Indeed, in Fig S15, we show that many
(phospho)proteins could be predicted from transcriptomic data
using PLS, but only a handful using genomic data (Fig S16).

Proteomic and transcriptomic state predict drug sensitivity for
selected drugs also in endometrial cancer cell lines

We acquired a complementary dataset of 27 endometrial cancer
cell lines, with transcriptomic, proteomic, and pharmacological (22
matched cell lines) data (Supplemental Data D1, D2, and D4). From
109 drugs, we selected the 30 drugs with the highest coefficient of
variation in AUC across the cell line panel. Proteomic PLS models
yielded accurate drug AUC predictions especially for MEK inhibitors
(Fig 4D). Transcriptomic PLS models were on average less predictive
but also covered additional drug types.

From 60 measured (phospho)proteins and 30 drug sensitivities
in the endometrial cancer panel, 39 (phospho)proteins and 25 drug

sensitivities were also measured in the melanoma panel. To test
whether drug AUC models could be transferred between these two
tumor types, we trained models in melanoma, using the shared
(phospho)proteins, and tested them in endometrial data. As a
control, we randomly shuffled endometrial AUCs (N = 1,024) before
applying the transferred models. We found five drugs (trametinib,
Apo2L, Apo2L+FlagM2, PD901, and AR00482666), which could be
predicted by the cross-melanoma models (Fig 4C). Four of these
drugs belonged to the six most predictive drugs when using within-
tumor–type endometrial proteomic models (Fig 4D), suggesting that
to a certain degree, cross-cancer predictability is possible. These
results should, however, be interpreted with caution as the two best
cross-cancer drug sensitivity predictions had only borderline sig-
nificant corrected P-values (P ≈ 0.05), and the transferred drugs
were not predictive in melanoma to start with.

Proteomic and transcriptomic states are more predictive of drug
sensitivity than genomic state in eight additional tumor types
using Cancer Cell Line Encyclopedia (CCLE) data

To assess the generality of our findings beyond melanoma and
endometrial cancer cell lines, we took genomic, transcriptomic, and
proteomic data from the CCLE (Barretina et al, 2012) and matched
with drug sensitivity data from the Cancer Therapeutics Response

Figure 4. Comparing drug sensitivity predictions
from different data types in melanoma and
endometrial cancer cell lines.
(A) Drug sensitivity predictions from transcriptomic data
compared with randomly shuffled background
distributions (N = 1,024). (B) Drug sensitivity predictions
based on transcriptomic, proteomic, or combined (late
integration) data in melanoma cell lines. Only cell lines,
which had data of all three types genomic/
transcriptomic/proteomic were used for model
building. (C) Drug sensitivity predictions in endometrial
cancer cell lines based on models trained in melanoma,
using only proteomic signals measured in both
datasets. (D) Drug sensitivity predictions based on
proteomic, transcriptomic, or combined data in
endometrial cancer cell lines. Drugs which were
predictive in themelanoma to endometrial cross-model
in (C) are marked with an asterisk.
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Portal (Seashore-Ludlow et al, 2015) (CTRP, 481 drugs and 561
matched cell lines) and the CCLE (Barretina et al, 2012) (24 drugs and
424 matched cell lines). Drugs with low coefficient of variation
(σ/μ < 0.2) across cell lines were filtered out.

We built PLS (transcriptomic/proteomic data) and regression
tree (genomic data) models separately for the eight tumor types
with the largest number of cell lines, as well as pan-cancer models
(Figs 5A and B, and S21). Only cell lines that had corresponding data
of all three types (genomic/transcriptomic/proteomic) were used
for model building. The volcano plot in Fig 5A shows that tran-
scriptomic and proteomic data predict drug sensitivity significantly
above randomly shuffled background (N = 1,024) for many CCLE and
CTRP drugs, whereas genomic data were much less predictive.
Differences between transcriptomic and proteomic data were
comparatively small, with only a slight edge for the transcriptomic
data (see also Fig S17C). The separation between genomic and
transcriptomic/proteomic predictions in Fig 5B and C is exagger-
ated at the low end by the fact that the two learning approaches,
regression trees and PLS, have different background distributions
for randomly shuffled data, in particular when measured by
Spearman rank correlation (see Supplemental Information, Section
1). We, therefore, also show the corresponding plots of Fig 5B when
using the fraction of variance explained measure instead, as well as
P-value distributions (Figs S18–S20). Again, we find that genomic
data are less predictive of drug sensitivity than transcriptomic/
proteomic data.

Transcriptomic and proteomic—but not genomic—data are more
predictive of drug sensitivity than tumor type in pan-cancer
analyses

To determine whether genomic/transcriptomic/proteomic data in
CCLE provided additional information about drug sensitivity not
already encoded in the tumor type, we compared the genomic/
transcriptomic/proteomic models with using tumor type alone as a
predictor (Fig 5C). To predict drug sensitivity from tumor type, we
left one cell line out at the time, computed the mean sensitivity of
the remaining cell lines for the tumor type, then assigned this value
to the left out cell line. Transcriptomic/proteomic PLS models were
on average more predictive than tumor type alone, indicating that
proteomic and transcriptomic data encode additional useful in-
formation for drug sensitivity predictions, whereas genomic data on
average were less predictive than tumor type. Interestingly, the top
predictions from genomic data across tumor types were all MEK
inhibitors (PD0325901, selumetinib, and trametinib), which were
associated with BRAF and KRAS/NRAS mutations.

Drug sensitivity models can be transferred between tumor types,
but after correcting for differences in cell line numbers that the
models were trained on, the transferred models perform worse
than within-tumor–type predictions

To see if drug sensitivity models could be transferred between
tumor types, we excluded all cell lines belonging to a given tumor
type and trained drug sensitivity models using the remaining cell
lines in CCLE. The resulting models were subsequently applied to
the excluded cell lines and the Spearman rank correlation between

predicted and measured drug sensitivity computed. Our results
show that cross-models were predictive for many drugs using ei-
ther transcriptomic or proteomic data (Fig 5D, Cross), with similar
performance compared with within-tumor–type predictions (Fig 5D,
Within). Notable exceptions were pancreatic (and to lesser degree
ovarian) cancer cell lines, where cross-model predictions sur-
passed within-tumor–type predictions, and haematopoietic and
lymphatic cancer cell lines, where the cross-models consistently
performed poorly. This might reflect the fact that cancers of the
haematopoietic and lymphatic system are molecularly different
from tumors of epithelial or neuronal origin. Because it is possible
that the performance of the cross-tumor–type predictions could be
attributed solely to themuch larger training set of cell lines, we also
built cross-models that were trained on the same number of cell
lines as the target tissue, by randomly selecting cell lines from
other tissue types (N = 1,024 repeats). After correcting for cell line
number differences, the cross-tumor–type models performed, as
expected, worse than the within-tumor–type predictions (Fig 5D,
Cross fair).

To reduce the computational time, the transcriptomic data were
reduced to genes reported in the COSMIC Cancer Gene Census
(Forbes et al, 2015). According to Figs S12 and S22, this gene subset
predicts drug sensitivity equally well as compared with unfiltered
transcriptomic data both in our melanoma panel and in CCLE data.

Discussion

Biomarkers are key determinants of success in precision medicine;
however, many currently used targeted therapies still lack pre-
dictive biomarkers. Pharmacogenomic studies have been in-
strumental to derive biomarkers (Barretina et al, 2012; Garnett et al,
2012; Cook et al, 2014; Costello et al, 2014; Klijn et al, 2014; Haverty
et al, 2016; Iorio et al, 2016); yet, genomic biomarkers are largely
limited to mutations that are directly targeted by the drug, and only
a handful have been clinically validated, raising the question
whether other biological data could be more predictive of drug
sensitivity (Costello et al, 2014; Yuan et al, 2014). In this work, we
systematically compared (basal) genomic, transcriptomic, and
proteomic data as predictor of drug sensitivity, and found tran-
scriptomic and proteomic data to be the best predictor for most
drugs, both in an in-house melanoma cell line panel and in eight
additional tumor types of the CCLE. Tumor cells acquire their
malignant phenotype through a series of (epi)genomic alter-
ations that activate proliferative signaling pathways (Hanahan &
Weinberg, 2011). In this way, tumor cells can reach their final
malignant state through a plethora of genomic paths in a micro-
evolutionary process, and this redundancy might obscure un-
derlying associations with drug sensitivity. Our results suggest that
transcriptomic and proteomic data are projections of genomic data,
which are more immediately linked to the biological state, thus
making them stronger biomarkers for drugs that do not directly
target activating mutations, in agreement with a recent breast
cancer cell line panel study (Costello et al, 2014). Clinically, tran-
scriptomic classifiers are used in breast cancer treatment to stratify
subtypes and identify risk groups (Parker et al, 2009). Also in
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melanoma, recent work has shown that transcriptomic-based
signatures can successfully predict outcome of single drug ver-
sus combinatorial treatment in four clinical trials (Wongchenko
et al, 2017).

A main challenge of identifying potential biomarkers from cell
line panels is the mere problem of dimensionality: there are many
more possible biomarkers than cell lines. Pooling cell lines from
multiple tissues together has been one strategy to gain statistical

Figure 5. Drug sensitivity predictions from CCLE data.
(A, B) Spearman rank correlation after cross-validation between predicted and measured drug sensitivity. The two different drug sensitivity censuses are combined in
(B–D) by averaging the Spearman rank correlations for drug sensitivities predicted in both censuses. (C) Pan-cancer drug sensitivity predictions using either
genomic/transcriptomic/proteomic data or tumor type. (D) All cell lines belonging to the tumor type specified by the x-axis were excluded and the remaining cell lines
used for building drug sensitivity models (Cross). The models were then tested in the excluded cell lines. Alternatively, the cross-tumor–type models were trained on an
equal number of randomly selected cell lines as the target tissue (Within) to make the comparison fair (Cross fair). Drugs with low coefficient of variation (σ/μ < 0.2) either
across the target tissue cell lines or the remaining cell lines were filtered out.
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power; however, this strategy requires that biomarkers are trans-
ferable between tumor types. When attempting to predict drug
sensitivity in endometrial data from models that were trained in
melanoma, we found that some drug sensitivity models could be
transferred; however, with worse performance compared with
within-tumor–type predictions. Analogously, we found that formost
tumor types in CCLE, there was no or only marginal benefit to train
models across other tumor types instead of training within the
given tumor type, despite the much larger number of cell lines
available for training.

Biomarkers need to be evaluated separately for each individual
tumor type, as they are clinically required to stratify patients with a
specific tumor type into subgroups. Our study, as well as previous
studies (Iorio et al, 2016), show that there are only few genomic
biomarkers derived from pan-cancer models that are predictive,
and most markers are not more predictive than tumor type alone,
thus limiting their clinical relevance. In contrast, transcriptomic and
proteomic data may provide useful additional information that go
beyond the tumor type for drug sensitivity predictions.

Many important biomarkers have been discovered in cell line
panels. However, cell line panel studies have their limitations as
they fail to capture many essential aspects of tumor development,
for example, processes related to intercellular communication
and immune infiltration/activation, and stromal interactions.
Therefore, follow-up studies on tumor samples are necessary to
determine how well transcriptomic and proteomic biomarkers
perform clinically, and whether cell line–derived models are di-
rectly transferable. Using organoid-based “living biobanks” to
validate complex transcriptomic and proteomic biomarkers will be
a next logical step to move model systems that are amenable to
screening experiments closer to the clinical reality (van deWetering
et al, 2015; Schütte et al, 2017).

Given that ~40–50% of BRAFV600E/K melanoma patients fail to
respond to BRAF inhibitors (McArthur et al, 2014), there is room for
improvement in the biomarker-driven selection of patients beyond
simple genetic testing. Recent work shows that transcriptomic
biomarkers can identify subgroups responding to combinatorial
BRAF+MEK inhibitor treatment (Wongchenko et al, 2017), but for those
50–60% of melanoma patients without BRAFV600E/K mutation, other
suitable therapies are needed. Using transcriptomic or proteomic
states as predictor of drug sensitivity could, if clinically validated,
help improve patient/drug matching and guide the development of
new therapeutics suitable for other groups of cancer patients.

Materials and Methods

Next-generation sequencing data acquisition and analysis

Cell line screening and next-generation sequencing analysis were
performed as described previously (Haverty et al, 2016). Briefly, cell
lines were obtained from a variety of academic sources (i.e., ATCC
and DSMZ) and drugs were obtained from in-house synthesis or
purchased from commercial vendors.

Gene expression levels were quantified by RNASeq via Illumina
sequencing (75-bp paired-end reads) in one sample per cell line.

Reads were aligned to the genome (GRCh37.1) using GSNAP (Wu &
Nacu, 2010). Reads overlapping gene exonic regions were counted
and normalized to gene size and library size as reads per kilobase
per million.

DNA mutations were assessed by Illumina exome sequencing
(75-bp paired-end reads) in one sample per cell line. Only muta-
tions from genomic locations covered by at least 30 reads, where at
least 20% of the reads supported the given mutation, were con-
sidered. Mutations were filtered for known population variants in
the 1,000 Genomes Project (Auton et al, 2015) (African, American,
Asian, East Asian, European, South East Asian, and combined
populations) and NHLBI Exome Sequencing Project (http://
evs.gs.washington.edu/EVS/) (African American and European
American populations), using VEP filtering tools with a frequency
threshold of 1%. Mutations where additionally filtered for severity
by ignoring mutations with an impact score labeled as less than
MODERATE according to the VCF format specification (Danecek et al,
2011). Mutations in the known “false positive cancer genes” HLA-
and MUC- were discarded (Lawrence et al, 2013).

Reverse-phase protein array (RPPA) acquisition and analysis

Cells were lysed in a buffer containing tissue protein extraction
reagent (T-PER; Thermo Fisher Scientific), 300 mm NaCl, and pro-
tease and phosphatase inhibitors (Sigma-Aldrich). The samples
were assessed by RPPA analysis (Theranostics Health) using 88
validated antibodies. Replicate samples were printed onto nitro-
cellulose slides in four separate quadrants. Total protein was
measured by SYPRO Stain, and the intensities of specific antibody
signals were subtracted from secondary antibody signal and
normalized to the total protein (to account for differences in
protein content between samples). The data from each slide were
normalized to the median of each quadrant to compensate for
spatial effects.

Drug sensitivity screening

Cell viability assays were performed as described previously
(Haverty et al, 2016). Nine drug doses following an evenly (log)
spaced 1:3 serial dilution were used. The minimum/maximum
concentrations were adjusted for each drug depending on po-
tency. Cell viability was measured by CellTiter-Glo (Promega)
following 72 h of drug treatment. Throughout the article, the
abbreviation NA denotes nicotinic acid.

Predicting drug sensitivity from transcriptomic or proteomic data
using PLS

PLS is a statistical method designed for performing regression
analysis when the number of predictors is larger than the number
of observations, a regime where traditional linear regression breaks
down. This is a situation commonly encountered in modern bi-
ological experiments. We used the R package pls to predict drug
sensitivity from normalized proteomic (RPPA) or transcriptomic
(RNAseq) data, and validated the model using repeated 10-fold
cross-validation. The optimal number of PLS components was
determined by nested 10-fold cross-validation. See algorithm
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outline below (Source code in Supplemental Information). For each
drug:

0. Discard cell lines without sensitivity data.
1. Leave 10% of the cell lines out for testing (test data). Denote

remaining cell lines training data.
29. RNAseq data: Transform expression values as log2(1 + x).

Discard genes with a mean expression below 2.0 or SD below
0.5 across the cell lines.

29. RPPA data: Transform expression values as log2(x). Discard
genes with SD below 0.1 across the cell lines.

3. Normalize and center training data.
4. Run R pls::plsr function on training data using 1–10 PLS

components (PC:s).
5. Choose the optimal number of PC:s as the lowest number PC

where increasing PC by one, PC → PC+1, yields a higher RMS
between predicted and measured drug sensitivity (PCmin = 1,
PCmax = 10), as determined from nested 10-fold cross-
validation.

6. Scale and shift test data using the same normalization and
centering parameters as for the training data in step 3. Predict
drug sensitivity of test data using the optimal model from
step 5.

7. Iterate step 2–6 for all 10-folds.
8. Compute Spearman rank correlation between predicted and

measured drug sensitivities.
9. Repeat 10-fold cross-validation multiple times. Average

Spearman rank correlations between predicted and measured
drug sensitivity.

In addition to mean + variance expression filtering, we also tried
to reduce transcriptomic data using only genes reported in the
COSMIC Cancer Gene Consensus, genes present in the RPPA dataset,
random genes, or signature genes in key cellular pathways as
reported by SPEED (Parikh et al, 2010), namely, H202 (60 signature
genes), IL-1 (141), JAK-STAT (114), MAPK (559), MAPK+PI3K (118), PI3K
(67), TGFb (142), TLR (181), TNFa (259), VEGF (56), and Wnt (83). The
default SPEED settings were used to determine whether a gene was
considered differentially expressed or not (first percentile z-score,
50th percentile expression level, 20% overlap across experiments).

Instead of using regression coefficients as gauge of variable
importance, we also tried the alternative measure Variable Impor-
tance in Projection (Mehmood et al, 2012) (VIP), often used in PLS. VIP,
however, did not show an advantage over regression coefficients,
which we decided to use for the benefit of interpretability.

To parallelize drug sensitivity predictions, we used the workflow
tool Snakemake (Köster & Rahmann, 2012). Many analyses were
computationally expensive, in particular, the drug sensitivity pre-
dictions from transcriptomic data with randomly shuffled back-
ground distributions in Fig 5, which took on the order of 105 CPU
hours to perform.

Predicting drug sensitivity using other machine learning
algorithms

In addition to PLS, five additional learning algorithms were used for
comparison. The general algorithm outlined for PLS above was

followed for all learning methods with minor adjustments (Source
code in Supplemental Information). PLS with multiple outputs: An
alternative version, PLS2, allows all outputs to be predicted at once,
which in the case of correlated outputs might lead to improved
predictions. On the other hand, the number of PLS components
needs to be “compromised” between all drugs, which can impact
the predictions negatively. We chose the optimal number of PLS
components by minimising the summed RMS between predicted
and measured drug sensitivity for all drugs. Elastic net: This is an
extension of ordinary linear regression where the sum of squared
errors (the cost function) is augmented by a penalty term λ[(1 −
α)kβk2 + αkβk1] to reduce the risk of overfitting. The penalty term is
weighted by a scale factor λ, which is typically determined from
cross-validation. We performed elastic net regression using the R
package glmnet (Friedman et al, 2010) to predict drug sensitivity.
The model was validated using (repeated) 10-fold cross-validation,
and the penalty weight determined from nested 10-fold cross-
validation (Source code in Supplemental Information). Eleven
different values of α = 0.0, 0.1, …, 1.0 were tested in the nested cross-
validation step. By successively increasing the penalty λ, one can
identify key variables for predicting drug sensitivity. Lasso regression:
Elastic net regressionwithα = 1.Regression tree:Weused the R package
rpart (Therneau & Atkinson, 2018) to build drug sensitivity regression
trees and used 10-fold nested cross-validation with a minimum
bucket size of five to find the optimal tree pruning. “Maximum
correlation” model: We performed linear regression on the
single variable with largest (absolute) correlation with drug
sensitivity and validated the model using (repeated) 10-fold
cross-validation.

Hierarchical clustering

Unsupervised hierarchical clustering was performed using
complete-linkage clustering over a Euclidean metric.

Data Availability

All in-house data and source code are available in Supplemental
Information. Data for Fig 5 is publicly available (Barretina et al, 2012;
Seashore-Ludlow et al, 2015; Li et al, 2017). Raw sequencing data are
available at the European genome-phenome archive under the
accession number EGAS00001000610.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900445.
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Rožanc J, Sakellaropoulos T, Antoranz A, Guttà C, Podder B, Vetma V, Rufo N,
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