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Novel gene signatures for stage 
classification of the squamous cell 
carcinoma of the lung
Angel Juarez‑Flores, Gabriel S. Zamudio & Marco V. José*

The squamous cell carcinoma of the lung (SCLC) is one of the most common types of lung cancer. 
As GLOBOCAN reported in 2018, lung cancer was the first cause of death and new cases by cancer 
worldwide. Typically, diagnosis is made in the later stages of the disease with few treatment 
options available. The goal of this work was to find some key components underlying each stage 
of the disease, to help in the classification of tumor samples, and to increase the available options 
for experimental assays and molecular targets that could be used in treatment development. We 
employed two approaches. The first was based in the classic method of differential gene expression 
analysis, network analysis, and a novel concept known as network gatekeepers. The second approach 
was using machine learning algorithms. From our combined approach, we identified two sets of genes 
that could function as a signature to identify each stage of the cancer pathology. We also arrived at a 
network of 55 nodes, which according to their biological functions, they can be regarded as drivers in 
this cancer. Although biological experiments are necessary for their validation, we proposed that all 
these genes could be used for cancer development treatments.

As GLOBOCAN reported in 2018, lung cancer was the first cause of deaths and new cases by cancer  worldwide1. 
Squamous cell carcinoma of the lung (SCC) is one type of lung cancer which comprises approximately 30% of all 
lung cancer cases. The available molecular targets for use in the treatment of SCC of the lung are behind of other 
types of  cancer2–4. Recent advances in the treatment have been achieved using immunotherapy as nivolumab 
and pembrolizumab and some clinical trials are being conducted to test molecular  targets3,4. Some efforts to 
understand the basis of the disease have been made using gene expression profiles, DNA sequencing and SNP 
 arrays2. However, there are few preclinical murine models, some SCC of the lung cell lines have errors in their 
classification and molecular targets usually found in other types of lung cancer as lung adenocarcinoma are rarely 
present in SCC of the  lung4. Lung cancer is classified into two wide groups as follows: Small cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC). NSCLC represents 85% of all lung cancer cases. From this 
group the most prevalent are the adenocarcinoma and the squamous cell carcinoma of the  lung2,5. Lung cancer 
survival is less than 5% after 5 years and most of them metastasize. Most of the time lung cancer is detected 
in advanced stages in which treatment is less effective. The best treatment is surgery although the effectivity of 
the treatment is linked to early stages of the  disease6–9. Smoking is considered as a risk factor associated to lung 
cancer  development2. Network analysis is widely used in different areas including biological sciences with a wide 
variety of results. There are different metrics that can be obtained from networks as the hubs which are com-
monly referred as the most connected nodes which lead to network instability if they are  perturbed10–13. Besides, 
other network measures as betweenness and multivariate entropy have been used to analyze cancer networks 
to find putative potential targets for cancer  disease14,15. We previously identified a set of nodes which due to its 
biological and network properties we called them network  gatekeepers16. The latter was done by visual inspec-
tion. Gatekeepers have few nearest-neighbor interactions with other proteins, but these proteins have plenty of 
interactions. Gatekeepers might not be detected by standard differential gene expression analyses.

In this work, we use clustering centrality as a metric for a better and quicker identification of  gatekeepers16. 
Machine learning algorithms have been applied to a wide variety of  phenomena17. Health sciences have a special 
interest in the applications of these techniques due to the vast data publicly available with the objective to achieve 
better diagnosis and treatments of diseases. Some of the analyzed data with these approaches include analysis of 
histopathological  images18–20. In this article, we make an analysis of the carcinogenic process of the squamous 
cell carcinoma of the lung using cutting-edge techniques as network and machine learning analyses to obtain sets 
of genes which could function as a signature to aid in the classification of patient tumor samples into one of the 
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carcinogenic process stages and to increase the available options for experimental assays and molecular targets 
that could be used in treatment development. Although further biological experimental validation is needed.

Results
Carcinoma‑stage classification model derived from machine learning. Data collected in 
GSE33479 was used to train a supervised machine learning algorithm. A logistic regression model was trained to 
classify the eight stages of the small cell lung carcinoma. Logistic regression models have been shown to provide 
accurate non-linear classification models of complex  data21. A parameter reduction procedure was applied to the 
trained model. For this, the parameters of the model were standardized so that the parameters follow a standard 
normal distribution. The parameters whose value was beyond 0.78 from the mean were selected as relevant 
parameters. The procedure of model training and parameter selection was applied two times. On first parameter 
reduction, a total of 800 genes out of 41,067 were selected; on the second round a total of 15 relevant genes were 
selected. When using the subset of 800 genes a logistic regression model was trained and tested with records of 
all 122 patients records with all correctly classified, when considering the set of 15 genes the trained model was 
able to correctly classify the healthy stage and the first stages of small cell carcinoma and presented 7 cases of 
misclassification on later stages Fig. 1a. A neutral control was designed by considering a total of 500 random sets 
of 15 genes, on each random set a logistic regression model was trained, and its accuracy was measured using 
the Jaccard index and compared with the Jaccard index of a model trained with the selected set of 15 genes. The 
Jaccard index measures the proportion of correctly categorized cases by the model Fig. 1b. The Jaccard index 
from the set of genes derived from the parameter reduction method was of 0.92 whereas for the random sets the 
maximum Jaccard index was 0.29. When considering the set of 15 selected genes coupled with the 26 genes iden-
tified from previous analysis on PPI networks resulted in a trained model with a Jaccard index of 1. APID PPI 
data was used for network analysis of the results from the implemented machine learning technique for the first 
glance results of approximately 800 genes. APID was used due to better coverage of most part of the 800 genes.

Differential gene expression analysis. The first step was to carry out an exploratory network analy-
sis which is shown in Figs.  2a,b. These networks are obtained from joining the results from the Differential 
Gene Expression (DGE) to Mentha network database and then the application of Eq. 1 to highlight the network 
gatekeepers. Figure 2a shows in the inset the color scale, which was applied in Fig. 2a,b. The minimum degree 
(number of connections of a node) value is 1 which is yellow in color, the most connected nodes are in navy blue 
purple whose value is 75. Figure 2a shows in red the connections that every gatekeeper has, and they are marked 
by bigger yellow circles. It can be observed that all of them are connected to other nodes, but they, at first glance, 
do not appear to be of importance because of the few connection they have.

In Fig. 2b can be observed in red, not only the gatekeeper’s connections but also the connections of the first 
connected nodes and how they have much more connections which comprises most of the network. The nodes 
at which gatekeepers are connected are hubs due to the highly connections they have.

Figure 1.  (a) Confussion matrix of the model trained with the 15 genes selected using the parameter reduction 
method. On the x-axis is the true classification and on the y-axis is the predicted classification for each of the 
122 patient records. (b) Histogram of the Jaccard indexes from 500 trained models with random sets of 15 
genes; In red the Jaccard index of the trained model with the 15 genes selected using the parameter reduction 
method. Figures were made using the library matplotlib of Python.
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In Fig. 3, a zoom of the graph of Fig. 2 is presented and each node is tagged with its HGNC name tag. It can 
be observed to which nodes some of the gatekeepers are connected. For example, a connection (red) to MYC 
protein (purple) can be observed. This protein is considered as an oncogene frequently associated with poor 
outcomes; a gatekeeper is linked to other proteins as MEOX2 whose possible function in some cancers is to be 
a suppressor  gene22,23. Every one of the gatekeepers are linked to highly connected nodes which have relevant 
biological functions.

Table 1 summarizes in a list the results of the network analysis and the application of the machine learning 
algorithm in the GEO data set. A list of 26 gatekeepers’ proteins is displayed in the first column which were 
the proteins with a clustering centrality of 1 obtained by the network analysis. This set of genes were used as an 
input list for the machine learning algorithm in which the results showed that they can be used to identify each 
carcinogenic stage with great accuracy. Second and third columns are two lists that contain a reduced set obtained 
only from the machine learning algorithm to classify each sample into its corresponding stages. Second column 
contains the probe tag used by the chip. Using two different methods we obtained two list of potentially gene 
sets that could be used as an aid to help classify samples and whose biological functions denote their potential 
use as targets for therapy. Further experiments are needed to probe its potential use.

An enrichment test was performed using the gatekeepers list to discover the main pathways associated with 
them as shown Table 2. The first characteristic is that every category is overrepresented, which means that in 
each presented category there are more genes from the input list than it can be expected (using as reference the 
Homo sapiens REFLIST) and most of the processes are involved in cell cycle-related specially in mitosis.

The next step was to search in distinct databases the list of genes obtained by the machine learning algo-
rithm. We selected two pathway databases: the reactome pathways and the KEGG pathways. In Table 3, it can 
be observed a list of 8 genes for which information was available. The first column corresponds to its name, 
the second column to the related pathways in Reactome and the third to KEGG pathways. Some of the related 
pathways are usually altered in some types of cancer as Beta-catenin independent WNT-signaling, SMAD2/
SMAD3, tight junction, ABC transporters, etc.24–27.

A network was made based in the results obtained from the machine learning algorithm first glance which 
comprised approximately 800 genes. It was observed a big component (when a significant proportion of the 
nodes in a graph are connected) created by some nodes as seen in Fig. 4a.

An interesting characteristic of the identified network by the machine learning algorithm was that some of 
the network gatekeepers identified by the DGE analysis were connected to this big component as seen in Fig. 4b. 
Some biological functions of some nodes in this network are well known to be relevant for cancer progression 
as PTEN which is a tumor suppressor altered in some types of cancer, as well as others like MCL1 which is an 
anti-apoptotic protein altered in some types of cancers. Also, MCL1 is being studied as a target for cancer patient 
treatment in small cell lung  cancer28,29. FAR1 is observed to play an essential role in the production of ether lipids/
plasmalogens whose synthesis requires fatty alcohol. ABCA1 catalyzes the translocation of specific phospholipids 
from the cytoplasmic to the extracellular/luminal leaflet of membrane coupled to the hydrolysis of ATP. In cancer 
it was observed that its inhibition plays an important role for cancer survival due to an increase of mitochondrial 

Figure 2.  DGE-PPI network. (a) It represents a gathering and merging of the DGE analysis results and the 
Human Protein–Protein Interaction network from the Mentha Database. Red lines represent the connections 
of the gatekeepers. Color scale is presented in the left top corner. It represents the color scale applied to show 
graphically the values in the centrality measure for each node in the networks. (b) The red lines represent 
the connections of the gatekeepers plus the connections of its first neighbors (direct connected nodes to 
gatekeepers). The red lines comprise most of the network connections. (a,b) The proteins with less connections 
are marked in yellow and the most connected proteins are marked in navy blue purple. The size of each node 
represents the value of the clustering centrality measure; The bigger, the more value it has.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4835  | https://doi.org/10.1038/s41598-021-83668-1

www.nature.com/scientificreports/

cholesterol. The function of DMRT3 is not clear. It is thought to function as a transcription factor. In a study of 
lung cancer, the dysregulations of DMRT3 along with other two proteins were considered specific for lung squa-
mous cell carcinoma 30. AAK1 is a kinase that participates in the regulation of clathrin-mediated endocytosis. It 
was discovered that in β-Catenin-dependent WNT signal a negative feedback loop is created by its expression. 
ASF1B Is a histone chaperone which facilitates histone deposition, exchange, and removal during nucleosome 
assembly/disassembly; in cervical cancer it was observed that it functions as an oncogene accelerating cancer 
cells proliferation. APOC1 functions as an inhibitor of lipoprotein binding to the low-density lipoprotein (LDL) 
receptor. In gastric cancer it was proposed as a potential diagnostic and prognostic biomarker; in colorectal 
cancer evidence points out to have a promoting role in carcinogenesis. ADRA1B is an alpha-adrenergic receptor 
whose action is mediated by association with G proteins; in gastric cancer it was found a methylation promoter 
and it could be frequently involved in development and gastric cancer progression. These mentioned proteins 
are other examples of gene protein products whose functions are or could be involved with cancer  disease30–37.

Discussion
Lung cancer is the deadliest type of cancer, most of the diagnosed cases are made in the last stages of the disease 
and there are little available treatment options which could have an important effect. Small cell carcinoma of 
the lung comprehends a great part of all lung cancers. Our present results provide a better comprehension of 
the underlying components of the disease. The detection of genes and proteins that could be implicated in the 
carcinogenic process is urgently needed to provide better options for treatments and diagnosis. Herein, we 
performed a thorough search of genes and proteins that could be used to offer better treatments and diagnosis 
options. We made a comprehensive analysis of all the carcinogenic process and observed that some set of genes 
could be used as an aid for small cell carcinoma of the lung stage classification. We employed two pathways to 
identify relevant genes for diagnosis. The first was based in a classic method as DGE analysis with the aid of more 

Figure 3.  DGE-PPI network zoom. It can be observed with more detail some nodes with their respective 
connections. Red lines denote the connections of the network gatekeeper (nodes with a clustering centrality of 
1) and some of the pointed nodes, in darker color, are associated to highly connected nodes.
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recent techniques as network analysis with a novel concept as the network gatekeepers which are encountered 
by using clustering centrality. DGE analysis was used as an exploratory analysis to look for possibly patterns in 
the gene expression for each stage. Although a general panorama of the carcinogenic process was obtained, we 
wanted to summarize it into a small meaningful set of genes with high involvement in cancer development. To 
make this possible we used the output data of the DGE as the input for the network analysis and then search for 
the network gatekeepers. The other pathway was based in another cutting-edge technique, machine learning 
algorithms. Hitherto, machine learning applications on cancer have been for assessing cancer prediction and 
 prognosis38. These results are based on the analysis of a wide set of variables including biomarkers and clinical 
factors such as age, location and type of cancer, and size of  tumor39–41. The results presented in here are not 
intended for cancer prevention or survivability directly, rather they provide a set of specific genetic biomarkers 
whose analysis can lead to an immediate diagnosis about the stage of development of small cell carcinoma in 
a patient. The analysis of the proposed genetic biomarkers can differentiate even the earliest stages of cancer 
development and lead a physician to administer the required treatment when the probabilities of survivability 
of the patient are higher. For each method we found a set of genes which we proposed to be useful as an aid 
for stage classification and due to the important biological roles in which they are involved they could also be 
useful for further validation as possible targets for treatment. The biological roles of the gatekeepers proposed 
set are marked as cell cycle regulation, DNA-repair breaks, nucleosome assembly and processes that occur in 
the mitotic phase. It was first observed in the gatekeeper network that most of them exhibit scarce connections 
but their first neighbor nodes which are directly connected are hubs (highly connected nodes). This along with 
the processes they are involved may permit an access for prior processes regulated by the hubs. It is known that 
network hubs are of high importance for network stability, but in this work, we are observing that it can be of 
great importance to use the network gatekeepers as a measure to find key components in a biological context. 
The machine learning algorithms are usually used in other fields to improve the understanding of a wide variety 
of processes. In the case of cancer its aim is to find new targets and possible key proteins that regulate cancer. 
We found a reduced set of genes that can be used for stage classification in a set of microarray data and this also 
can be done with the set of gatekeepers. The biological functions of each of the identified genes are relevant for 
normal stages and as previously observed for cancer development. For example, in the case of the reduced set 

Table 1.  Gene list from network gatekeepers and machine learning algorithm. Some Id are labeled as ** which 
means is a Missing Id. The first column corresponds to Gatekeepers list with 26 genes and the second column 
to the probe tag id in the microarray chip for 15 genes found with the machine learning method. The third 
column are the HGCN tags for each probe id of the second column. Second and third columns list finished 
when blank fields were present.

Gatekeepers
(HGCN tags) Probe tag Machine learning HGCN tag for probe tag or genebank annotation

TTC25 A_23_P126803 ARPC5

SERPINA5 A_23_P216649 ABCA1

CENPL A_23_P408865 Homo sapiens cDNA FLJ20700 fis, clone KAIA2250

ASF1B A_23_P428366 HORMAD2

ZBTB32 A_23_P58009 C3orf52

GPR158 A_24_P100535 SYT15

RMI2 A_24_P141804 TMTC3

HSPB7 A_24_P239177 MUC4

ADRA1B A_24_P515866 RBM6

GINS2 A_24_P542364 CALM1

APOC1 A_24_P59278 DSTYK

GINS1 A_24_P925678 PRG2

CENPK A_24_P937366 **

KCNA1 A_32_P213091 LOC440338

PI3 A_32_P429083 LOC441621

ATP6V0D2

ALS2CR12

IL36RN

KIF26B

SPC25

ARL11

UBXN10

LUM

COTL1

RYR3

CENPI
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Table 2.  Gatekeepers: Enrichment test-Reactome pathways. Main reactome pathways are shown if False 
discovery rate value was less than 0.05.

Reactome pathways Homo sapiens—REFLIST (20,851) Client Text Box Input (27) Client Text Box Input (over/under) Client Text Box Input (FDR)

Unwinding of DNA (R-HSA-176974) 12 2 + 2.07E−02

Deposition of new CENPA-containing 
nucleosomes at the centromere 
(R-HSA-606279)

54 3 + 1.23E−02

Nucleosome assembly (R-HSA-
774815) 54 3 + 1.12E−02

Amplification of signal from unat-
tached kinetochores via a MAD2 
inhibitory signal (R-HSA-141444)

92 4 + 1.55E−02

Amplification of signal from the 
kinetochores (R-HSA-141424) 92 4 + 7.76E−03

Mitotic Spindle Checkpoint (R-HSA-
69618) 108 4 + 7.15E−03

EML4 and NUDC in mitotic spindle 
formation (R-HSA-9648025) 114 4 + 7.03E−03

Chromosome Maintenance (R-HSA-
73886) 90 3 + 3.11E−02

Resolution of Sister Chromatid Cohe-
sion (R-HSA-2500257) 122 4 + 7.59E−03

RHO GTPases Activate Formins 
(R-HSA-5663220) 135 4 + 8.37E−03

Separation of Sister Chromatids 
(R-HSA-2467813) 185 4 + 1.85E−02

Mitotic Anaphase (R-HSA-68882) 193 4 + 2.00E−02

Mitotic Metaphase and Anaphase 
(R-HSA-2555396) 194 4 + 1.89E−02

Mitotic Prometaphase (R-HSA-68877) 198 4 + 1.91E−02

Cell Cycle Checkpoints (R-HSA-
69620) 270 5 + 7.94E−03

Cell Cycle, Mitotic (R-HSA-69278) 495 6 + 9.07E−03

Cell Cycle (R-HSA-1640170) 600 7 + 6.91E−03

Table 3.  Machine learning selected genes: Reactome and KEGG pathways involved. The pathways that could 
be related to squamous cell carcinoma of the lung are shown in Reactome column. Most of the genes do not 
have a pathway related to KEGG database, they are labeled as null. If there were more than three pathways 
available in either database just three pathways or less were selected when its biological function could be 
useful in cancer progression, growth, or maintenance. If just one pathway was available, it was written in the 
corresponding field. Null is used when no hits were found in the database. Only. genes that do not appear in 
either database were not presented.

Name Reactome KEGG

ARPC5 EPH-Ephrin signaling Tight junction, Regulation of actin cytoskeleton, Bacterial invasion of epithelial 
cells

ABCA1 Regulation of lipid metabolism by PPARalpha ABC transporters

HORMAD2
Recruitment and ATM-mediated phosphorylation of repair and signaling pro-
teins at DNA double strand breaks
Processing of DNA double-strand break ends
Nonhomologous End-Joining (NHEJ)

Null

C3orf52
SMAD2/SMAD3:SMAD4 heterotrimer regulates
transcription
Complex I biogenesis

Null

TMTC3 Reelin signalling pathway Null

MUC4 O-linked glycosylation Null

CALM1

Beta-catenin independent WNT signaling
RAS processing
RAF/MAP kinase cascade
Signaling downstream of RAS mutant
Signaling by RAF1 mutants

Null

PRG2 Neutrophil degranulation Asthma
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obtained with machine learning, ARPC5 is a protein whose normal function is involved in EPH-Ephrin signal-
ing and tight junction regulation and they are involved in cancer processes as adhesion, migrations, invasion or 
growth. This protein was recently proposed to be a prognostic biomarker for patients with multiple  myeloma42. 
In the case of ABCA1 is a protein whose inhibition promotes cancer  progression32. Genes identified in the big 
component obtained from the machine learning first set was also analyzed and observed that some of them 
were previously studied in cancer and that their functions are involved with them. It is necessary to study these 
proteins in the context of squamous cell carcinoma of the lung, as it is known that the function is dependent of 
the type of tissue, microenvironment, and type of cancer. Our combined approach of DGE analysis plus the use 
of the metric of clustering centrality together with the application of machine learning algorithms, will facilitate 
the identification of relevant components in biological networks as the ones derived from cancer data.

Conclusions
We found a small set of genes possibly involved in the development of the disease. We propose two sets of genes 
which could help in the classification of tumor samples. These findings can increase the available options for 
experimental assays and molecular targets that could be used in novel treatment development. Although further 
experimental research is needed to validate their utility in the clinical setting.

Figure 4.  Big component network. (a) A network with 52 nodes is displayed. The network is a big component 
observed in the exploratory network analysis of a network created by the Machine learning algorithm. Nodes 
are displayed in red color; connections are in blue. (b) A network of 55 nodes of which 3 nodes are from the 
identified gatekeepers. Figures were made with the library NetWorkX of Python.
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Methods
A graphical flowchart that summarizes the methods and the data bases is shown in Fig. 5. Data collection was 
made by using various databases: Gene expression Omnibus for gene expression patients set, GEO accession: 
GSE33479, which comprises 122 patient samples representing the carcinogenic stages. Samples were divided 
as: 13 normal histology and normo-fluorescent, 14 with normal histology and hypo-fluorescent, those were 
grouped as the control group, 15 metaplasia samples, 13 mild dysplasia, 13 moderate dysplasia, 12 severe dys-
plasia, 13 carcinoma in situ, and 14 for squamous cell carcinoma of the lung. The gene expression platform was 
Agilent-014850 Whole Human Genome, Microarray 4 × 44 K G4112F. Processing and differential gene expres-
sion analysis were performed using R v3.5.1 software (http://www.R-proje ct.org). Processed data retrieval was 
performed by GEOquery R package. Hgug4112a.db R package was used to annotate each gene ID to the  data43. 
Using limma package differential gene expression (DGE) analysis was used to compare each stage vs the normal. 
Limma package fits a generalized linear model before comparisons and then calculate a moderate t-statistic for 
each  contrast44,45. A p-value is obtained which is adjusted based in Benjamini and Hochberg False Discovery 
Rate  correction44,46. A list from the DGE was obtained for each comparison, results were merged to obtain a new 
list with all differentially genes. Full Human Interactome was downloaded from Mentha and APID  database47,48. 
Protein–protein interactions (PPI) level 0 data (all reported proteins pairs) was obtained from APID. Cleaning 
process for both networks was made using Cytoscape software (Networks for Figs. 2 and 3 were created using 
this software) which comprised: deletion of repeated interactions, deletion of protein interactions detected in 
other organism, deletion of self-loop interactions in  proteins49. Both databases are public and free to use. The 
merged list resulted from DGE (using a filter of p < 0.05 and Fold change < − 1.5 & > 1.5) from the microarray 
data were coupled with Mentha PPI dataset which allowed to create a new network of PPIs which were used as 
a template to identify the network gatekeeper’s proteins using clustering centrality measure Eq. (1). Mentha PPI 
data was used due to the better coverage of the genes that appeared in list of DGE analysis. To calculate clustering 
centrality measure we used the following Eq. (1):

where Ci is the clustering coefficient of a node i and is defined as the fraction Ei of existing connections among 
its ki nearest neighbors divided by the total number of possible connections.

Ci =

2Ei

ki(ki − 1)

Figure 5.  Workflow. A general panorama of the methodology and the databases. Figure made with Microsoft 
Visio.

http://www.R-project.org
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Enrichment test. Statistical overrepresentation analysis was performed using PANTHER database for 
Reactome Pathways applied to Gatekeepers list using Fisher exact test. Raw p values were obtained. This value 
is the probability that the number of observed genes in each category occurred by chance. These p-values were 
corrected using False Discovery Rate by Benjamini-Hochberg. The reference list used was for Homo sapiens. 
Reactome database version 65 Released 2019-12-22 was used. In the case of machine learning gene list, it was not 
possible to use the PANTHER database due to the lack of information about them, none of them was annotated 
in the database, instead Reactome and KEGG Pathways database were used to perform individual searches of 
each gene in the  list50–54.

Data availability
The datasets generated analyzed during the current study are available in the GEO, Mentha and APID repository. 
GEO: https ://www.ncbi.nlm.nih.gov/geo/query /acc.cgi?acc=GSE33 479 Mentha for human: https ://menth a.uniro 
ma2.it/ APID for human: http://cicbl ade.dep.usal.es:8080/APID/init.actio n. The datasets generated during the 
current study are available from the corresponding author on reasonable request.
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