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Abstract

Neural activity in awake behaving animals exhibits a vast range of timescales that can be

several fold larger than the membrane time constant of individual neurons. Two types of

mechanisms have been proposed to explain this conundrum. One possibility is that large

timescales are generated by a network mechanism based on positive feedback, but this

hypothesis requires fine-tuning of the strength or structure of the synaptic connections. A

second possibility is that large timescales in the neural dynamics are inherited from large

timescales of underlying biophysical processes, two prominent candidates being intrinsic

adaptive ionic currents and synaptic transmission. How the timescales of adaptation or syn-

aptic transmission influence the timescale of the network dynamics has however not been

fully explored. To address this question, here we analyze large networks of randomly con-

nected excitatory and inhibitory units with additional degrees of freedom that correspond to

adaptation or synaptic filtering. We determine the fixed points of the systems, their stability

to perturbations and the corresponding dynamical timescales. Furthermore, we apply

dynamical mean field theory to study the temporal statistics of the activity in the fluctuating

regime, and examine how the adaptation and synaptic timescales transfer from individual

units to the whole population. Our overarching finding is that synaptic filtering and adaptation

in single neurons have very different effects at the network level. Unexpectedly, the macro-

scopic network dynamics do not inherit the large timescale present in adaptive currents. In

contrast, the timescales of network activity increase proportionally to the time constant of

the synaptic filter. Altogether, our study demonstrates that the timescales of different bio-

physical processes have different effects on the network level, so that the slow processes

within individual neurons do not necessarily induce slow activity in large recurrent neural

networks.

Author summary

Brain activity spans a wide range of timescales, as it is required to interact in complex

time-varying environments. However, individual neurons are primarily fast devices: their
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membrane time constant is of the order of a few tens of milliseconds. Yet, neurons are

also subject to additional biophysical processes, such as adaptive currents or synaptic fil-

tering, that introduce slower dynamics in the activity of individual neurons. In this study,

we explore the possibility that slow network dynamics arise from such slow biophysical

processes. To do so, we determine the different dynamical properties of large networks of

randomly connected excitatory and inhibitory units which include an internal degree of

freedom that corresponds to either adaptation or synaptic filtering. We show that the net-

work dynamics do not inherit the slow timescale present in adaptive currents, while syn-

aptic filtering is an efficient mechanism to scale down the timescale of the network

activity.

Introduction

Adaptive behavior requires processing information over a vast span of timescales [1], ranging

from micro-seconds for acoustic localisation [2], milliseconds for detecting changes in the

visual field [3], seconds for evidence integration [4] and working memory [5], to hours, days

or years in the case of long-term memory. Neural activity in the brain is matched to the

computational requirements imposed by behavior, and consequently displays dynamics over a

similarly vast range of timescales [6–8]. Since the membrane time constant of an isolated neu-

ron is of the order of tens of milliseconds, the origin of the long timescales observed in the neu-

ral activity has been an outstanding puzzle.

Two broad classes of mechanisms have been proposed to account for the existence of long

timescales in the neural activity. The first class relies on non-linear collective dynamics that

emerge from synaptic interactions between neurons in the local network. Such mechanisms

have been proposed to model a variety of phenomena that include working memory [9], deci-

sion-making [10] and slow variability in the cortex [11]. In those models, long timescales

emerge close to bifurcations between different types of dynamical states, and therefore typi-

cally rely on the fine tuning of some parameter [12]. An alternative class of mechanisms posits

that long timescales are directly inherited from long time constants that exist within individual

neurons, at the level of hidden internal states [13]. Indeed biophysical processes at the cellular

and synaptic level display a rich repertoire of timescales. These include short-term plasticity

that functions at the range of hundreds of milliseconds [14, 15], a variety of synaptic channels

with timescales from tens to hundreds of milliseconds [16–19], ion channel kinetics imple-

menting adaptive phenomena [20], calcium dynamics [21] or shifts in ionic reversal potentials

[22]. How the timescales of these internal processes affect the timescales of activity at the net-

work level has however not been fully explored.

In this study, we focus on adaptative ion-channel currents, which are known to exhibit

timescales over several orders of magnitude [23–25]. We contrast their effects on recurrent

network dynamics with the effect of the temporal filtering of inputs through synaptic cur-

rents, which also expands over a large range of timescales [26]. To this end, we extend classi-

cal rate models [27–30] of randomly connected recurrent networks by including for each

individual unit a hidden variable that corresponds to either the adapting of the synaptic cur-

rent. We systematically determine the types of collective activity that emerge in such net-

works. We then compare the timescales on the level of individual units with the activity

within the network.

Effects of adaptation and synaptic filtering on the timescales of recurrent networks
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Results

We consider N coupled inhibitory and excitatory units whose dynamics are given by two vari-

ables: the input current xi and a slow variable si or wi that accounts for the synaptic filtering or

adaptation current respectively. The instantaneous firing rate of each neuron is obtained by

applying a static non-linearity ϕ(x) to the input current at every point in time. For simplicity,

we use a positive and bounded threshold-linear transfer function

� xð Þ ¼
½x � g�þ if x � g < �max

�max otherwise;

8
<

:
ð1Þ

where [�]+ indicates the positive part, γ is the activation threshold and ϕmax the maximum fir-

ing rate.

Single neuron adaptation is described by the variable w(t) that low-pass filters the linearized

firing rate with a timescale τw, slower than the membrane time constant τm, and feeds it back

with opposite sign into the input current dynamics (see Methods). The dynamics of the i-th

adaptive neuron are given by

tm _xiðtÞ ¼ � xiðtÞ þ
PN

j¼1
Jij�ðxjðtÞÞ � gwwiðtÞ þ IiðtÞ

tw _wiðtÞ ¼ � wiðtÞ þ xiðtÞ � g;

(

ð2Þ

where Ii(t) is the external input current to neuron i.
Synaptic filtering consists in low-pass filtering the synaptic input received by a cell with

time constant τs, before it contributes to the input current. The dynamics of the i-th neuron in

a network with synaptic filtering are

tm _xiðtÞ ¼ � xiðtÞ þ siðtÞ

ts _siðtÞ ¼ � siðtÞ þ
PN

j¼1
Jij�ðxjðtÞÞ þ IiðtÞ:

(

ð3Þ

The matrix element Jij corresponds to the synaptic coupling strength from neuron j onto

neuron i. In this study we focus on neuronal populations of inhibitory and excitatory units,

whose connectivity is sparse, random, with constant in-degree: all neurons receive exactly the

same number of excitatory and inhibitory connections, CE and CI, as in [31–33]. All excitatory

synapses have equal strength J and all inhibitory neurons −gJ. Furthermore, we consider the

large network limit where the number of synaptic neurons N is large while keeping the excit-

atory and inhibitory inputs CE and CI fixed.

Single unit: Timescales of dynamics

In the models studied here the input current of individual neurons is described by a linear sys-

tem. Thus, their activity is fully characterized by the response h(t) to a brief impulse signal, i.e.

the linear filter. When such neurons are stimulated with a time-varying input I(t), the response

is the convolution of the filter with the input, x(t) = (h � I)(t). These filters can be determined

analytically for both neurons with adaptation or synaptic filtering and directly depend on the

parameters of these processes. Analyzing the differences that these two slow processes produce

in the linear filters is useful for studying the differences in the response of adaptive and synap-

tic filtering neurons to temporal stimuli (Fig 1A), and will serve as a reference for comparison

to the effects that emerge at the network level.

Effects of adaptation and synaptic filtering on the timescales of recurrent networks
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In particular, the filter of a neuron with synaptic filtering, hs(t), is the sum of two exponen-

tially decaying filters of opposite signs and equal amplitude, with time constants τs and τm:

hs tð Þ ¼
1

ts � tm
e�

t
ts � e�

t
tm

� �
Y tð Þ; ð4Þ

where Θ(t) is the Heaviside function (see Methods). Thus, the current response of a neuron to

an input pulse received from an excitatory presynaptic neuron is positive and determined by

two different timescales. The response first grows with timescale τm, so that the neuron cannot

respond to any abrupt changes in the synaptic input faster than this timescale, and then

decreases back to zero with timescale τs (grey curves, Fig 1B).

The adaptation filter is given as well by the linear combination of two exponential func-

tions. In contrast to the synaptic filter, since the input in the adaptive neuron model affects

directly the current variable xi(t), there is an instantaneous change in the firing rate to an input

delta-function (red curves, Fig 1B). The timescales of the two exponentials can be calculated as

t� ¼
2tmtw
tw þ tm

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
4tmtwð1þ gwÞ
ðtm þ twÞ

2

s !� 1

: ð5Þ

When the argument of the square root in Eq (5) is negative, the two timescales correspond to a

pair of complex conjugate numbers, so that the filter is an oscillatory function whose ampli-

tude decreases monotonically to zero at a single timescale. If the argument of the square root is

positive, for slow enough adaptation, the two timescales are real numbers and correspond to

exponential functions of opposing signs of decaying amplitude. However, the amplitudes of

these two exponentials are different (see Methods). To illustrate this, we focus on the limit of

large adaptation time constants with respect to the membrane time constant, where the two

exponential functions evolve with timescales that decouple the contribution of the membrane

Fig 1. Activity of individual neurons with adaptation or synaptic filtering. A: Firing rate response of two different neurons with adaptation (red curves) and two

different neurons with synaptic filtering (grey curves) to the same time-varying input (black curve). B: Normalized linear filters for the neurons shown in A. C:

Timescales of the linear filter for neurons with adaptation (red lines) and for neurons with synaptic filtering (grey lines) as a function of the timescale τw or τs,
respectively. The dashed lines indicate the effective timescale of the evoked activity obtained by weighing each individual timescale with its amplitude in the linear

filter. The effective timescale for neurons with adaptation saturates for large adaptation time constants, while it grows proportionally to the synaptic time constant for

neurons with synaptic filtering. Note that for the adaptive neuron, if the two eigenvalues are complex conjugate, there is only one decay timescale. The triangles on the

temporal axis indicate the time constants used in A and B. Adaptation coupling gw = 5. D: Variance of the input current as a function of the slow time constant when

the adaptive and synaptic neurons are stimulated with Gaussian white noise of unit variance. In the case of neurons with adaptation, two different values of the

adaptation coupling gw are shown. Time in units of the membrane time constant τm.

https://doi.org/10.1371/journal.pcbi.1006893.g001
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time constant and the adaptation current. In that limit, the adaptive filter reads

hw tð Þ ¼ �
gw
tw

e� 1þgwð Þ t
tw þ

1

tm
e�

t
tm

� �

Y tð Þ: ð6Þ

The amplitude of the slow exponential is inversely related to its timescale so that the integral of

this mode is fixed, and independent of the adaptation time constant. This implies that a sever-

alfold increase of the adaptation time constant does not lead to strong changes in the single

neuron activity for time-varying signals (Fig 1A).

Furthermore, we can characterize the timescale of the single neuron response as the sum of

the exponential decay timescales weighed by their relative amplitude, and study how this char-

acteristic timescale evolves as a function of the time constants of either the synaptic or the

adaptive current (Fig 1C). For adaptive neurons, the activity timescale is bounded as a conse-

quence of the decreasing amplitude of the slow mode, i.e. increasing the adaptation time con-

stant beyond a certain value will not lead to a slower response. In contrast, the activity of an

individual neuron with synaptic filtering scales proportionally to the synaptic filter time,

since the relative amplitudes of the two decaying exponentials are independent of the time

constants.

When any of the two neuron types are stimulated with white Gaussian noise, the variance

in the response is always smaller than the input variance, due to the low pass filtering proper-

ties of the neurons. However, this gain in the variance of the input currents is modulated by

the different neuron parameters (Fig 1D). For a neuron with synaptic filtering, the gain is

inversely proportional to the time constant τs. In contrast, for a neuron with adaptation,

increasing the adaptation time constant has the opposite effect of increasing the variance of

the current response. This is because when the adaptation time constant increases, the ampli-

tude of the slow exponential decreases accordingly, and the low-pass filtering produced by this

slow component is weaker. Following the same reasoning, increasing the adaptation coupling

corresponds to strengthening the low-pass filtering performed by adaptation, so that the vari-

ance decreases (Fig 1D, dashed vs full red curves).

Population-averaged dynamics

In the absence of any external input, a non-trivial equilibrium for the population averaged

activity emerges due to the recurrent connectivity of the network. The equilibrium firing rate

is identical across network units, since all units are statistically equivalent. We can write the

input current x0 at the fixed point as the solution to the transcendental equation

ð1þ gwÞx0 ¼ JðCE � gCIÞ�ðx0Þ þ gwg; ð7Þ

for the network with adaptation, and to

x0 ¼ JðCE � gCIÞ�ðx0Þ; ð8Þ

for synaptic filtering (see Methods). Based on Eq (7), we find that the adaptation coupling gw
reduces the mean firing rate of the network, independently of whether the network is domi-

nated by inhibition or excitation (Fig 2A). Synaptic filtering instead does not play any role in

determining the equilibrium activity of the neurons, since Eq (8) is independent of the synap-

tic filtering parameter τs.
We next study the stability and dynamics of the equilibrium firing rate in response to a

small perturbation uniform across the network, xi(t) = x0 + δx(t). Because of the fixed in-

degree of the connectivity matrix, the linearized dynamics of each neuron are identical, so that

the analysis of the homogeneous perturbation on the network reduces to the study of a two-

Effects of adaptation and synaptic filtering on the timescales of recurrent networks
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dimensional deterministic system of differential equations which corresponds to the dynamics

of the population-averaged response (see Methods). The stability and timescales around equi-

librium depend on the two eigenvalues of this linear 2D-system. More specifically, the fixed

point is stable to a homogeneous perturbation if the two eigenvalues of the dynamic system

have negative real part, in which case the inverse of the unsigned real part of the eigenvalues

determines the timescales of the response. For both the network with synaptic filtering and the

network with adaptive neurons, the order parameter of the connectivity that determines the

stability of the fixed point is the effective recurrent coupling J(CE − gCI) each neuron receives,

resulting from the sum of all input synaptic connections. A positive (negative) effective cou-

pling corresponds to a network where recurrent excitation (inhibition) dominates and the

recurrent input provides positive (negative) feedback [32, 33].

For networks with synaptic filtering, we find that the synaptic time constant does not alter

the stability of the equilibrium state, so that the effective coupling alone determines the stabil-

ity of the population-averaged activity. As the effective input coupling strength is increased,

the system undergoes a saddle-node bifurcation when the effective input is J(CE − gCI) = 1 (Fig

2C). In other words, the strong positive feedback loop generated by the excitatory recurrent

connections destabilizes the system.

To analyze the timescales elicited by homogeneous perturbations, we calculate the eigenval-

ues and eigenvectors of the linearized dynamic system (see Methods). We find that for inhibi-

tion-dominated networks (J(CE − gCI)< 0), the network shows population-averaged activity

at timescales that interpolate between the membrane time constant and the synaptic time con-

stant. As the effective coupling is increased, the slow timescale at the network level can be

made arbitrarily slow by tuning the effective synaptic coupling close to the bifurcation value, a

well-known network mechanism to achieve slow neural activity [12].

In the limit of very slow synaptic timescale, the two timescales of the population-averaged

activity are

tþ ¼
ts

1 � JðCE � gCIÞ
; ð9Þ

t� ¼ tm 1 � J CE � gCIð Þ
ts
tm

� �

; ð10Þ

Fig 2. Equilibrium firing rate and phase diagrams of the population-averaged dynamics. A: Firing rate of the network with adaptation at the

equilibrium ϕ(x0) for increasing adaptive couplings and three different values of the effective recurrent coupling Jeff = J(CE − gCI). Stronger adaptation

leads to lower firing rates at equilibrium. B: Phase diagram of the population-averaged activity for the network with adaptation. C: Phase diagram for

the network with synaptic filtering.

https://doi.org/10.1371/journal.pcbi.1006893.g002
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so that the timescale τ− is proportional to the membrane time constant and τ+ is proportional

to the slow synaptic time constant, effectively decoupling the two timescales. The relative con-

tribution of these two timescales is the same, independently of the time constant τs, as we

found in the single neuron analysis.

The network with adaptation shows different effects on the population-averaged activity.

First, the presence of adaptation modifies the region of stability: the system is stable when the

effective recurrent input J(CE − gCI) is less than the minimum of 1 + gw and 1þ
tm
tw

(see Meth-

ods). Therefore, the stability region is larger than for the network with synaptic filtering (Fig

2B vs Fig 2C). In other words, the effective excitatory feedback required to destabilize the net-

work is larger due to the counterbalance provided by adaptation. Moreover, adaptation allows

the network to undergo two different types of bifurcations as the effective input strength

increases, depending on the adaptation parameters. One possibility is a saddle-node bifurca-

tion, as in the synaptic case, which takes place when J(CE − gCI) = 1 + gw. Beyond that instabil-

ity all neurons in the network saturate. The other possible bifurcation, which happens if
tm
tw
< gw, at an effective coupling strength J CE � gCIð Þ ¼ 1þ

tm
tw

, is a Hopf bifurcation: the fixed

point of network becomes unstable, leading in general to oscillating dynamics of the popula-

tion-averaged response. Note that in the limit of very slow adaptation, the system can only

undergo a Hopf bifurcation (Fig 2B).

The two timescales of the population-averaged activity in the stable regime for the adaptive

network decouple the two single neuron time constants when adaptation is much slower than

the membrane time constant. In this limit, up to first order of the adaptive time ratio
tm
tw

, the

two activity timescales are

tþ ¼
tm

1 � JðCE � gCIÞ
; ð11Þ

t� ¼
twð1 � JðCE þ gCIÞÞ

1þ gw � JðCE � gCIÞ
: ð12Þ

Similar to the single neuron dynamics, the amplitude of the slow mode, corresponding to τ−,

decreases as τw is increased, so that the contribution of the slow timescale is effectively reduced

when τw is very large. On the contrary, the mode corresponding to τ+, proportional to the

membrane time constant can be tuned to reach arbitrarily large values. This network mecha-

nism to obtain slow dynamics does not depend on the adaptation properties.

Heterogeneous activity

Linear stability analysis. Previous studies have shown that random connectivity can lead

to heterogeneous dynamics where the activity of each unit fluctuates strongly in time [29, 33–

35]. To assess the effects of additional hidden degrees of freedom on the emergence and time-

scales of such fluctuating activity, we examine the dynamics when each unit is perturbed inde-

pendently away from the equilibrium, xi(t) = x0 + δxi(t). By linearizing the full 2N-dimensional

dynamics around the fixed point, we can study the stability and timescales of the activity char-

acterized by the set of eigenvalues of the linearized system, λs and λw for the network with syn-

aptic filtering neurons and adaptation, respectively. These sets of eigenvalues are determined

by a direct mapping to the eigenvalues of the connectivity matrix, λJ (see Methods). The eigen-

values λJ of the connectivity matrices considered are known in the limit of large networks [33,

36]: they are enclosed in a circle of radius J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
, except for an outlier that corresponds

to the population-averaged dynamics, studied in the previous section. Therefore, we can map

Effects of adaptation and synaptic filtering on the timescales of recurrent networks
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the circle that encloses the eigenspectrum λJ into a different shape in the space of eigenvalues

λs/w (insets Fig 3). In order to determine the stability of the response to the perturbation, we

assess whether the real part of the eigenspectrum λs/w is negative at all possible points. Further-

more, the type of bifurcation is determined by whether the curve enclosing the eigenvalues λs,w
crosses the imaginary axis at zero frequency or at a finite frequency when the synaptic coupling

strength is increased, leading respectively to a zero-frequency or to a Hopf bifurcation [37].

The order parameter of the connectivity that affects the stability and dynamics of the net-

work is now the radius of the circle of eigenvalues λJ, i.e. J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCE þ g2CIÞ

p
. This parameter is the

standard deviation of the synaptic input weights of a neuron (see Methods), which contrasts

with the order parameter of the population-averaged response, that depends on the mean of

the synaptic input weights. The mean and standard deviation of the synaptic connectivity can

be chosen independently, so that while the population-averaged activity remains stable, the

individual neurons might not display stable dynamics. To analyze solely the heterogeneous

response of the network to the perturbation, we focus in the following on network connectivi-

ties whose population-averaged activity is stable, i.e. the effective synaptic coupling is inhibi-

tory or weakly excitatory.

Fig 3. Dynamical regimes as the coupling strength is increased. Numerical integration of the dynamics for the network with adaptive neurons (row A)

and the network with synaptic filtering (row B), as the coupling standard deviation Jcs ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
is increased. Colored lines correspond to the firing

rates of individual neurons, the black line indicates the population average activity. Insets: complex eigenspectrum λw/s of the linearized dynamical matrix

around the fixed point. Dots: eigenvalues of the connectivity matrix used in the network simulation. Solid line: theoretical prediction for the envelope of

the eigenspectrum. The imaginary axis, Re(λ) = 0, is the stability boundary. i. Both the network with adaptation and synaptic transmission are stable. ii.

The network with synaptic filtering crosses the stability boundary and shows fluctuations in time and across neurons, while the network with adaptation

remains stable. iii. The network with synaptic filtering displays stronger fluctuations. The network with adaptive neurons undergoes a Hopf bifurcation

leading to strong oscillations at a single frequency with uncorrelated phases across units. Note in the inset that for this connectivity matrix there is only one

pair of complex conjugate unstable eigenvalues in the finite network. iv. The network with synaptic filtering shows strong fluctuations. The network with

adaptation displays fluctuating activity with an oscillatory component. Parameters: in A, gw = 0.5, and τw = 5, in B, τs = 5.

https://doi.org/10.1371/journal.pcbi.1006893.g003
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We find that in the network with synaptic filtering, the eigenspectrum λs always crosses the

stability bound through the real axis, which takes place when the spectral radius of the connec-

tivity is one, J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
¼ 1. Thus the system undergoes a zero-frequency bifurcation simi-

lar to randomly connected networks without hidden variables [29, 33, 35, 38], leading to

strong fluctuations at the single neuron level that are self-sustained by the network connectiv-

ity (Fig 3Bii–3Biv). The critical coupling at which the equilibrium firing rate loses stability is

independent of the synaptic time constant, i.e. synaptic filtering does not affect the stability of

heterogeneous responses (Fig 4A). However, the synaptic time constant τs affects the time-

scales at which the system returns to equilibrium after a perturbation, because the eigenvalues

λs (see Eq (69) in Methods) depend explicitly on τs.
For a network with adaptive neurons, we calculate the eigenspectrum λw and find that the

transition to instability Re(λw) = 0 can happen either at zero frequency or at a finite frequency

(see Methods), leading to a Hopf bifurcation (as in inset Fig 3Aiii). In particular, the network

dynamics undergo a Hopf bifurcation when

tw >
tm

gw þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gwðgw þ 1Þ

p ; ð13Þ

so that strong adaptation coupling and slow adaptation time constants lead to a finite fre-

quency bifurcation. In particular, if the coupling gw is larger than
ffiffiffi
5
p
� 2 � 0:236, only the

Hopf bifurcation is possible, since by construction
tm
tw
< 1. We can also calculate the frequency

of oscillations at the Hopf bifurcation. We find that, for slow adaptive currents, the Hopf fre-

quency is inversely related to the adaptation time constant (Fig 4B), so that slower adaptation

currents produce slower oscillations at the bifurcation.

Adaptation also increases the stability of the equilibrium firing rate to a heterogeneous per-

turbation, in comparison to a network with synaptic filtering (Fig 4C). This can be intuitively

explained in geometrical terms by analyzing how adaptation modifies the shape of the eigen-

spectrum λw with respect to the circular eigenspectrum of the connectivity matrix λJ.
The Hopf bifurcation leads to the emergence of a new dynamical regime in the network

(Fig 3Aiv), which is studied in the following section. Right at the Hopf bifurcation, the system

shows marginal oscillations at a single frequency that can be reproduced in finite-size simula-

tions whenever only one pair of complex conjugate eigenvalues is unstable (Fig 3Aiii).

Fig 4. Phase diagram and frequency of the bifurcation for the heterogeneous activity. A: Phase diagram for the network with synaptic transmission. The only

relevant parameter to assess the dynamical regime is the connectivity strength. The circles indicate the parameters used in Figs 3 and 6. Triangles correspond to the

parameter combinations used in Fig 5. B: Frequency at which the eigenspectrum loses stability for the network with adaptive neurons as a function of the ratio between

membrane and adaptation time constant, τm/τw, for three different adaptive couplings. The dots indicate the fastest adaptive time constant for which the system

undergoes a Hopf bifurcation (Eq 84). C: Phase diagrams for the two adaptation parameters, (i) the coupling gw and (ii) the adaptive time constant τw vs the coupling

standard deviation.

https://doi.org/10.1371/journal.pcbi.1006893.g004
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Fluctuating activity: Dynamical mean field theory. The classical tools of linear stability

theory applied so far can only describe the dynamics of the system up to the bifurcation. To

study the fluctuating regime, we take a different approach and focus on the temporal statistics

of the activity, averaged over different connectivity matrices: we determine the mean and auto-

correlation function of the single neuron firing rate, and characterize the timescale of the fluc-

tuating dynamics [29, 33–35, 38–40]. For large networks, the dynamics can be statistically

described by applying dynamical mean field theory (DMFT), which approximates the deter-

ministic input to each unit by an independent Gaussian noise process. The full network is then

reduced to a two-dimensional stochastic differential equation, where the first and second

moments of the noise must be calculated self-consistently. We solve the self-consistent equa-

tions using a numerical iterative procedure, similar to the schemes followed in [34, 41–44] (see

Methods for an explanation of the iterative algorithm and its practical limitations).

For the network with synaptic filtering, we find that the autocorrelation function of the fir-

ing rates in the fluctuating regime corresponds to a monotonically decreasing function (Fig

5A), qualitatively similar to the correlation obtained in absence of synaptic filtering [33]. This

fluctuating state has often been referred to as rate chaos and shows non-periodical heteroge-

neous activity which is intrinsically generated by the network connectivity. The main effect of

synaptic filtering is on the timescale of these fluctuations. When the synaptic time constant is

much larger than the membrane time constant, the timescale of the network activity is propor-

tional to the synaptic time constant τs, as indicated by the linear dependence between the half-

width of the autocorrelation function and the synaptic timescale τs, when all other network

parameters are fixed (Fig 5B).

For the network with adaptation, we focus on large adaptation time constant τw, where the

network dynamics always undergo a Hopf bifurcation. The autocorrelation function in such a

case displays damped oscillations (Fig 5C). The decay in the envelope of the autocorrelation

function is due to the chaotic-like fluctuations of the firing rate activity.

We define the time lag at which the envelope of the autocorrelation function decreases as

the timescale of the network dynamics (see Methods). The timescale of the activity increases as

the adaptation timescale is increased, when all the other parameters are fixed (Fig 5D). How-

ever, this activity timescale saturates for large values of the adaptation timescale: the presence

of very slow adaptive currents, beyond a certain value, will not slow down strongly the network

activity. This saturation value depends on the connectivity strength.

Fig 5. Autocorrelation function and timescale of the network activity in the fluctuating regime. A: Autocorrelation function of the firing rates in the network

with synaptic filtering; dynamical mean field results (solid lines) with their corresponding envelopes (dashed lines), and results from simulations (empty dots).

Connectivity strength Jcs ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
¼ 1:2. B: Effective timescale of the network activity as a function of the synaptic time constant for the network with

synaptic filtering. The network coupling does not have a strong effect on the effective timescale. C: Autocorrelation function of the firing rates, as in A, for the system

with adaptive neurons. Jcs = 1.3. D: Effective timescale of the firing rates, as in B, for the system with adaptive currents.

https://doi.org/10.1371/journal.pcbi.1006893.g005
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Effects of noise. The networks studied so far, for a fixed connectivity matrix, are

completely deterministic. We next study the effects of additional white noise inputs to each

neuron, as a proxy towards understanding recurrent networks of spiking neurons with adapta-

tion and synaptic filtering. On the mean-field level, such noise is equivalent to studying a

recurrent network whose neurons fire action potentials as a Poisson process with instanta-

neous firing rate ϕ(xi(t)) [35, 45].

Numerical simulations show that in the stable regime the additive external noise generates

weak, fast stationary dynamics around the fixed point (Fig 6Ai and 6Bi). The timescale of these

fluctuations and their amplitude depend on the distance of the eigenspectrum to the stability

line, so that the stable fluctuations for weak synaptic coupling standard deviation (Fig 6Ai) are

smaller in amplitude than those for larger coupling standard deviation (Fig 6Aii), whose eigen-

spectrum is closer to the stability boundary. For adaptation, in the fluctuating regime beyond

the Hopf bifurcation, the network activity shows again a combination of fluctuating activity

and oscillations.

We further extend the DMFT analysis to account for the additional variance of the external

white noise sources (see Methods). The autocorrelation function of the firing rates, as pre-

dicted by DMFT, does not vary drastically when weak noise is added to the network, except

Fig 6. Dynamical regimes for the network with adaptation or synaptic filtering with additive external noise. Numerical integration of the

dynamics with units receiving additive external white noise, as a proxy for spiking noise. A: Network with adaptive neurons. B: Network with synaptic

filtering. Colored lines correspond to the firing rate of individual neurons, the black line indicates the population average activity. Insets: complex

eigenspectrum λw/s of the dynamic matrix at the fixed point. Dots: eigenvalues of the connectivity matrix used in the network simulation. Solid line:

theoretical prediction for the envelope of the eigenspectrum. i. Both the network with adaptation and synaptic transmission are stable, the external

noise generates stationary fluctuations around the fixed point. ii. The network with synaptic filtering undergoes a zero-frequency bifurcation. Noise

adds fast temporal variability in the firing rates. The network with adaptation remains stable, and the fluctuations are larger in amplitude. iii. The

network with adaptation undergoes a Hopf bifurcation. The firing rate activity combines the fast fluctuations produced by white noise and the chaotic

activity with an oscillatory component. iv. The network with adaptation shows highly irregular activity, and strong effects due to the activation and

saturation bounds of the transfer function. Parameters as in Fig 4, external noise ση = 0.06.

https://doi.org/10.1371/journal.pcbi.1006893.g006
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for very short time lags, at which white noise introduces fast fluctuations (see Fig 7). For the

network with adaptation, the autocorrelation function of the firing rates still shows damped

oscillations (Fig 7A), while for the network with synaptic filtering, similarly, weak noise does

not affect much the decay of the autocorrelation function (Fig 7D). Very strong external noise

on the other hand will reduce the effect of the underlying recurrent dynamics of the rate net-

work, since the signal to noise ratio in the synaptic input of all neurons is low.

For a fixed external noise intensity, reducing the adaptation coupling or increasing the

adaptation time constant increases the variance of the firing rate (Fig 7B), which resembles the

dependence of the variance gain for individual neurons (Fig 1D). Conversely, slower synaptic

filtering reduces the variance of the neuron’s firing rates. This is because in the network with

synaptic filtering the noise is also filtered at the synapses –in the limit of very large τs, the

whole white noise is filtered out– whereas in the network with adaptation the noise affects

directly the input current, without being first processed by the adaptation variable.

However, the timescale of the activity is nonetheless drastically affected by strong noise.

External noise adds fast fluctuations on top of the intrinsically generated dynamics of the het-

erogeneous network with adaptation or synaptic filtering. If the noise is too strong, the effec-

tive timescale of the activity takes into account mostly this fast component. In that limit, the

Fig 7. Autocorrelation function, variance of the firing rates and timescale of the network activity with external noise predicted by

dynamical mean field theory. A: Autocorrelation function of the firing rates for the network with adaptive neurons for three different noise

intensities. Adaptation time constant τw = 1.25. B: Variance of the firing rate as a function of the adaptation time constant for two different

adaption couplings gw. Increasing the adaptation time constant or decreasing the adaptation coupling increases the variance. ση = 0.15. C:

Timescale of the firing rate as a function of the adaptation time constant, and three different noise levels. Parameters: gw = 0.5, and

J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
¼ 1:2. D: Autocorrelation function of the firing rate for the network with synaptic transmission for three different noise levels.

Synaptic time constant τs = 1.25. E: Variance of the firing rate as a function of the synaptic time constant, for three different external noise levels.

Synaptic filtering reduces the variance. F: Timescale of the activity for the network with synaptic filtering and external noise.

https://doi.org/10.1371/journal.pcbi.1006893.g007
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timescale of the activity is almost independent of the synaptic or adaptive time constants (Fig

7C and 7F, largest noise intensity).

Discussion

We examined dynamics of excitatory-inhibitory networks in which each unit had a hidden

degree of freedom that represented either firing-rate adaptation or synaptic filtering. The core

difference between adaptation and synaptic filtering was how external inputs reached the sin-

gle-unit activation variable that represents the membrane potential. In the case of adaptation,

the inputs directly entered the activation variable, which was then filtered by the hidden, adap-

tive variable through a negative feedback loop. In the case of synaptic filtering, the external

inputs instead reached first the hidden, synaptic variable and were therefore low-pass filtered

before being propagated in a feed-forward fashion to the activation variable. While both mech-

anisms introduce a second timescale in addition to the membrane time constant, our main

finding is that the interplay between those two timescales is very different in the two situations.

Surprisingly, in presence of adaptation, the membrane timescale remains the dominant one in

the dynamics, while the contribution of the adaptation timescale appears to be weak. In con-

trast, in a network with synaptic filtering, the dominant timescale of the dynamics is directly

set by the synaptic variable, and the overall dynamics are essentially equivalent to a network in

which the membrane time-constant is replaced with the synaptic one.

We used a highly abstracted model, in which each neuron is represented by membrane cur-

rent that is directly transformed into a firing-rate through a non-linear transfer function. This

class of models has been popular for dissecting dynamics in excitatory-inhibitory [27, 28, 46–

48] or randomly-connected networks [29, 30, 33], and for implementing computations [49,

50]. Effects of adaptation in this framework have to our knowledge not been examined so far,

but see [51] for a simultaneously and independently developed study of adaptation in networks

of multidimensional rate units with random Gaussian connectivity. We therefore extended the

standard rate networks by introducing adaptation in an equally abstract fashion [24], as a hid-

den variable specified solely by a time constant and a coupling strength. Different values of

those parameters can be interpreted as corresponding to different specific membrane conduc-

tances that implement adaptation, e.g. the calcium dependent potassium Iahp current or the

slow voltage-dependent potassium current Im, which are known to exhibit timescales over sev-

eral orders of magnitude [52, 53]. To cover the large range of adaptation timescales observed

in experiments [23], it would be straightforward to superpose several hidden variables with dif-

ferent time constants. Our approach could also be easily extended to include simultaneously

adaptation and synaptic filtering.

A number of previous works have studied the effects of adaptation within more biologically

constrained, integrate-and-fire models. These works have in particular examined the effects of

adaptation on the spiking statistics [54–56], firing-rate response [57, 58], synchronisation [25,

56, 59–61], perceptual bistability [62] or single-neuron coding [63, 64]. In contrast, we have

focused here on the relation between the timescales of adaptation and those of network

dynamics. While our results rely on a simplified firing-rate model, we expect that they can be

directly related to networks of spiking neurons by exploiting quantitative techniques for map-

ping adaptive integrate-and-fire models to effective firing rate descriptions [65].

A side result of our analysis is the finding that strong coupling in random recurrent net-

works with adaptation generically leads to a novel dynamical state, in which individual units

exhibit a mixture of oscillatory and strong temporal fluctuations. The characteristic signature

of this dynamical state is a damped oscillation found in the auto-correlation function of single-

unit activity. In contrast, classical randomly connected networks lead to a fluctuating, chaotic
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state in which the auto-correlation function decays monotonically [29, 33–35]. Note that the

oscillatory activity of different units is totally out of phase, so that no oscillation is seen at the

level of population activity. This dynamical phenomenon is analogous to heterogeneous oscil-

lations in anti-symmetrically connected networks with delays [37]. In both cases, the oscil-

latory dynamics emerge through a bifurcation in which a continuum of eigenvalues crosses

the instability line at a finite-frequency. Similar dynamics can be also found in networks in

which the connectivity is a superposition of a random and a rank two structured part [33]. In

that situation, the heterogeneous oscillations however originate from a Hopf bifurcation due

to an isolated pair of eigenvalues that correspond to the structured part of the connectivity.

Our main aim here was to determine how hidden variables could induce long timescales in

randomly-connected networks. Long timescales could alternatively emerge from non-random

connectivity structure. As extensively investigated in earlier works, one general class of mecha-

nism relies on setting the connectivity parameters close to a bifurcation that induces arbitrarily

long timescales [12, 29]. Another possibility is that non-random features of the connectivity,

such as the over-representation of reciprocal connections [66, 67] slow down the dynamics

away from any bifurcation. A recent study [68] has indeed found such a slowing-down. Weak

connectivity structures of low-rank type provide yet another mechanism for the emergence of

long timescales. Indeed, rank-two networks can generate slow manifolds corresponding to

ring attractors provided a weak amount of symmetry is present [69].

Ultimately, the main reason for looking for long timescales in the dynamics is their poten-

tial role in computations performed by recurrent networks [70, 71]. Recent works have pro-

posed that adaptive currents may help implement computations in spiking networks by either

introducing slow timescales or reducing the amount of noise due to spiking [72, 73]. Our

results suggest that synaptic filtering is a much more efficient mechanism to this end than

adaptation. Identifying a clear computational role for adaptation in recurrent networks there-

fore remains an open and puzzling question.

Methods

Network model

We compare the dynamics of two different models: a recurrent network with adaptive neu-

rons, and a recurrent network with synaptic filtering. Each model is defined as a set of 2N cou-

pled differential equations. The state of the i-th neuron is determined by two different

variables, the input current xi (t) and the adaptation (synaptic) variable wi (t) (si (t)).
Adaptation. The dynamics of the recurrent network with adaptive neurons are given by

tm _xiðtÞ ¼ � xiðtÞ � gwwiðtÞ þ IiðtÞ

tw _wiðtÞ ¼ � wiðtÞ þ �ðxiðtÞÞ;

(

ð14Þ

where ϕ(x) is a monotonically increasing non-linear function that transforms the input current

into firing rate. In this study, we use a threshold-linear transfer function with saturation:

� xð Þ ¼
½x � g�þ if x � g < �max

�max otherwise:

8
<

:
ð15Þ

In Eq (14) adaptation in single neuron rate models is defined as a low-pass filtered version

with timescale τw of the neuron’s firing rate ϕ(xi (t)), and is fed back negatively into the input

current, with a strength that we call the adaptation coupling gw. For the sake of mathematical

tractability, we linearize the dynamics of the adaptation variable by linearizing the transfer
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function (Eq 15), ϕ(xi (t))� xi (t) − γ. Therefore, the dynamics of the network model with

adaptation studied here read

tm _xiðtÞ ¼ � xiðtÞ � gwwiðtÞ þ IiðtÞ

tw _wiðtÞ ¼ � wiðtÞ þ xiðtÞ � g;

(

ð16Þ

Note that this approximation allows for adaptation to increase the input current of a neu-

ron, when the neuron’s current is below the activation threshold γ.

Synaptic filtering. For the recurrent network with synaptic filtering, the dynamics are

tm _xiðtÞ ¼ � xiðtÞ þ siðtÞ þ IiðtÞ

ts _siðtÞ ¼ � siðtÞ þ IiðtÞ:

(

ð17Þ

In Eqs (14), (16) and (17), I(t) represents the total external input received by the neuron. In

general, we are interested in the internally generated dynamical regimes of the network, so

that the input is given by the synaptic inputs

IiðtÞ ¼ Isyn;i ¼
X

j

Jij�ðxjðtÞÞ: ð18Þ

The matrix element Jij indicates the coupling strength of the j-th neuron onto the i-th neuron.

The connectivity matrix is sparse and random, with constant in-degree [32, 33, 74]: all neurons

receive the same number of input connections C, from which CE are excitatory and CI inhibi-

tory. All excitatory synapses have coupling strength J while the strength of all inhibitory synap-

ses is −gJ. Moreover, each neuron can only either excite or inhibit the rest of the units in the

network, following Dale’s principle. Therefore, the total effective input coupling strength,

which is the same for all neurons, is

Jeff ≔
X

j

Jij ¼ JðCE � gCIÞ: ð19Þ

We used the parameters in Table 1 for all figures unless otherwise specified.

Single neuron dynamics

The dynamics of each individual neuron are described by a two-dimensional linear system,

which implies that the input current response x(t) to a time-dependent input I(t) is the convo-

lution of the input with a linear filter h(τ) that depends on the parameters of the linear system:

xðtÞ ¼ ðh � IÞðtÞ ¼
Z þ1

� 1

dt0hðt0ÞIðt � t0Þ: ð20Þ

Table 1. Parameter values used in the simulations.

Parameter Value

Number of units N 3000

In-degree C 100

Excitatory inputs CE 80

Inhibitory inputs CI 20

Ratio I-E coupling strength g 4.1

Threshold γ -0.5

Maximum firing rate ϕmax 2

https://doi.org/10.1371/journal.pcbi.1006893.t001
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In general, for any linear dynamic system _zðtÞ ¼ Az þ bðtÞ, where A is a square matrix in

RN�N
and b(t) is a N-dimensional vector, the dynamics are given by

zðtÞ ¼
Z 1

� 1

dt0eAt0Yðt0Þbðt � t0Þ; ð21Þ

where Θ(t) is the Heaviside function. Thus, comparing Eqs (21) and (20), the linear filter is

determined by the elements of the so-called propagator matrix P(t) = eAtΘ(t).
Synaptic filtering. For a single neuron wit synaptic filtering, the dynamics are given by

Eq (17), where the input Ii(t) represents the external current. We write the response in its vec-

tor form (x(t), s(t))T and the input as (0, I(t))T. The dynamic matrix is

As ¼
� t� 1

m t� 1
m

0 � t� 1
s

 !

: ð22Þ

The linear filter, hs(t0), is given by the entries of the propagator matrix that links the input I
(t) to the output element x(t), which are in this case only the entry in row one and column two:

hs(t0) = [P(t0)]12. To compute the required entry of the propagator, we diagonalize the dynamic

matrix A = VDV−1. The matrix D is a diagonal matrix with the eigenvalues of matrix A in the

diagonal entries, and V is a matrix whose columns are the corresponding eigenvectors. Apply-

ing the identity etVDV� 1

¼ VetDV � 1 and the definition of propagator we obtain that

hs tð Þ ¼ Y tð Þ
1

tm � ts
e�

t
tm � e�

t
ts

� �
: ð23Þ

The two timescales of the activity are defined by the inverse of the eigenvalues of the system,

which coincide with τm and τs. Every time a pulse is given to the neuron, both modes get acti-

vated with equal amplitude and opposing signs, as indicated by Eq 23. This means that there is

a fast ascending phase after a pulse, at a temporal scale τm, and a decay towards zero with time-

scale τs.
Adaptation. The dynamics of a single adaptive neuron are determined by Eq (16), where

Ii(t) is the external input to the neuron. We apply the same procedure to determine the time-

scales of the response of an adaptive neuron to time-dependent perturbations. The dynamic

matrix for an adaptive neuron reads

Aw ¼
� t� 1

m � gwt� 1
m

t� 1
w � t� 1

w

 !

: ð24Þ

Its eigenvalues are

l
�

w ¼
1

2
� t� 1

m � t
� 1

w �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt� 1
m þ t

� 1
w Þ

2
� 4ð1þ gwÞt� 1

m t
� 1
w

q� �

: ð25Þ

and the eigenvectors

x
�
¼

gw
tm
;
1

2
�

1

tm
þ

1

tw
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

tm
�

1

tw

� �2

� 4
gw
tmtw

s0

@

1

A

0

@

1

A

T

: ð26Þ

The eigenvalues are complex if and only if gw> (4τmτw)−1 (τw − τm)2, and in that case their real

part is 1

2tmtw
tm þ twð Þ. As the adaptive time constant becomes slower, at a certain critical adap-

tation time constant both eigenvalues become real. We are interested in the behavior when the
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adaptation time constant is large. The absolute value of the inverse of the eigenvalues deter-

mines the time constants of the dynamics. Therefore, for large τw we can calculate the two real

eigenvalues to first order of t� 1
w

l
þ

w ¼ �
1þgw
tw
þ O t� 2

w

� �
ð27Þ

l
�

w ¼ � t
� 1
m þ gwt� 1

w þ Oðt� 2
w Þ: ð28Þ

In this limit of slow adaptation, the time constant of one eigenmode is proportional to τw,

whereas the second mode scales with τm. We are interested in the amplitude of each mode

with respect to the other.

By explicitly calculating the first entry of the propagator matrix we obtain the adaptive filter

in terms of the eigenvectors and eigenvalues,

hw tð Þ ¼
1

tm

1

x
þ

1
x
�

2
� x

�

1
x
þ

2

x
þ

1
x
�

2
el
þt � x

�

1
x
þ

2
el
� t

� �
; ð29Þ

where we use the notation x
þ

1
to indicate the first component of the eigenvector associated to

the eigenvalue λ+. Approximating to leading order of t� 1
w the eigenvectors in Eq (26), we obtain

the eigenvectors

x� ¼
1

tm
ðgw; 0Þ

T
�

1

tw
ð0; gwÞ

T
¼ gw

1

tm
; �

1

tw

� �T

ð30Þ

xþ ¼
1

tm
ðgw; � 1Þ

T
þ

1

tw
ð0; 1þ gwÞ

T
¼

gw
tm
; �

1

tm
þ

1þ gw
tw

� �T

: ð31Þ

Then, using Eqs (29), (30) and (31), we determine the linear filter:

hw tð Þ ¼
gw

tmð2gw þ 1Þ � tw
e�

1þgw
tw

t þ
1

tm

1 � 1þ gwð Þ
tm
tw

1 � 1þ 2gwð Þ
tm
tw

e�
1
tm
�

gw
twð Þt: ð32Þ

Interestingly, in contrast with synaptic filtering, the amplitude of the two modes are not

equal. The amplitude of the slow mode (first term in Eq 32), whose timescale is proportional

to τw, decays proportionally to t� 1
w with respect to the fast mode, when τw� τm(2gw + 1).

Therefore, the area under the linear filter corresponding to this mode is independent of τw for

very large adaptation time constants:

lim
tw!1

Z 1

0

hþw tð Þ dt ¼ lim
tw!1

gwtw
tmðgw þ 1Þð2gw þ 1Þ � ðgw þ 1Þtw

¼ �
gw

gw þ 1
: ð33Þ

It follows that, if the adaptation timescale is increased, its relative contribution to the activity

will decrease by the same factor, so that very slow adaptive currents will effectively be masked

by the fast mode.

Equilibrium activity

The two systems possess a non-trivial equilibrium state at which the input current of all units

stays constant. Since all units are statistically equivalent, the equilibrium activity is the same

for all units. For synaptic filtering, the input current at equilibrium is given by a transcendental
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equation, that is obtained by setting to zero the left hand side of Eq (17):

x0 ¼ JðCE � gCIÞ�ðx0Þ: ð34Þ

This equilibrium coincides with the fixed point of the system without synaptic filtering.

For adaption, instead, from Eq (16) we obtain that the equilibrium is determined by

x0 ¼
1

1þ gw
J CE � gCIð Þ� x0ð Þ þ gwgð Þ: ð35Þ

We further assume unless otherwise specified that the fixed point of the system is in the linear

regime of the transfer function, so that ϕ(x) = x − γ. In that case x0 = (J(CE − gCI) − gw) (x0 −
γ), so that larger adaptation coupling corresponds to weaker input currents, i.e. decreasing sta-

tionary firing rate. The adaptation time constant does not affect the fixed point.

Dynamics of homogeneous perturbations

We study the neuronal dynamics in response to a small perturbation uniform across the net-

work

xiðtÞ ¼ x0 þ dxðtÞ: ð36Þ

Synaptic filtering. Linearizing Eq 17 we obtain

tm d _xiðtÞ ¼ � dxðtÞ þ dsiðtÞ

tsd_siðtÞ ¼ � dsiðtÞ þ �
0

0

P
jJijdxðtÞ;

(

ð37Þ

where we use the notation �
0

0
≔ d�ðxÞ

dx jx0
. Because the perturbation δx in Eq (37) is independent

of j, using Eq (19) the dynamics for all units are equivalent to the population-averaged dynam-

ics and are given by

tm d _xðtÞ ¼ � dxðtÞ þ dsðtÞ

tsd_sðtÞ ¼ � dsðtÞ þ �0
0
JðCE � gCIÞdx:

(

ð38Þ

From Eq (38) we can define the dynamic matrix

As ¼
1

tm

� 1 1

�
0

0
J CE � gCIð Þ

tm
ts
�

tm
ts

0

@

1

A: ð39Þ

The only difference in the linearized dynamics of the population-averaged current with respect

to the single neuron dynamics (Eq 22) is the non-diagonal entry �
0

0
JðCE � gCIÞ. When either

the derivative at the fixed point cancels, or when the total effective input is zero, the population

dynamics equals the dynamics of a single neuron. The eigenvalues of the population-averaged

dynamics are

l
�

s ¼ �
tm þ ts
2tstm

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tm � ts
2tstm

� �2

þ
JðCE � gCIÞ

tmts

s

: ð40Þ
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and the eigenvectors

x
�

s ¼ � 1;
tm � ts
2tstm

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tm � ts
2tstm

� �2

þ
JðCE � gCIÞ

tmts

s0

@

1

A

T

: ð41Þ

For very large synaptic time constants, the eigenvalues are approximated to leading order as

l
þ

s ¼
JðCE � gCIÞ � 1

ts
þ O t� 2

s

� �
ð42Þ

l
�

s ¼ �
1

tm
�

JðCE � gCIÞ

ts
ð43Þ

Approximating as well the eigenvectors to leading order, we obtain

x
þ
¼

1

tm
;

1

tm
�

1 � JðCE � gCIÞ

ts

� �T

ð44Þ

x
�
¼

1

tm
; �

JðCE � gCIÞ

ts

� �T

ð45Þ

the filter of the linear response to weak homogeneous perturbations reads:

hsðtÞ ¼
1

ts

x
�

1
x
þ

1

x
þ

1
x
�

2
� x

�

1
x
þ

2

el
� t � el

þt
� �

ð46Þ

¼
1

ts

ts � tmð1 � JðCE � gCIÞÞ

ts � tmð1 � 2JðCE � gCIÞÞ
el
� t � el

þt
� �

ð47Þ

Note that the amplitude of the two exponential terms is the same, independently of the effec-

tive coupling and time constants.

Adaptation. For the system with adaptive neurons, the linearized system reads

tm d _xiðtÞ ¼ � dxiðtÞ � gwdwiðtÞðtÞ þ �
0

0

P
jJijdxðtÞ

twd _wiðtÞ ¼ � dwiðtÞ þ dxðtÞ:

(

ð48Þ

As for the network with synaptic filtering, the dynamics of the perturbation are equivalent for

each unit, so that we can write down the dynamic matrix for the population-averaged response

to homogeneous perturbations

Aw ¼
1

tm

� 1þ �
0

0
JðCE � gCIÞ � gw
tm
tw

�
tm
tw

0

@

1

A: ð49Þ

The difference with respect to the linear single neuron dynamics (Eq 48) is that the effective

recurrent coupling appears now in the first diagonal entry of the dynamic matrix.

When the fixed point is located within the linear range of the transfer function, the deriva-

tive is one, so that we do not further specify the factor �
0

0
in the following equations. Conse-

quently, the dynamics of the system to small perturbations do not depend on the exact value of

the fixed point, which does not hold for more general transfer functions.
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The eigenvalues of the system read

l
�

w ¼ �
1 � Jeff

2tm
�

1

2tw

� �

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4tmðJeff � 1 � gwÞ

tw Jeff � 1 �
tm
tw

� �2

v
u
u
t

0

B
@

1

C
A; ð50Þ

with eigenvectors

x
�

w ¼ 2gw;
tm
tw
þ Jeff � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tm
tw
� Jeff þ 1

� �2

� 4
tm
tw

gw � Jeff þ 1ð Þ

s0

@

1

A

T

ð51Þ

In the limit of very slow adaptation, given that the two eigenvalues are real, they can be

approximated to leading order as

l
þ

w ¼ 1þ
tm

twðJðCE � gCIÞ � 1Þ
þ O t� 2

w

� �
ð52Þ

l
�

w ¼ �
1

tw
1 �

gw
JðCE � gCIÞ � 1

� �

þ O t� 2

w

� �
ð53Þ

and the corresponding eigenvectors read

x
þ

w ¼ 1;
1

Jeff � 1

tm
tw

� �T

ð54Þ

x
�

w ¼ gw; Jeff � 1þ
tm
tw

1 �
gw

Jeff � 1

� �� �T

: ð55Þ

Therefore, if the perturbation is stable (see next section) we can write down the corresponding

linear filter as

hw tð Þ ¼
1

tm

Jeff � 1þ
tm
tw

1 �
gw
Jeff

� �

Jeff � 1þ
tm
tw

1 �
2gw
Jeff

� � el
þ
w t �

gw
twðJeff � 1Þ

2
þ tmðJeff � 1 � 2gwÞ

el
�
w t: ð56Þ

The area under the slow mode is again independent of the adaptation time constant in this

limit,

lim
tw!1

Z 1

0

h�w tð Þ dt ¼ �
gw

ðJeff � 1ÞðJeff � 1 � gwÞ
: ð57Þ

Stability of homogeneous perturbations

The equilibrium point is stable when the real part of all eigenvalues is negative. Equivalently,

in a two dimensional system –as it is the case for the population-averaged dynamics–, the

dynamics are stable when the trace of the dynamic matrix is negative and the determinant

positive.
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Synaptic filtering. In the system with synaptic filtering, the trace and determinant are

Trs ¼ �
1

tm
�

1

ts
ð58Þ

Dets ¼
1 � JðCE � gCIÞ

tmts
: ð59Þ

The trace is therefore always negative. The determinant is positive, and therefore the popula-

tion-averaged dynamics are stable, when the effective coupling J(CE − gCI) is smaller than

unity. In contrast, if the effective coupling is larger than unity, i.e. if positive feedback is too

strong, the equilibrium firing rate is unstable, so that any small perturbation to the equilibrium

firing rate will lead the system to a different state. Right at the critical effective coupling, one

eigenvalues is zero and the other one equals Trs, implying that the population-averaged

dynamics undergo a saddle-node bifurcation. Beyond the bifurcation, the network reaches a

state where the firing rates of all neurons saturate.

Adaptation. In the adaptive population dynamics, the recurrent connectivity has a differ-

ent effect on the stability of the adaptive population dynamics. The trace and determinant of

the dynamic matrix are

Tr w ¼ �
1

tm
�

1

tw
þ t� 1

m J CE � gCIð Þ; ð60Þ

Det w ¼ ðtmtwÞ
� 1
ð1 � JðCE � gCIÞ þ gwÞ: ð61Þ

Both the timescale τw and the strength gw of adaptation affect the trace and determinant of the

dynamic matrix, and therefore the stability. The system is unstable if the determinant is nega-

tive (one positive and one negative real eigenvalue) or if the determinant is positive and the

trace is positive. The determinant is negative, and therefore the system becomes unstable

through a saddle-node bifurcation, when J(CE − gCI)> 1 + gw. Note that the adaptation

strength increases the stability of the system: a stronger positive feedback loop is required to

destabilize the fixed point, in comparison to the network with synaptic filtering. The determi-

nant and trace are positive if J(CE − gCI)< 1 + gw but J CE � gCIð Þ > 1þ
tm
tw

, respectively,

leading to a Hopf bifurcation: the system produces sustained marginal oscillations at the bifur-

cation in response to small perturbations around the fixed point. Beyond the Hopf bifurcation,

the oscillations are maintained in time, unless the system shows a fixed point when all neurons

saturate (x0 ¼
1

1� gw
J CE � gCIð Þ�max þ gwgð Þ). This fixed point exists if x0 > ϕmax + γ.

Heterogeneous activity

We next study the network dynamics beyond the population-averaged activity, along modes

where different units have different amplitudes. We study perturbations of the type

xiðtÞ ¼ x0 þ dxiðtÞ: ð62Þ

We define the 2N-dimensional vector x ¼ ðdx1; :::; dx1
N ; dw

1
1
; :::; dw1

NÞ
T
. Since the dynamics of

each unit is now different, the dynamic matrix of the linearized system, A, is described by a

squared matrix of dimensionality 2N. Therefore, the perturbations generate dynamics along

2N different modes whose timescales are determined by the eigenvalues of the matrix A. The

eigenvalues are determined by the characteristic equation |A − λI| = 0. In order to calculate

these eigenvalues, we make use of the following identity which holds for any block matrix
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Z = A − λI, that is composed by the four square matrices P,Q, R, and S and the block S is

invertible:

jZj≔
P Q
R S

� ��
�
�
�

�
�
�
� ¼ jSjjP � QS� 1Rj: ð63Þ

Consequently, if we set Eq (63) to zero, since we assumed that |S| 6¼ 0, we obtain

jZj ¼ 0) jP � QS� 1Rj ¼ 0: ð64Þ

The identity in Eq (63) can be shown by using the decomposition

Z ¼
I 0

0 S

 !
I Q

0 I

 !
P � QS� 1R 0

S� 1R I

 !

; ð65Þ

together with the fact that when a non-diagonal block is zero. The determinant of such a

matrix is the product of determinants of the diagonal blocks.

Synaptic filtering. The dynamical matrix for the network with synaptic filtering, obtained

by linearizing Eq (17), is

ð66Þ

The matrix J is the connectivity matrix. Again, we assume in the following that the fixed point

is located in the linear range of the transfer function, so that �
0

0
¼ 1.

The characteristic equation, obtained by combining Eqs (64) and (66), reads

� 1þ tmlsð ÞIþ
tm
ts
þ tmls

� �� 1
tm
ts
J

�
�
�
�
�

�
�
�
�
�
¼ � 1þ tmlsð Þ þ

lJ

1þ tsls
¼ 0; ð67Þ

where λJ are the eigenvalues of the connectivity matrix. Solving for λJ we obtain the equation

which maps the eigenvalues of the synaptic filtering network dynamics λs onto the eigenvalues

of the connectivity matrix λJ,

lJ ¼ ð1þ tmlsÞð1þ tslsÞ: ð68Þ

In contrast, solving for the eigenvalues of the dynamic matrix λs we obtain the inverse map-

ping

l
2

s þ
ts þ tm
tstm

ls þ
1 � lJ

tstm
¼ 0: ð69Þ

In other words, Eqs 69 and 68 constitute two different approaches to assessing the stability of

the system [37]. One approach is to examine whether the domain of eigenvalues λs resulting

from Eq (69) intersect the line Re (λs) = 0 (Fig 3, insets in B). The eigenvalues λJ of the connec-

tivity matrix are distributed within a circle in the complex plane, whose radius is proportional

to the synaptic strength, lJ < J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
plus an outlier real eigenvalue at J(CE − gCI) that

corresponds to the homogeneous perturbations studied above (see [36]). We focus in this sec-

tion on the bulk of eigenvalues that corresponds to modes of activity with different amplitudes

for different units. We can therefore parametrize the eigenvalues λJ as

lJðyÞ ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
eiy ð70Þ

and introduce the parametrization into Eq (69) to obtain an explicit expression for the curve
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that encloses the eigenspectrum λs. Note that in an abuse of notation, we denote the limits of

the eigenspectrum as λ and not the eigenvalues themselves that constitute the eigenspectrum.

The alternative approach is to use the inverse mapping from the eigenvalues λs to the eigen-

values of the connectivity λJ, by mapping the line Re (λs) = 0 into the space of eigenvalues λJ
(see S1 Fig). More specifically, the line Re (λs) = 0 can be parametrized as

ls ¼ �io; ð71Þ

and introduced into Eq (68). In this case, the stability is assessed by whether the eigenspectrum

of the connectivity matrix J crosses the stability boundary or not (insets in Fig 3). This alterna-

tive approach is useful for some calculations due to the simple geometry of the connectivity

eigenspectrum λJ.
Taking the alternative approach, introducing Eq (71) into Eq (68), we obtain the stability

bound in the complex plane of eigenvalues λJ:

l
sb
J ¼ ð1þ itmoÞð1þ itsoÞ: ð72Þ

The first point of the stability curve l
sb
J ðoÞ intersecting with a circle of increasing radius

centered at the origin is the closest point of the curve to the origin, i.e. the minimum of jl
sb
J j

2

with respect to ω. The squared distance to the origin is

jl
sb
J j

2
¼ ð1þ t2

mo
2Þð1þ t2

wo
2Þ; ð73Þ

whose minimum happens trivially at ω = 0, λJ = 1 (see S1 Fig). In conclusion, the system is

unstable if

J2ðCE þ g2CIÞ > 1: ð74Þ

Note that this is the same condition as in the case without synaptic filtering, The synaptic filter-

ing system approaches the no-filtering system when τs! 0. Although we are considering in

this work synaptic timescales that are larger than the membrane time constant, the analysis is

valid for arbitrarily fast synaptic time constants. In that limit, the stability curve in Eq (72)

approaches the curve l
sb
J ¼ 1, retrieving the stability boundary found in [29].

To study the limit of slow synaptic time constant, τs� τm, we analyze the direct approach,

i.e. study how the parameters of adaptation modify the eigenspectrum of the dynamic matrix

As in the complex plane of eigenvalues λs. To this end, we introduce the parametrized connec-

tivity eigenspectrum (Eq 70) into Eq (69), and approximate it to leading order of
tm
ts

. We obtain

that the eigenspectrum of eigenvalues λs are enclosed by the curves

l
þ

s �
1

ts
J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
eiy � 1

� �

ð75Þ

l
�

s � �
1

tm
�

1

ts
J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
eiy � 1

� �
: ð76Þ

The equations above approximate the full eigenspectrum by two disjoint circles of radius

t� 1
s J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
, the one corresponding to the l

þ

s eigenvalues centered at � 1

ts
, and the other

circle λ− centered at � 1

tm
þ 1

ts
. The circle centered closer to the instability bound, l

þ

s sets the

slow timescales of the network, and its associated timescale is proportional to τs. This gives an

intuitive explanation to why the network timescale scales linearly with the synaptic time con-

stant (Fig 5).
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Adaptation. For adaptation, we repeat the same procedure as for the synaptic filtering to

determine the stability to heterogeneous perturbations. The dynamical matrix reads

ð77Þ

Using Eqs (64) and (77) we can obtain the characteristic equation. Solving for λJ we obtain

the mapping between the λw eigenvalues and the connectivity eigenvalues

lJ ¼ 1þ tmlw þ gw
tm
tw

tmlw þ
tm
tw

� �� 1

; ð78Þ

while solving for λw we obtain the expression for the inverse mapping:

ðtmlwÞ
2
þ 1þ

tm
tw
� lJ

� �

tmlw þ
tm
tw

1þ gw � lJ

� �
¼ 0: ð79Þ

We first explore the inverse mapping. Inserting the parametrization in Eq (71) into Eq (78),

the stability curve in the complex plane of connectivity eigenvalues reads

l
sb
J oð Þ ¼ 1þ

gw
1 � t2

wo
2
þ io tm � tw

gw
1 � t2

wo
2

� �

: ð80Þ

The bifurcation parameters can then be found by determining the closest point of the stabil-

ity boundary to the origin. The corresponding value of ω determines the oscillatory frequency

of the first unstable mode. This value can be zero, corresponding to a zero-frequency bifurca-

tion, which generally leads to slowly fluctuating activity referred to as rate chaos ([29], [35],

[40], [33]). Alternatively, when the parameter ω that minimizes the norm of l
sb
J is non-zero,

the system undergoes a Hopf bifurcation.

It is useful to consider the different geometries of the stability curve in Eq (80) in order to

identify the closest point of the curve to the origin. Note that the curve shows symmetry with

respect to the real axis, l
sb
J ð� oÞ ¼ l

sb�
J ðoÞ.

The curve might cross the real axis Im (λJ) = 0 either in one or two different values of |ω|.

Solving Reðlsb
J Þ ¼ 0, we find that the curve crosses twice the real axis, when τm< τwgw (see

S1Bi Fig). In that case, one crossing is the point tmlJ ¼ 1þ
tm
tw

and the other τmλJ = 1 + gw.

This second intersection corresponds to ω = 0. Therefore, it is clear that, since the first crossing

of the real axis is closer to the origin than the point at ω = 0, the bifurcation necessarily occurs

at non-zero frequency for τm< τwgw.

When the curve crosses only once the zero axis, the point λJ = 1 + gw, corresponding to a

zero-frequency, is not necessarily the closest one to the origin (S1Bii Fig). One approach to

determine analytically whether the system undergoes a Hopf or a zero-frequency bifurcation is

to look at the curvature at the point ω = 0 and compare it to the curvature of a circle with

radius 1 + gw. To do so, we approximate both the stability line and the circle by a parabola, and

compare their curvatures (dashed curve, S1Bii and S1Biii Fig). First, we write the stability

boundary in its implicit form, l
sb
J ≔ xsb

J þ iysbJ , as

ðysbÞ2 � xsb � 1 � gwð Þ xsb � 1 �
tm
tw

� �2
1

xsb � 1
¼ 0: ð81Þ

Then, we consider small deviations of the coordinates xsb = 1 + gw + �x and ysb = �y. If we
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approximate up to first order of �x and second order of �y we obtain the parabola

�2
y ¼

gw �
tm
tw

� �2

gw
�x þ O �2

x

� �
: ð82Þ

Repeating the same procedure for the circle of eigenvalues, with radius r = 1 + gw we obtain

�2
y ¼ 2ð1þ gwÞ�x þ Oð�2

xÞ. By requiring the circle of eigenvalues to be interior to the boundary

curve (for the same �x, �
2
y;circle < �2

y;sb), we obtain that the instability parabola is exterior to the

circle, therefore the system undergoes a zero-frequency bifurcation (S1C Fig), when

gw �
tm
tw

� �2

gw
�x < 2 1þ gwð Þ�x

ð83Þ

which simplifies to

tm
tw
> gw þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gwðgw þ 1Þ

p
: ð84Þ

In the limit of the adaptation timescale approaching the membrane time constant, the left

side of the inequality above approaches one. Introducing this value in Eq 84, we find that for

adaptive couplings stronger than gw >
ffiffiffi
5
p
� 2 only a Hopf bifurcation is possible.

Dynamical mean field theory

The linearization of the dynamical system from the previous section is only valid up to the

instability boundary. A commonly used method to study the dynamics that arise beyond the

bifurcation is dynamical mean field theory (DMFT) [29, 33–35, 39–41]. DMFT approximates

the deterministic input to each element of the system by a Gaussian stochastic process, whose

first and second moment are determined self-consistently.

The dynamics of the i-th neuron in the synaptic and adaptive network are approximated as

tm _xiðtÞ ¼ � xiðtÞ þ siðtÞ

ts _siðtÞ ¼ � siðtÞ þ xiðtÞ;

(

ð85Þ

tm _xiðtÞ ¼ � xiðtÞ � gwwiðtÞ þ xiðtÞ

tw _wiðtÞ ¼ � wiðtÞ þ xiðtÞ � g;

(

ð86Þ

where ξi(t) is a Gaussian variable. In the thermodynamic limit, the noise sources are indepen-

dent between neurons, so that for i 6¼ j [ξi(t)ξj(t0)] = 0.

The next step is to determine the self-consistent equations, that links the distribution of ξi
to the statistics of the original system in Eqs (16) and (17). First, we relate the statistics of the

noise, currents xi and rates ϕ(xi) based on the dynamics. Then, we close the equations by

explicitly assuring that the transfer function relates the currents and the rates.

To determine the first moment of the noise, we apply that ξi(t) = ∑j Jij ϕ(xj(t)) and average

over the population, as in [33]. The first moment of the noise then obeys

½xi� ¼
XN

j¼1

Jij�jðtÞ

* +

¼ JðCE � gCIÞh�i: ð87Þ
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We calculate next the relation for the second moment of the noise, which again is the same

as in [33]:

½xiðtÞxjðt þ tÞ� ¼
XN

k¼1

Jik�kðtÞ
XN

l¼1

Jjl�lðtÞ

* +

¼ dijJ2ðCE þ g2CIÞðCðtÞ � h�i
2
Þ; ð88Þ

where C(τ) = hϕi(t)ϕi(t + τ)i.

These equations show that the first and second moment of the Gaussian sources do not

depend on the identity of neuron i, so that all neurons are statistically equivalent. Thus, we can

reduce the full 2N-deterministic system to a two-variable stochastic system, describing a proto-

typical neuron in the network.

The Eqs (87) and (88) describe how the noise is related to the properties of the connectivity

and the statistics of the rates ϕ(x). The next step is to calculate how the first and second

moment of the noise are related to the statistics of the input current, which we write as

μ≔ [xi] for the first moment and Δ(τ) ≔ [xi (t) xi (t + τ)] − μ2 for the second moment.

For the mean of the input current, averaging over units Eqs (85) and (86) and introducing

the result in (87) for the synaptic and adaptive system respectively, we obtain

ms ¼ ½x� ¼ JðCE � gCIÞh�i; ð89Þ

mw ¼
1

1þ gw
gwgþ x½ �ð Þ ¼

1

1þ gw
gwgþ J CE � gCIð Þh�ið Þ: ð90Þ

By differentiating twice Δ(τ) with respect to the lag τ and using Eqs (85) and (88), as in [29,

33] we obtain:

€DsðtÞ ¼ DsðtÞ þ ðQs � DsÞðtÞ � J2ðCE þ g2CIÞðCðtÞ � h�i
2
Þ; ð91Þ

where QsðtÞ≔
R þ1
� 1

dthsðtÞhsðt þ tÞ is the autocorrelation function of the single neuron filter

hs (Eq 23). Equivalently, for the adaptive system, using Eqs (86) and (88) we obtain

€DwðtÞ ¼ DwðtÞ þ ðgwðgwQw þ hsym
w þ

_hsym
w Þ � DwÞðtÞ � J2ðCE þ g2CIÞðCðtÞ � h�i

2
Þ: ð92Þ

where we define in relation to Eq (6) hsym
w ðtÞ ¼ hwðjtjÞ, and the autocorrelation function of the

adaptive filter Qw≔
R þ1
� 1

dthwðtÞhwðt þ tÞ.
Secondly, in order to close the self-consistent description, we can link the statistics of the

rates ϕi(t) with the statistics of the currents xi(t) by writing the input currents explicitly as

Gaussian variables. We can write down the input current at time t and t + τ explicitly as (see

[34]):

xðtÞ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð0Þ � jDðtÞj

p
z1 þ sgnðDðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
jDðtÞj

p
z3

ð93Þ

xðt þ tÞ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð0Þ � jDðtÞj

p
z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jDðtÞj

p
z3: ð94Þ

This explicit construction in terms of Gaussian variables z1, z2 and z3 realizes the constraints

[x2 (t)] − μ2 = Δ(0), [x2 (t + τ)] − μ2 = Δ(0) and [x(t) x (t + τ)] − μ2 = Δ(τ). Now, explicitly calcu-

lating the first moment of the rates by replacing the average for a Gaussian integral and using
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Eq (93) we obtain

h�i ¼

Z

Dz�ðmþ
ffiffiffiffiffiffiffiffiffiffi
Dð0Þ

p
zÞ ð95Þ

where we use the short-hand notation
R
Dz ¼

R þ1
� 1

1ffiffiffiffiffi
2 pi
p dz.

For the second moment, introducing Eqs (93) and (94) into the definition of autocorrela-

tion function of the rate, we get

CðtÞ ¼
Z

Dz3

Z

Dz1�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð0Þ � jDðtÞj

p
z1 þ sgnðDðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
jDðtÞj

p
z3Þ

Z

Dz2�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð0Þ � jDðtÞj

p
z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jDðtÞj

p
z3Þ:

ð96Þ

Therefore, in order to determine the self-consistent solution, we need to find a mean and

autocorrelation function for the currents that satisfy both Eqs (95) and (96) and Eqs (89) and

(91) (for the synaptic system) and Eqs (90) and (92) (for the adaptive system). Once the statis-

tics of the currents and rates are known, it is straight-forward to obtain the statistics of the

noise, using Eqs (87) and (88).

In previous works [29, 33, 35, 38, 40] it was possible to further simplify the self-consistent

equations because the resulting analogous equation to Eqs (91) and (92) was a conservative

system. However, in the networks studied here, synaptic filtering and adaptation add the con-

volutional terms in Eqs (91) and (92) that make the system non-conservative. Therefore, we

followed an alternative approach and found the solutions to the self-consistent equations using

an iterative scheme, that circumvents solving directly the integral equations.

Iterative scheme. We solve the self-consistent equations numerically following a single-

unit iterative scheme, as in [41–44]:

• First, we simulate the dynamics in Eqs (85) and (86) assuming white Gaussian noise with a

certain mean [ξ](0) and autocorrelation function ½xðtÞxðt þ tÞ� ¼ ðsð0Þx Þ
2
dðtÞ.

• We calculate the autocorrelation functions of the firing rate and input currents empirically,

μ(0), Δ(0), hϕi(0) and C(0)(τ).

• We simulate in the new iteration k + 1 the noise following the self-consistent statistics

obtained in the previous iteration, as indicated by Eqs (87) and (88)

½x�
ðkþ1Þ
¼ JðCE � gCIÞh�i

ðkÞ ð97Þ

½xðtÞxðt þ tÞ�ðkþ1Þ
¼ J2ðCE þ g2CIÞðCðkÞðtÞ � h�i

ðkÞ
Þ: ð98Þ

In order to numerically generate a Gaussian variable with autocorrelation function G(τ), we

first generate the noise in the Fourier domain, where each frequency component of the noise

is given by

~xðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
~GðoÞ

q

eic; ð99Þ

where ~GðoÞ denotes the Fourier transform of the target autocorrelation function, and ψ is a

random variable with uniform probability density in the range [−π, π].

• We repeat the previous step until the values μ(k), Δ(k), hϕi(k) and C(k)(τ) do not vary beyond a

certain tolerance for new iterations.
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We find that such an iterative method applied to the systems studied here converges to a

solution for the parameters of the noise after a few iterations, independently of the noise prop-

erties used in the initial step.

The drawbacks of this iterative scheme are that the two-dimensional system needs to be

simulated several times at each iteration in order to determine the first and second order statis-

tics of the input current and the firing rate, which is in general a computationally costly opera-

tion. We also find that the method converges more robustly to the solution (given the fact that

both the trial length in the simulation and the number of trials are finite), at the expense of ini-

tial speed convergence, when the first and second moments of the noise are only partially

updated at each iteration, so that

½x�
ðkþ1Þ
¼ ð1 � aÞ½x�

ðkÞ
þ aJðCE � gCIÞh�i

ðkÞ
; ð100Þ

and similarly for the second-moment equation, where α is a parameter between zero and one.

In this work, we used α = 0.6.

This method is inefficient for very large adaptation and synaptic time constants, since it

requires simulating with both a fine temporal resolution (faster than the membrane time con-

stant) over very large intervals (much larger than the slow adaptive/synaptic timescale).

Another drawback of the iterative method is that its convergence is based on the assumption

that smooth changes in the noise statistics lead to smooth changes in the statistics of the firing

rates. In general, close to a bifurcation, this requirement may not hold.

Dynamics with intrinsic noise. We next study how white Gaussian noise, independent

between neurons and intrinsic to each unit in the network, affects the dynamics of the system.

On the mean-field level, this is equivalent to studying a network where each neuron spikes at a

Poisson process whose rate varies in time as ϕ(xi (t)) [35]. The additional input to each neuron,

whose dynamics are given in Eqs (2) and (3), is now

Iexti ðtÞ ¼ ZiðtÞ; ð101Þ

where [ηi] = 0, and Zi tð ÞZj t þ tð Þ
h i

¼ dij
s2
Z

2
d tð Þ, and Gaussian distributed. The DMF equa-

tions are derived following the same steps as in the absence of intrinsic noise. The stochastic

variable ξ(t) is the sum of the recurrent input and the intrinsic noise. Its first moment remains

unchanged:

½xðtÞ� ¼
XN

j¼1

Jij�ðxjðtÞÞ þ ZiðtÞ

* +

ð102Þ

¼ JðCE � gCIÞh�i; ð103Þ

which is the same result as Eq (87). The second moment of the stochastic process is the sum of

the variance generated by the recurrent connections and the variance of the intrinsic noise

½xðtÞxðt þ tÞ� ¼
XN

k¼1

Jik�kðtÞ
XN

l¼1

Jil�lðtÞ þ ZiðtÞZiðt þ tÞ

* +

ð104Þ

¼ J2 CE þ g2CIð Þ C tð Þ � h�i
2

� �
þ

1

2
s2

Z
d tð Þ: ð105Þ

Accordingly, the iterative scheme now takes into account the equation above, so that the

equation for the second moment of the self-consistent relation (Eq 98) reads when there is
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intrinsic noise

½xðtÞxðt þ tÞ�ðkþ1Þ
¼ J2 CE þ g2CIð Þ CðkÞ tð Þ � h�iðkÞ

� �
þ

1

2
s2

Z
d tð Þ: ð106Þ

Adding white noise produces a discontinuity in the derivative of the autocorrelation func-

tion of the firing rates at zero lag (Fig 7A and 7D). This can be shown by integrating explicitly

both sides of the Eqs (91) and (92) around zero when the external noise is added. It results in

the condition

_D 0þð Þ � _D 0�ð Þ ¼
1

2
s2

Z
: ð107Þ

Since the autocorrelation function is a symmetric function, _Dð0þÞ ¼ � _Dð0þÞ, leading to

_D0 ¼ s
2
Z
: ð108Þ

Thus, the autocorrelation function of the input current decays linearly at zero time lag with a

slope proportional to the external noise intensity, which also extends to the autocorrelation

function of the firing rate.

Definition of the timescale of the activity

The activity of multivariable dynamical systems ranges over several timescales. In particular,

for stable linear systems, the timescales of the activity are given by the inverse of the absolute

values of the real part of the eigenvalues. As we showed before, for single adaptive or synaptic

neurons, the activity consists of two modes that evolve at two different timescales. However,

the relative contribution of each of the excited modes can make one timescale more predomi-

nant than the other, as it happens for slow adaptation time constant, which becomes effectively

undetectable in the single neuron dynamics.

In this work, we calculate the timescale of the activity for linear systems as the average of

the timescales of the activated input current modes, weighed by their contribution (Fig 1). For

a linear system with filter h tð Þ ¼
P

kake
� t
tk , the correlation time is

tcorr ¼

P
kjakjtkP
kjakj

: ð109Þ

For large networks, which are high-dimensional non-linear systems, we define the main

timescale of the activity as the time lag at which the autocorrelation function has decayed to a

fraction e� 1
2 of its maximum (Figs 5 and 7):

tcorr ¼ 2 � argmin
t

E C tð Þ½ � �
E½CðtÞ�

ffiffi
e
p

�
�
�
�

�
�
�
�; ð110Þ

where E[C(τ)] is the envelope of the autocorrelation function, calculated as the norm of its ana-

lytic signal, computed using the Hilbert transform. This corresponds to the width of the enve-

lope at which the autocorrelation decays to e−0.5 of its value. For an exponentially decaying

correlation function, this measure corresponds to the decay time constant. For a Gaussian

envelope, this measure would correspond to two times its standard deviation, 2σ.

Supporting information

S1 Fig. Geometrical description of the bifurcation of the heterogeneous activity. A:

Instability bound for the system with synaptic filtering (grey line, Eq 72) and eigenspectrum
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for the weakest unstable synaptic coupling J. For any parameter combination, the instability

bound, a parabola, is first touched by the growing circle of eigenvalues at ω = 1 and value

J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE þ g2CI

p
¼ 1: B: Three different configurations of the instability bound for the system

with adaptation in the complex plane of eigenvalues of the connectivity matrix, λJ. The black

dots indicate the intersection between the instability boundary (full red line) and the eigen-

spectrum of λJ (dashed black line) with weakest coupling that is unstable. (i) The instability

boundary intersects the real axis twice, leading to a Hopf bifurcation. (ii) It intersects the real

axis just once and still leads to a Hopf bifurcation, because the intersection with the real axis is

not the closest point of the curve to the origin. (iii) It intersects the real axis once and leads to a

zero-frequency bifurcation, because the crossing of the real axis is the closest point to the ori-

gin. In (ii) and (iii) we draw the parabolic approximation of the instability bound (red dashed

line, Eq 82). If the curvature of this parabola is exterior to the λJ eigenspectrum, as in (iii), the

system undergoes a zero-frequency bifurcation. C: Oscillatory frequency at which the network

with adaptation undergoes a bifurcation. To the right of the white line (Eq 84), the network

displays a Hopf bifurcation, whereas to the left, the bifurcation happens at zero-frequency. The

triangles indicate the parameter combinations used in B.

(TIF)

Author Contributions

Conceptualization: Manuel Beiran, Srdjan Ostojic.

Data curation: Manuel Beiran, Srdjan Ostojic.

Formal analysis: Manuel Beiran, Srdjan Ostojic.

Funding acquisition: Manuel Beiran, Srdjan Ostojic.

Investigation: Manuel Beiran, Srdjan Ostojic.

Methodology: Manuel Beiran, Srdjan Ostojic.

Project administration: Srdjan Ostojic.

Resources: Manuel Beiran, Srdjan Ostojic.

Software: Manuel Beiran.

Supervision: Srdjan Ostojic.

Validation: Manuel Beiran, Srdjan Ostojic.

Visualization: Manuel Beiran, Srdjan Ostojic.

Writing – original draft: Manuel Beiran, Srdjan Ostojic.

Writing – review & editing: Manuel Beiran, Srdjan Ostojic.

References

1. Fairhall AL, Lewen GD, Bialek W, De Ruyter van Steveninck RR. Efficiency and ambiguity in an adap-

tive neural code. Nature. 2001; 412(6849):787–792. https://doi.org/10.1038/35090500 PMID:

11518957

2. Grothe B, Pecka M, McAlpine D. Mechanisms of Sound Localization in Mammals. Physiological

Reviews. 2010; 90(3):983–1012. https://doi.org/10.1152/physrev.00026.2009 PMID: 20664077

3. Tchumatchenko T, Malyshev A, Wolf F, Volgushev M. Ultrafast Population Encoding by Cortical Neu-

rons. Journal of Neuroscience. 2011; 31(34):12171–12179. https://doi.org/10.1523/JNEUROSCI.2182-

11.2011 PMID: 21865460

Effects of adaptation and synaptic filtering on the timescales of recurrent networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006893 March 21, 2019 30 / 33

https://doi.org/10.1038/35090500
http://www.ncbi.nlm.nih.gov/pubmed/11518957
https://doi.org/10.1152/physrev.00026.2009
http://www.ncbi.nlm.nih.gov/pubmed/20664077
https://doi.org/10.1523/JNEUROSCI.2182-11.2011
https://doi.org/10.1523/JNEUROSCI.2182-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21865460
https://doi.org/10.1371/journal.pcbi.1006893


4. Smith PL, Ratcliff R. Psychology and neurobiology of simple decisions. Trends in Neurosciences. 2004;

27(3):161–168 https://doi.org/10.1016/j.tins.2004.01.006 PMID: 15036882

5. Miyashita Y, Chang HS. Neuronal correlate of pictorial short-term memory in the primate temporal cor-

tex. Nature. 1988; 331(6151):68–70. https://doi.org/10.1038/331068a0 PMID: 3340148

6. Bair W, Movshon JA. Adaptive Temporal Integration of Motion in Direction-Selective Neurons in

Macaque Visual Cortex. Journal of Neuroscience. 2004; 24(33):7305–7323. https://doi.org/10.1523/

JNEUROSCI.0554-04.2004 PMID: 15317857

7. Bernacchia A, Seo H, Lee D, Wang XJ. A reservoir of time constants for memory traces in cortical neu-

rons. Nature Neuroscience. 2011; 14(3):366–372. https://doi.org/10.1038/nn.2752 PMID: 21317906

8. Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, et al. A hierarchy of intrinsic time-

scales across primate cortex. Nature Neuroscience. 2014; 17(12):1661–1663. https://doi.org/10.1038/

nn.3862 PMID: 25383900

9. Wang XJ. Synaptic reverberation underlying mnemonic persistent activity; Trends in Neurosciences.

2001; 24(8):455–643. https://doi.org/10.1016/S0166-2236(00)01868-3 PMID: 11476885

10. Wang XJ. Decision Making in Recurrent Neuronal Circuits; Neuron. 2008; 60(2):215–234. https://doi.

org/10.1016/j.neuron.2008.09.034 PMID: 18957215

11. Litwin-Kumar A, Doiron B. Slow dynamics and high variability in balanced cortical networks with clus-

tered connections. Nature Neuroscience. 2012; 15(11):1498–1505. https://doi.org/10.1038/nn.3220

PMID: 23001062

12. Huang C, Doiron B. Once upon a (slow) time in the land of recurrent neuronal networks. . . Current Opin-

ion in Neurobiology. 2017; 46:31–38. https://doi.org/10.1016/j.conb.2017.07.003 PMID: 28756341

13. Buonomano DV, Maass W. State-dependent computations: Spatiotemporal processing in cortical net-

works. Nature Reviews Neuroscience. 2009; 10(2):113–125. https://doi.org/10.1038/nrn2558 PMID:

19145235

14. Zucker RS, Regehr WG. Short-Term Synaptic Plasticity. Annual Review of Physiology. 2002; 64

(1):355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547 PMID: 11826273

15. Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neu-

rons. Proceedings of the National Academy of Sciences. 1998. https://doi.org/10.1073/pnas.95.9.5323

16. Newberry NR, Nicoll RA. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells.

Nature; 308(5958):450–2. https://doi.org/10.1038/308450a0

17. Batchelor AM, Madge DJ, Garthwaite J. Synaptic activation of metabotropic glutamate receptors in the

parallel Fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience. 1994; 63(4):911–915. https://

doi.org/10.1016/0306-4522(94)90558-4 PMID: 7535396

18. Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends in neurosci-

ences. 1991; 14(2):60–7. https://doi.org/10.1016/0166-2236(91)90022-M PMID: 1708538

19. Lester RAJ, Clements JD, Westbrook GL, Jahr CE. Channel kinetics determine the time course of

NMDA receptor-mediated synaptic currents. Nature. 1990; 346(6284):565–567. https://doi.org/10.

1038/346565a0 PMID: 1974037

20. Johnston D, Wu SMs. Foundations of cellular neurophysiology. MIT Press; 1995.

21. Berridge MJ, Bootman MD, Roderick HL. Calcium: Calcium signalling: Dynamics, homeostasis and

remodelling; 2003. Nature Reviews Molecular cell biology. 2003; 4(7):517. https://doi.org/10.1038/

nrm1155 PMID: 12838335

22. Gal A, Eytan D, Wallach A, Sandler M, Schiller J, Marom S. Dynamics of Excitability over Extended

Timescales in Cultured Cortical Neurons. Journal of Neuroscience. 2010; 30(48):16332–16342. https://

doi.org/10.1523/JNEUROSCI.4859-10.2010 PMID: 21123579
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