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INTRODUCTION

Infrared (IR) spectroscopic imaging is a promising av-
enue for computerized disease diagnosis [1-7], especially
for cancer [1,2,8-18] and a multitude of other diseases [19].
It is of particular relevance for recognizing features within
solid tissues in which a variety of cell types and disease
states may be present. Utilizing the tandem spatial and mo-
lecular information acquired using a combination of IR
spectroscopy and optical microscopy, this technique relies

on using the biochemical composition as a means to auto-
mate disease identification. In IR imaging, no stains are
used. Instead, the chemical composition of the material is
recorded via a local spectrum and computer algorithms are
used to relate the data to underlying physiologic condi-
tions. Since only light is used to record the necessary data,
the technology is entirely non-perturbing to a prepared
sample. The overall idea of using IR imaging for biologi-
cal applications is shown in Figure 1. This approach is or-
thogonal to the current practice in histopathology, which
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Fourier transform infrared (FTIR†) spectroscopic imaging is an emerging microscopy modality for clinical
histopathologic diagnoses as well as for biomedical research. Spectral data recorded in this modality are in-
dicative of the underlying, spatially resolved biochemical composition but need computerized algorithms to
digitally recognize and transform this information to a diagnostic tool to identify cancer or other physio-
logic conditions. Statistical pattern recognition forms the backbone of these recognition protocols and can
be used for highly accurate results. Aided by biochemical correlations with normal and diseased states and
the power of modern computer-aided pattern recognition, this approach is capable of combating many
standing questions of traditional histology-based diagnosis models. For example, a simple diagnostic test
can be developed to determine cell types in tissue. As a more advanced application, IR spectral data can be
integrated with patient information to predict risk of cancer, providing a potential road to precision medi-
cine and personalized care in cancer treatment. The IR imaging approach can be implemented to comple-
ment conventional diagnoses, as the samples remain unperturbed and are not destroyed. Despite high
potential and utility of this approach, clinical implementation has not yet been achieved due to practical
hurdles like speed of data acquisition and lack of optimized computational procedures for extracting clini-
cally actionable information rapidly. The latter problem has been addressed by developing highly efficient
ways to process IR imaging data but remains one that has considerable scope for progress. Here, we sum-
marize the major issues and provide practical considerations in implementing a modified Bayesian classifi-
cation protocol for digital molecular pathology. We hope to familiarize readers with analysis methods in IR
imaging data and enable researchers to develop methods that can lead to the use of this promising technique
for digital diagnosis of cancer. 
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requires staining to visualize tissue morphology as well as
intensive human involvement to recognize and categorize
morphological features that are indicative of disease. The
IR-based approach strongly relies on sophistication and util-
ity of the numerical methods used. The focus of this article
is to describe and highlight the salient features of numeri-
cal methods used in IR imaging.

IR Imaging to Address Current Cancer Pathology
Needs

At present, the gold standard to identify many types
of cancers is to perform a biopsy. The poorly quantitative
procedures following the biopsy and staining are semi-au-
tomated at best and still suffer from user introduced vari-
ability [20,21]. This not only introduces subjectivity in
examination [22] but also increases the load on the pathol-
ogist that could otherwise be devoted to more complicated
cases. Misclassification of biopsies during screening and
diagnosis may lead to overtreatment or undertreatment,
posing significant concerns for patients. For example, a
recently published report [23] evaluated an agreement
among 115 pathologists who interpreted 240 cases of
breast biopsy samples and compared it to the consensus-
derived reference diagnoses from three expert patholo-
gists. The researchers found out that the overall agreement
between the participating pathologists’ interpretations with
the reference was 75.3 percent. Alarming under-interpre-
tations were found in ductal carcinoma in situ (DCIS)
cases (13 percent) and atypia cases (35 percent). Consid-
ering that DCIS accounts for 15 percent to 25 percent of

the newly diagnosed breast cancer cases currently in the
United States [24] and identification of atypical cells often
requires further rounds of biopsy to establish aggressive-
ness of possible tumor, large numbers of patients could be
affected every year based on whether a second opinion is
obtained. In another recent study [25], the researchers con-
sulted 252 pathologists to assess the policy of obtaining a
second opinion on a variety of specimens. Their response
indicated that a second opinion was only required in 56
percent of the laboratories when DCIS was diagnosed and
in 36 percent of laboratories when atypical ductal hyper-
plasia was observed. In many cases, a third opinion was
required to resolve the differences between the first and
second opinions. Studies like these and others [26-28]
clearly show that there are a lot of breast cancer cases that
are affected by confusions in classification of type and ag-
gressiveness of tumor and current pathology practice is in
need of better tools to aid diagnoses. 

Multiple computer-aided detection systems have been
used in the past to assist the pathologists and help them re-
duce occurrences of false positives and false negatives [29].
In current practice, the computer-aided detection systems
that rely on pattern recognition software used by radiolo-
gists can be considered semi-automated in that some degree
of human interaction is still needed before a final decision
is given. In that sense, detection systems are different from
diagnosis systems, which are capable of rendering a deci-
sion based on a consideration of a variety of factors such as
mass of tumor, biochemical data from biopsy, and patient
characteristics such as breast density and age. These sys-
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Figure 1. Overview of the use of IR imaging for biological analyses. 



tems thus require integration of two major fields: computa-
tion and imaging. In terms of imaging for diagnostic cancer
pathology, the foremost requirement is the ability to gener-
ate contrast between diseased regions and healthy regions.
Traditionally, chemical and immunohistochemical stains
have been used to produce this contrast that is then referred
to pathologist for evaluation. The second step now increas-
ingly involves the use of computers to manage images and
assist with decisions using numerical indices or other image
analysis techniques. However, there are emerging alterna-
tives to this long-standing instrumentation. For example,
microscopic contrast also can be produced optically using
Raman imaging or IR spectroscopy, two strongly emerging
modalities that also place new requirements and provide
new opportunities for the associated computational meth-
ods. IR spectroscopic imaging has some distinct advantages
over other contrast-producing modalities. First, it requires
minimal sample preparation. Freshly taken tissue can be
snap frozen and imaged without further aids. This greatly
reduces variations during experimental stages, making the
procedure standardized and efficient. It can as easily be ap-
plied to archival samples. Second, IR imaging does not re-

quire contrast agents but utilizes the inherent biochemical
contrast in the tissues for differentiation of diseased state.
Third, the chemical changes recorded by infrared spec-
troscopy across the tissue are capable of giving the same
information as achieved by histological stains [30]. In ad-
dition, since the information is computer generated, they
provide greater contrast and statistical confidence, in turn
enabling easier identification of problematic areas. A re-
cently published report [31] showed that a single IR spec-
tral image could reproduce staining patterns of multiple
stains such as hematoxylin and eosin (H&e), Masson’s
trichrome stain, cytokeratin stain, smooth muscle alpha
actin, and vimentin (Figure 2). This could allow the re-
searchers to analyze the samples through multiple stains
without putting in additional time, effort, or resources to de-
velop the stains. 

Along with reproducing classical stains with great ac-
curacy, data generated by IR imaging is highly amenable to
computational analysis, and pattern recognition algorithms
are easily integrated for obtaining decisive reports. Cur-
rently, a major goal of the typical studies performed using
IR imaging on tissue samples is to build classification sys-
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Figure 2. Molecular imaging (three sample panel on the left) can be reproduced by chemical imaging (right panel). In
addition to H&E stained images, (A) we extend the concept of stainless staining to molecularly specific stains. (B)
Masson’s trichrome stain (collagen and keratin fibers). (C) High molecular weight (HMW) cytokeratin (epithelial type
cell). (D) Smooth muscle alpha actin (myo-like cell). (E) Vimentin (fibroblast like cell). Each spot is 1.4 mm in diame-
ter. Adapted with permission from World Scientific Publishing Co./Imperial College Press (Mayerich D, Walsh MJ,
Kadjacsy-Balla A, Ray PS, Hewitt SM, Bhargava R. Stain-less staining for computed histopathology. Technology.
2015;3(1):27-31.)



tems that color code IR images to differentiate between dif-
ferent types of cellular and acellular components, much like
H&e and IHC stains. Classes such as epithelium, endothe-
lium, stroma, and muscle have been identified [32,33] and
more cellular and acellular components are being added
through current research. Although this approach provides
high contrast images with minimal sample preparation for
use by trained pathologists, in order to truly utilize the po-
tential of IR imaging for cancer diagnosis, further compu-
tational prediction needs to be implemented. A recent report
[34], for example, attempted to precisely predict recurrence
of prostate cancer using IR imaging data and showed that
this approach outperformed both Kattan nomogram and
CAPRA-S scores for outcome predictions. Together,
emerging studies are opening new avenues for utilization
of IR-based models for cancer diagnosis and therapy by
combining imaging, molecular detection, and computa-
tional cancer prediction to augment human decision-mak-
ing. Owing to the practical requirements of speed of
imaging and data acquisition and processing, no automated
diagnosis systems have been clinically implemented until
now; nevertheless, fast progress is being made to achieve
this goal and will be discussed briefly in later sections. We
first provide an overview of the methods, highlighting spe-
cial considerations and challenges that use this data and lead
to decision-making in cancer research and care.

Classification Models

A biological sample characteristically consists of many
cell populations and extracellular matrix elements. All of
these elements serve a function in the sample, and imbal-
ance in the chemical composition and morphology of these
can be a cause or an effect of a disease. Thus, these cellular
and acellular components of tissue are carefully scrutinized
by pathologists to obtain information about the ailment. We
refer to all such functional elements as histological classes
or, simply, classes. The idea underlying the use of IR spec-
troscopy for disease detection is that each such class will
have a different biochemical composition and therefore
unique spectral signature in IR absorbance spectra. Since
digital spectral data is available for each pixel from the sam-
ple, we can employ pattern recognition algorithms to utilize
these differences for recognition of classes. various classifi-
cation approaches have been used in the past to identify
classes, termed as classification. Multiple studies have been
performed for the analysis of data using various classifica-
tion algorithms and are summarized here. For an in-depth
theory on classification methods pertaining to biomedical
imaging, the readers are directed to these references
[33,35,36]. Typically, all methods can be classified into su-
pervised or unsupervised methods, both of which are de-
scribed briefly below. Subsequently, we focus here on
describing the typical process of obtaining data, computa-
tional pipeline, and typical results obtained. We illustrate the
entire process with representative examples to enable the
reader to grasp the essential steps of extracting information
from IR images. 

Unsupervised Classification

The premise of unsupervised classification is that no
prior information (i.e., spectral characteristics of the
classes) is fed to the method for classification. Hence, dis-
tinction between classes is often a problem of finding clus-
ters in which intra-cluster variation is smaller than
inter-cluster variation. Unsupervised clustering approach
has been applied previously to investigate tissue samples
[37-39]. Since nothing is assumed known about the data
classes, unsupervised processes can involve data reduction
using the variance before applying a classification proce-
dure. Such a methodology has been applied to classify IR
imaging data from cervical cancer [40]. Principal compo-
nent analysis (PCA) for data reduction followed by K
means clustering was used elsewhere for classification of
IR data [12]. Although unsupervised approaches work for
exploratory analysis, they have been found to be compu-
tationally taxing and unable to differentiate between inter-
class and intra-class variations, often necessitating the use
of supervised classification algorithms [41,42]. In our opin-
ion, the utility of these methods for IR imaging lies more
in discovery rather than consistent knowledge extraction.

Supervised Classification

In supervised classification, prior information about the
location and spectral properties of the classes is given to the
classifier. Supervised algorithms such as discriminant
analysis [2,43-45], neural network analysis [16,41,46-48],
and Bayesian methods-based classification [32,49] have
been used to classify tissue into various cellular and disease
states. Underlying this method is the fundamental property
of Bayes’ theorem, indicating that known patterns provide
a statistical probability for identification of each class.
Methods based on this property and its application for bio-
logical specimens has been discussed elsewhere [32]. Here,
we discuss the practical considerations for its implementa-
tion, in order to facilitate understanding and ease of use
among spectroscopists and medical researchers alike.

IMAGE COLLECTION AND PRE-PROCESSING
Collecting a good quality image is the first step of any

IR classification experiment. Often, this facet is over-
looked. Good quality data reduces complexity of the meth-
ods and can provide faster as well as more accurate results.
Multiple factors such as choice of substrate signal-to-noise
ratio (SNR), spatial and spectral resolutions, and presence
of contaminants such as paraffin residue can affect the
overall classification accuracy. In this section, we will dis-
cuss methods employed to collect good quality data and
prepare the data for classification.

Substrates

IR spectroscopic imaging data can be collected in
both transmission and reflection mode. IR transparent sub-
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strates, such as calcium fluoride (CaF2) and barium fluo-
ride (BaF2) salt crystals are excellent substrates since they
achieve greater than 95 percent transmission in mid IR re-
gion. An overview of properties and uses of CaF2 and BaF2

crystals can be found in reference [50]. Specifically for
imaging biological samples, BaF2 is preferable, since
transmittance of CaF2 cuts off at about 1000cm-1 and
analysis at lower wavenumber (longer wavelengths) is not
possible. BaF2 is more prone to damage, however, due to
higher water solubility compared to that of CaF2 [51],
making its handling and maintenance slightly more diffi-
cult but not substantially different compared to standard
glass slides. Once a sample is placed on these crystals, im-
aging is rather simple. Using a microscope objective-con-
denser setup, light simply passes through the substrate and
the sample in a “transmission” mode. The major problem
with either substrate is cost, which can run to hundreds of
dollars. Due to the high cost of these substrates and higher
maintenance requirements compared with standard glass
slides, many IR studies now utilize IR reflective substrates
such as gold coated slides and Low-e slides (MirrIR, Kev-
ley Technologies). Low-e slides, in particular, have been
very useful for IR imaging, owing to their ability to trans-
mit visible light and reflect infrared light. Thus, imaging
is often conducted in the transflection mode with these
substrates. In the transflection mode, light is incident upon
the sample, passes through it, is reflected from the sample-
substrate interface, and re-transmitted through the sample.
Due to the sample typically being of a thickness that is the
same order as the wavelength of light, passing through the
sample twice results in distortions in the spectrum [52,53]
compared to the transmission case. However, some pre-
processing steps have been reported that can effectively
encounter most of the side effects of transflection mode
and are discussed below. With emerging methods and
more flexibility in terms of cost and maintenance [54],
Low-e slides are attractive options to carry forward IR
based detection technologies to everyday use in clinics. 

Signal-to-Noise Ratio

In IR imaging, the spectral signal-to-noise ratio
(SNR) is the primary measure of the quality of data. It has
been shown that high levels of noise in data negatively
impact the classification accuracy [55]. Hence, SNR
should be carefully considered in the design and use of
any protocol. Modern infrared imaging instruments have
combated the problem of low SNR quite well, and one can
routinely obtain an SNR of greater than 200 on commer-
cial instruments. There are multiple factors that can de-
termine the SNR for data collected. For commonly used
focal plane array (FPA) detectors in IR imaging instru-
ments, each element in the detector records the spectrum
from one pixel in the sample. As the number of co-addi-
tions is increased, the signal is recorded a multiple num-
ber of times and averaged. This improves the SNR by the
square root of the number of co-additions. However, this
also increases the time required for data acquisition almost

linearly with the number of co-additions. Another option
is to reduce spatial resolution (increase the size of the pixel
at the sample plane), which can provide a higher SNR in
smaller time due to a larger angle of light collected, but
this may compromise identification of small cells in bio-
logical samples. An additional key factor with image col-
lection is background spectrum. every IR imaging
experiment requires collection of background spectra used
as a reference to obtain absorbance measurements. The
number of co-additions for background spectrum should
be much larger than the number of co-additions for the
image in order to have minimal introduction of noise in
signal from background [56]. Some limits on SNR also
are imposed by the interferometer and other hardware, as
well as multiple other factors such as spectral and spatial
resolution, which is a result of complexities in the acqui-
sition process. Some of the factors that affect SNR have
been discussed in previous works [55-57]. Here, we want
to emphasize that the data quality in IR imaging is a bal-
ance between optimum SNR, optical configuration
needed, and the time required to achieve the desired SNR.
One method we have not discussed thus far is the use of
post-acquisition numerical processing techniques that can
use statistical or other measures of noise reduction and
lead to reduced noise in the images. The basic principle
underlying these methods is to transform the data into a
space that collapses all information into a minimum num-
ber of factors, for example, using principal components
transform [58]. Fortunately, due to these computational
noise reduction techniques (discussed later) SNR is not a
limiting factor for classification accuracy for many of the
common tasks in spectroscopic imaging [55]. 

Spatial and Spectral Resolution

The main constituents of biological samples are the dif-
ferent types of cells that comprise the tissue as well as the
extracellular matrix (eCM) that holds tissue structures to-
gether. The size of eukaryotic cells can vary from about 5
to 30 microns. Sufficient spatial resolution is necessary to
identify each cell type [59] and, thus, the instrumentation
and experimental parameters must be carefully selected. In-
sufficient spatial resolution leads to the problem of mixed
pixels, whereby, if the pixel is too large, it can have contri-
bution from multiple cells, leading to greater confusion and
low accuracy of classification [33]. Typically, pixel size
used for IR microscopy has been approximately 5 µm x 5
µm. Pixel size in attenuated total reflectance (ATR) mode
can be higher due to the use of a solid immersion lens [60-
62]. A microscope equipped with transmission optics and
ATR lenses can provide higher resolution depending on the
solid immersion lens or ATR crystal material. For example,
one commercial instrument provides a pixel size of 6.25 µm
x 6.25 µm in the transmission mode and 1.56 µm x 1.56
µm sized pixels in ATR mode using a Germanium lens (re-
fractive index ~ 4). High definition IR imaging instruments
typically seek to provide 1 µm x 1 µm. It should be noted
that the pixel size is not the same as resolution. Resolution
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is still determined by the Rayleigh Criterion; for example,
it is ~5 µm for transmission mode imaging and 1 µm for
ATR imaging. A comparison of IR images taken at various
pixel sizes for mammalian cells is shown in Figure 3. As
can be seen, high amide absorbance region of nucleus is
much better resolved with high spatial resolution as com-
pared to the low resolution transmission image. effect of
varying pixel size on classification is shown in Figure 4b
and c, where 6.25 µm x 6.25 µm pixel size data is compared
to 25 µm x 25 µm pixel size data. H&e image with marked
classes is shown for comparison (Figure 4a). Higher pixel
density via smaller pixel sizes provides IR images that are
closer to histologic stain image, whereas more averaging to
increase SNR and larger scanning time to acquire more pix-
els is required. The large pixel sizes result in overlapping of
signals from different cell types and the eCM, reducing
confidence in classification. A large pixel can reduce the
scanning time greatly and provide high SNR. For most bi-
ological problems involving complex tissues, however, a
high spatial resolution is often needed. An equally important
factor for good classification is spectral resolution. For very
coarse spectral resolution, the peaks begin to overlap, caus-
ing significant reduction in classification accuracy [63].
Typical IR imaging experiments utilize a spectral resolu-
tion of 2 cm-1 to 16 cm-1. For biological specimens, spectral
resolution of 4 cm-1 to 8 cm-1 is able to differentiate most of
the significant peaks and has been found to give good clas-
sification results in our experience.  

Paraffin Removal

Since most samples are typically paraffin embedded and
sectioned before IR imaging, the sections need to be deparaf-
finised in order to remove spectral contributions from paraf-
fin that typically occur as a set of peaks from 2800 cm-1 to
3000 cm-1 due to C-H stretching vibrational modes and a
strong peak at 1462 cm-1 due to C-H bending modes [64]. De-
paraffinization carried out either in Xylene [44] or Hexane
washes for 16 to 24 hours with mild stirring or with octane
for 4 hours [65] have all shown to remove paraffin features
from spectrum. Figure 4 compares classification results from
a paraffinized sample (Figure 4d) and the same sample after
paraffin removal (Figure 4c) for same spatial resolution. A
spectrum from sample before and after de-paraffinization is
shown in Figure 5. even though we avoided using parts of the
spectrum from paraffin-affected regions from 2800 cm-1 to
3000 cm-1 and around 1462 cm-1, the classification was more
accurate for the deparaffinized sample than the paraffinized
sample for the same spatial and spectral resolution. Classifi-
cation of samples imaged without deparaffinization also can
work if appropriate corrections are performed [66]. Never-
theless, if paraffin retention is known or suspected, care should
be taken to address any signals arising from paraffin while
performing classification.

Preprocessing

Once IR images are acquired, minimal data process-
ing is needed for performing classification. Based on the
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Figure 3. Images of eukaryotic cell at varying resolutions. (a) ATR mode, pixel size 1.56µm x 1.56µm; (b) transflec-
tion mode 74X, pixel size 1.1µm x 1.1µm; and (c) transmission mode 14X, pixel size 6.25µm x 6.25µm. All images are
at amide I band (1652 cm-1)

Figure 4. Factors affecting classification. (a) H&E image with marked regions (I: Infiltrate, F: Fibrosis, N: normal tis-
sue); (b) classified image pixel size 6.25µm x 6.25µm (deparaffinized); (c) classified image pixel size 25µm x 25µm
(deparaffinized); and (d) classified image pixel size 25µm x 25µm (paraffinized).



SNR, computational noise reduction methods such as
those based on the Minimum Noise Fraction (MNF) [55]
may be needed before classification can begin. This is a
modification of principal components analysis whereby
the ordering of eigenimages is performed in decreasing
order of SNR and high SNR eigneimages are chosen for
analysis. Noise statistics are calculated to form the image
data. MNF transform creates three files: covariance sta-
tistics of the noise, MNF statistics, and forward MNF
transformed, which contains bands with descending eigen-
values. Based on the eigenvalues, the user can determine
which bands contain data and which have predominant
noise. Typically, the top 20 to 30 bands contain good qual-
ity data. Inverse MNF transformation is then applied on
the forward MNF transformed file by taking high eigen-
value bands. Most commonly, this type of noise reduction
is needed for ATR and high definition imaging data. Base-
line correction of data is needed for comparing spectral
features attributable to absorbance across classes and gives
a good estimate of the differences before training can
begin. A variety of baseline correction options are known,
but all essentially approximate the known non-absorbing
regions to zero. In one approach, all points where theoret-
ically zero absorption is expected are first identified. Then,
a linear two-point correction algorithm across peaks of in-
terest is used. It should be noted that in imaging, the base-
line points are often held the same for all spectra in the
sample. To account for thickness variations in the sample
or between samples, normalization with amide I peak
(1650 cm-1-1656 cm-1 based on location of peak) is often
required. For biological tissues, this is the peak of highest
absorbance and introduces the least decrease in SNR after
normalization.

CLASSIFICATION PROTOCOL

The classification protocol followed here is based on
modified Bayesian classification. The complex multistep
method is explained through the flowchart shown in Fig-
ure 6. We describe the major steps in the workflow and
discuss possible pitfalls while building and deploying a
classification protocol.

Selection of Training and Validation Set

The goal of the classification protocol discussed here
is to identify different types of cells and eCM elements
called histological classes. The ultimate goal is to develop
a computational algorithm that provides accurate recog-
nition of classes in an unknown data set that can be en-
countered in practice. In the first step, the protocol needs
to be developed and tested to perform optimally. To initi-
ate this process, two separate data sets are selected. One is
used for training and the other for independent validation.
In some cases, the validation may come from the calibra-
tion data set itself. In such cases, one fraction of the data
is selected for validation and the protocol is trained on the
remainder. The fraction left off is changed, and a number
of iterations of the process are averaged to train and vali-
date. This “leave-one-out” procedure can be used when
the numbers of samples or diversity of the data set is lim-
ited, but it is always ideal to have completely independent
training and validation sets. It must be ensured that there
is sufficient representation of all classes for getting satis-
factory classification and to retain sufficient diversity for
assessment of accuracy in validation dataset. In this ap-
proach, study design is critical as the method cannot pre-
dict conditions on which it has not been trained. The
measures of success should also be carefully defined. We
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Figure 5. Difference in spectrum for tissue with and without paraffin.



favor the use of the receiver operating characteristic
(ROC) curve that includes an assessment of both sensi-
tivity and specificity of the method. Other approaches may
be to maximize detection of any class or disease state (e.g.,
cancer) at a specified error rate or to evaluate errors in a
holistic manner such as with confusion matrices. Finally,
a statistically significant number of samples must be used
to validate the protocol. While the numbers of samples
needed for a diagnostic test is well understood, the sample
size needed for satisfactory calibration in the IR is an on-
going subject of study [33,67]. In the absence of other
guidance, the standard approach is to calibrate, validate,
and calculate the ROC curves for the classifier in order to
assess the accuracy. The errors in classification addition-
ally must be carefully assessed. Based on these results, the
investigator may need more data for accurate classifica-
tion.

Metric Definition

Depending on the size of the sample, an FTIR imag-
ing data set can be very massive, ranging from a few hun-
dred megabytes to hundreds of gigabytes. each pixel in

an IR image carries spectrum, which is usually recorded in
the FT configuration across the entire bandwidth of the
spectrometer but is usually truncated to reduce the size of
the stored data to a smaller range, e.g., 750 cm-1 to 4000
cm-1. However, not all spectral elements are useful for
classification. For example, a region between 1900 cm-1

to 2500 cm-1 is biologically inactive and can be further re-
moved if spectral corrections that depend on extensive re-
fractive index measurements are not to be performed [68].
One approach to dealing with imaging data is the emer-
gence of the so-called discrete frequency IR imaging in
which, using filters [69,70] or a tunable laser [71-76], only
a few frequencies of interest are collected. This approach
likely will prove useful only after the calibration process.
Hence, in general, the entire spectrum is acquired and
needs to be handled for the calibration step. Data reduction
discussed here simply suggests using data that gives qual-
itative and quantitative information about the sample and
removing redundant data. While it is not necessary for sin-
gle cell studies that do not require large computational
power, biopsy sections and tumor micro arrays (of the
order greater than 1mm X 1mm in size) would need much
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Figure 6. Flowchart of building supervised classifier.



computing time if raw spectrum is used without data re-
duction. Further, confounding information may become
included unless a careful selection of informative spectral
regions is used. We can utilize spectral features such as
peak height ratios, peak area to height ratio, peak area to
area ratio, and peak center of gravity to differentiate
among classes. These parameters are known as spectral
metrics. Metrics are defined by an expert spectroscopist
by observing the spectrum in tissue to identify exact peak
locations. Many metrics have biological relevance; for ex-
ample, glycogen to phosphate ratio (1030 cm-1/1080 cm-1),
but sometimes the physiological relevance is not intuitive.
even then, at this point, all possible metrics that show dif-
ferentiation among classes based on class spectrum should
be considered. For every new imaging experiment, it is
necessary to define the metric definitions anew, in order to
account for spectral differences among classes and small
differences in peak locations.

Identification of Classes

Identification of classes is the major factor that can de-
termine accuracy of classification. To feed class character-
istics as prior information for supervised classification, one
needs an accurate identification of pixels used for training.
This is typically performed with the help of an expert
pathologist, often guided by H&e stained images or im-
munohistochemical images of corresponding sections. Typ-
ically, the practitioner marks regions corresponding to
different classes by microscopic examination of H&e
stained section. Correspondingly, regions in IR image are
marked as regions of interest (ROI). H&e stained section
can be a serial section or neighboring section to the section
utilized for IR spectroscopy. A much preferable approach
is to first obtain infrared images from the sample and then
perform H&e staining on the same sample so that an exact
match can be obtained. Once the classes are marked, non-
biological pixels from class layers should be removed by

setting an intensity threshold value for biologically active
band such as amide I band (~1652cm-1) to a high enough
value to remove both tissue-less regions as well as those
with excessive distortions due to edge effects [77-80]. Sub-
jectivity is the biggest issue in identification of classes and
there have been multiple studies in past that show that the
interpretation of H&e stain suffers from inter-observer vari-
ability and can have a role in false positive and false nega-
tive results [20,21,81]. In the absence of any absolute
identification criteria at present, we rely on the opinion of
pathologist for identification of classes. This adds a human
error to the classification, and care is taken to mark the re-
gions on IR image exactly same as the regions identified by
the pathologist on the H&e image (considered “gold stan-
dard” [33]). This prevents the addition of further error in
prior information for classifier training that relies on man-
ual identification and marking of classes in IR data. An al-
ternative is to use immunohistochemical stains to identify
cell types and overlay the IHC images with the IR images.
However, IHC stains are not known to be reliable all the
time, and staining intensity may be open to interpretation
requiring the use of sophisticated methods [82].

Evaluating Metric Distributions

The distribution of values of metrics forms the basis
on which the classifier identifies and learns the differences
among classes. An example of histogram is shown in Fig-
ure 7 that is the type of data to evaluate the use of met-
rics. Here, the number of pixels versus the value of metric
parameter for each class is plotted. For a large enough
number of pixels for each class, the histograms are ex-
pected to follow a normal distribution unless there are sub-
classes within the data. Hence, the first check is to
determine whether there may be more than one distribu-
tion in the pixels, which may cause an examination of the
model used in turn. For N metric parameters, we obtain N
histograms. This step is important in identifying metrics
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Figure 7. Histograms for metric evaluation. (a) An example of good metric and (b) an example of metric that will have
errors in classification when the metric value lies in the overlapping area of the two curves.



that can potentially be useful in differentiating between
classes. When comparing between two classes, the over-
lap between the distributions is the critical parameter to
evaluate. A small overlap in distributions implies that the
values of metric parameters are sufficiently different and
can be used to differentiate between the classes. The actual
efficacy of metric parameter depends on the fraction of
overlap that the probability distribution functions of dif-
ferent classes have with each other (Figure 7). It must be
noted that abundance also comes into consideration here.
For a given pixel, the overlap in normalized histograms
can be considered. However, the probability of the se-
lected pixel belonging to any particular class also needs
to be considered. This depends not only on the native dis-
tribution of classes in normal and diseased conditions but
also on the sampling process (e.g., biopsy). For example,
it is well known that there is significantly more epithelium
in cancer and in the peripheral zone of the prostate. Hence,
simple abundance probability can be augmented signifi-
cantly by known characteristics of the disease, patients,
and procedures performed. Caution must be exercised,
however, in making models that are too specific. While
such models may perform at high accuracy, their robust-
ness is likely to be compromised. The metric distribution,
hence, must be evaluated in light of the model, the classi-
fication methods, and the desired accuracy. A metric pa-
rameter that can differentiate between at least two classes
is considered useful for the purpose of classification. Since
multiple such parameters eventually can be used in con-
jugation to separate all classes from each other, the set of
metrics to be used and the order of their usage will be eval-
uated next. Following this step, with appropriate user input
in determining histogram limits, a probability distribution
file is created that contains the prior information of the
classes. 

Determination of Metric Order

After determination of probability distribution for
every class in our case, a Bayesian classifier, each metric
can be considered as a rule that determines to which class
the pixel belongs. Therefore, the classifier goes through a
series of rules to come to a decision about the class, as-
signing a class value to the pixel after each step is exe-
cuted. In this perspective, it becomes important to
determine the most optimum order of metrics so that the
end result is closest to the true histology. For this, aver-
age errors for metrics are calculated and pairwise errors
are arranged in increasing order. This order is optimized
by classifying with reordered metric, calculating the area
under the receiver operating characteristic (ROC) curve
and recalculating pairwise error if there is an increase in
area under the ROC curve. It has been shown before that
only a fraction of metrics actually is needed to achieve the
highest accuracy in classification [32]. Thus, after the op-
timum metric order has been defined, metrics coming at
the bottom of the order can be removed from the classifier.
Typically, this set of 15 to 25 metrics is identified based on

the metric order and area under the ROC curve, but an ad-
ditional step in optimization can be performed by manu-
ally removing one metric at a time and assessing whether
any increase in accuracy is achieved [32]. 

Validation

validation of the classifier is performed on an inde-
pendent data set by comparing the classifier with pathol-
ogist annotated IR data in the manner similar to
calibration. ROC curves and confusion matrices com-
monly are used to assess the accuracy of classification.
The ROC curve leads to two measures: the area under the
curve (AUC) of the ROC curve and the sensitivity and
specificity operating point of the classifier. The AUC is a
“global” measure of how accurate the designed protocol
can be on an average. Comparisons of AUCs, statistical
limits, and ordering of different models based on the AUC
are all operations that can be used to refine the classifier
and gain further insight [83-85]. The operating point (i.e.,
sensitivity and specificity) can be considered to be a local
condition that determines a particular operation of a diag-
nostic test. For any selected protocol, there will always be
an operating point, which trades off the specificity and
sensitivity but is implemented for the test. This is often
determined by the problem and the tolerable error in the
test. Sensitivity of greater than 70 percent at high speci-
ficity (90 percent) is generally considered satisfactory for
biomedical detection systems, although a much higher
sensitivity and specificity is often desirable for tasks such
as disease diagnoses or recognition of particular cells. For
example, in one study, among multiple breast cancer sur-
veillance methods such as MRI, mammography, ultra-
sound, and clinical breast examinations, the sensitivity
ranged from 9.1 percent to 77 percent and specificity
ranged from 95.4 percent to 99.8 percent [86]. When using
IR-based staining for digital cancer diagnosis, it is desir-
able to have sensitivity and specificity reach close to 100
percent. This has been shown to be possible by various re-
cent studies [87,88]. While ROC curves determine the
specificity and sensitivity of classification, the confusion
matrices give the investigator an idea of confusion be-
tween classes in classification, and both should be used to
evaluate the performance of the classifier. In validation
studies, these matrices often point to systematic errors in
the development of the classification protocol and must
be examined carefully. 

CONCLUSIONS
Automated computational classification is a very

powerful technique to utilize IR spectroscopic imaging
data. We emphasize that due to multiple steps required in
image acquisition and classification protocols, careful
considerations throughout are needed to assure successful
development of assays. Often, the process of development
of a classifier is not linear, and careful analysis and ex-
amination at each step is needed to ensure that the proto-

140 Tiwari and Bhargava: Extracting chemical imaging data for digital cancer diagnosis



col is both accurate and robust. The theory and practice of
Bayesian classification is well developed for infrared im-
aging data [32,33]. The protocols for image acquisition
also have been described in detail in the past [63,89-91].
However, practical considerations while performing clas-
sification that can greatly affect the classification accu-
racy have not been recorded in infrared imaging literature.
Through this paper, with illustrative examples, we have
attempted to provide an introduction and a practical guide
to considerations in the development of a specific classi-
fication protocol. Many of these considerations can be
adapted for similar classification procedures, and we do
hope that this article would enable and encourage the read-
ers to familiarize themselves with infrared spectroscopy
and utilize the avenues it offers for cancer diagnosis. 
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