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Abstract: Multiple myeloma (MM) is a hematologic disorder of B lymphocytes characterized by
the accumulation of malignant plasma cells (PCs) in the bone marrow. The altered plasma cells
overproduce abnormal monoclonal immunoglobulins and also stimulate osteoclasts. The host’s
immune system and microenvironment are of paramount importance in the growth of PCs and,
thus, in the pathogenesis of the disease. The interaction of MM cells with the bone marrow (BM)
microenvironment through soluble factors and cell adhesion molecules causes pathogenesis of the
disease through activation of multiple signaling pathways, including NF-κβ, PI3K/AKT and JAK/STAT.
These activated pathways play a critical role in the inhibition of apoptosis, sustained proliferation,
survival and migration of MM cells. Besides, these pathways also participate in developing
resistance against the chemotherapeutic drugs in MM. The imbalance between inflammatory and
anti-inflammatory cytokines in MM leads to an increased level of pro-inflammatory cytokines,
which in turn play a significant role in dysregulation of signaling pathways and proliferation of MM
cells; however, the association appears to be inadequate and needs more research. In this review,
we are highlighting the recent findings on the roles of various cytokines and growth factors in the
pathogenesis of MM and the potential therapeutic utility of aberrantly activated signaling pathways
to manage the MM disease.

Keywords: multiple myeloma; hematological malignancies; signal transduction;
proliferation; cytokines

1. Introduction

Multiple myeloma (MM) is an ailment of the plasma cells (PCs) characterized by the uncontrolled
proliferation of long-lived monoclonal PCs. These PCs accumulate in the bone marrow, which causes
impairment of bone strength and weakness of the immune system [1]. MM is the second most
prevailing hematological malignancy after non-Hodgkin lymphoma, responsible for approximately
20% of deaths caused by hematological malignancies [2]. The disease is less common in women than
men, and despite substantial improvement over the past decade in cancer therapeutics, myeloma cases
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and death rates have increased from 1990 to 2016 [3]. The average age of diagnosis is 66 years, and the
five-year survival rate is 46.6%. The incidence of disease also differs in different ethnicities and is more
common in Caucasians than in Asians. Although some patients survive a decade after diagnosis, most
of them die within 24 months due to the progression of treatment resistance. Even though many novel
chemotherapeutic drugs have been discovered and used to cure MM, the disease remains incurable
due to the reduced response rate and toxicity of these drugs [4].

Active MM is supported by the bone marrow (BM) microenvironment. The growth and survival
of MM clones are highly dependent on systemic cytokines [5]. Cytokines are a type of growth factors
that regulate the balance between cell-based and humoral immune responses [6]. The bone marrow
stromal cells (BMSCs) that are present in the MM niche produce considerable quantities of TGFβ
and IL-6,7 and 8, which maintain the pro-tumorigenic conditions, regulate growth and survival of
cancerous cells and maintain feedback loops of cytokines [7,8]. The autocrine production of cytokine
IL-15 is shown to be involved in the survival of MM cells [9].

MM cells and BMSCs induce autocrine or paracrine secretion of numerous mediators [10]. BM
microenvironment in MM contains high levels of IL-6, HGF, EGF, IL-2R and cytokines stimulated due
to interferon-γ (IFN-γ) [11]. A number of these cytokines play a vital role in MM development by
acting as growth factors of MM cells and promote cellular adhesion. There are some cytokines which
are involved in osteoclastogenesis and angiogenesis [12–15]. The production of cytokines by subsets of
T-lymphocytes and plasma cells in BM promotes the growth of malignant cells [10].

The growth of neoplasia is associated with inflammation, and an increase in pro-inflammatory
cytokines can promote the growth of the tumor [16]. Cytokines are involved in both pro-inflammatory
and anti-inflammatory processes [10]. The balance between chemokines and cytokines is a critical
process in tumor induction. The inflammatory infiltrate, which is formed in a tumor, is highly
dependent on cytokine balance. Tumors that produce few or no cytokines or those tumors that produce
anti-inflammatory cytokines have limited growth of the tumor due to constrained inflammation and
vascular responses. On the other hand, increased production of pro-inflammatory cytokines causes
angiogenesis, thus support tumor growth [17].

2. Bone Marrow Microenvironment in MM

The BM milieu is composed of hematopoietic and nonhematopoietic cells; the extracellular
matrix (ECM) and soluble components such as cytokines, growth factors and adhesion molecules [18].
BM microenvironment plays a critical role in the development of a disease. It is composed of various
proteins of the ECM, including laminin, collagen, fibronectin, osteopontin and some cellular components,
such as erythrocytes, hematopoietic stem cells, endothelial cells of bone marrow, osteoclasts, osteoblasts
and immune cells (Figure 1). MM cells are attracted to BM through secretion of different cytokines (IL-6,
BAF, IGF-1, FGF and SDF-1) and chemokine (CXCL-12) from these cellular components (Figure 1) [19].
There are various adhesion molecules, including ICAM, NCAM, CD40, VLA 4, VLA 5 and LFA 1,
expressed in both BMSCs and myeloma cells. The interactions of these adhesion molecules result in
the upregulation of several intracellular signaling pathways; for example, phosphoinositide 3-kinase
(PI3K), signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappa-B (NF-κB)
and mitogen-activated protein kinase (MAPK), which leads to the secretion of cytokines (Table 1),
activation of osteoclasts, decrease in osteoblasts and increase growth and multiplication of MM cells [20].
These processes cause angiogenesis, lytic bone lesions and drug resistance. The dysregulation of
signaling pathways in diseased states is associated with the BM cells. These cells cause induction and
activation of signaling pathways. The bone and stromal cells secrete soluble factors such as IGF-1, IL-6,
IL-8, IL-17, TNF-α, SDF-1 and VEGF that promote diseased states (Figure 2) [21].
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In solid tumors, the metastasis and growth of the tumor occur by neovascularization. However, in
MM, despite being a nonsolid tumor, intensive neovascularization occurs, which results in the release
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of cytokines such as vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2).
MM cell growth is also promoted by IL-6, which is secreted by BM endothelial cells [21]. The plasma
of MM patients contains elevated levels of VEGF in response to IL-6 activation by the plasma cells
(Figure 1). The receptor of VEGF (VEGF-R), excessively expressed in MM cells, is considered to
be involved in the autocrine signaling pathway [22]. VEGF is involved in the proliferation of MM
cells by stimulating the MEK/ERK pathway and the migration of MM cells through PI3K pathway
activation [23].

Moreover, it plays a role in the proliferation, through the mediation of the survival of MM cells by
enhancing Mcl-1 and survivin expression. It increases bone resorption by osteoclast, causes angiogenesis
(Figure 1), advances MGUS to the MM stage and raises microvessel marrow density (MVD). The bone
damage occurs through the prevention of osteoblast formation by blocking the differentiation of
mesenchymal stem cells, and it also occurs via osteoclast activation. These processes cause a reduction
in bone formation and an increase in bone destruction. The growth and multiplication of MM cells
in the BM are supported through the interaction of immunological, humoral, stromal and hormonal
factors, as well as megakaryocytes and platelets [24]. Several novel drugs developed for MM patients
based on the knowledge of the BM microenvironment target the BM microenvironment as well as the
plasma cells [25].

Malignant cells affect the functionality of the BM microenvironment. Cell cycle and anti-apoptotic
pathways, such as Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3),
are activated due to the intercommunication of MM cells with BMSCs by adherence. This
intercommunication of the cells causes upregulation of Bcl-xL and Mcl-1, which are anti-apoptotic
proteins [26]. Malignant plasma cells also undergo metabolic changes, which affects several metabolic
pathways and results in drug resistance in MM [27].

3. Role of Immune Checkpoints in MM

The immune system has a strong association with healthy bone maintenance. The inflammatory
cytokines play a pivotal role in skeletal homeostasis, and their dysregulation can result in several
adverse effects [21]. The pathogenesis of cancer consists of three stages: elimination, equilibrium and
escape [28]. In the first stage, elimination, the immune system recognizes the cancer cells which are
then eradicated through mechanisms such as immune cell cytolytic activity (i.e., NK cells, CD8+ T
cells and γ δ T cells). It includes T cells, which are adaptive immune cells [29,30]. In the second phase,
equilibrium, a balance is established between cancer cell elimination and its proliferation through
the regulation of control checkpoints. In the final stage, escape, if cancer persists, it overpowers the
immune reactions and proceeds towards progression and metastasis.

In the MM microenvironment, several immunosuppressive cytokines are produced, among which,
IL-6 is of paramount importance. It is produced by MM cells, as well as BMSCs, and it inhibits the
function of NK cells [31]. Moreover, NK cells, T cells and dendritic cells are also inhibited due to the
production of TGF-β by stromal cells, MM cells and osteoblasts [32,33]. The genes which are involved
in immunosuppression, such as IL-10, TGF-β and PD-L1, were found to be upregulated by APRIL
(ligand of B-cell maturation antigen) [34]. Moreover, APRIL also induced the production of T cell
regulators (Tregs) by MM cells and inhibited the T-cell proliferation through Tregs [32,35].

Due to the accuracy and long-term memory of immunotherapy, it is considered as a smart approach
to attain durable remissions. Immune checkpoints play a vital role in maintaining homeostasis and are,
hence, the immune system regulators. There are two classes of checkpoint molecules: stimulatory and
inhibitory [36]. Stimulatory checkpoint molecules stimulate the immune system, such as CD27, CD28
and CD40, while inhibitory molecules inhibit it, such as CTLA4, KIRs and PD-1. Immune checkpoint
inhibitory therapy is defined as a therapy that targets immune checkpoints. Immune checkpoints are
the immune system’s crucial regulators, and they can activate or inhibit the action that cancer cells use
to shield themselves from immune system attacks. Inhibitory checkpoints can be blocked by immune
checkpoint therapy, which therefore restores the functions of the immune system.
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3.1. PD-1 Receptors

There is progressive immune dysfunction in myeloma, where BM milieu encourages immune
evasion [37,38]. The PD-1/PD-L1 pathway plays a vital role in immune escape in MM, making this
pathway of great interest [39]. Myeloma cells and many other cancer cells express PD-L1; however,
healthy plasma cells do not express it. Moreover, it is also not expressed on plasma cells obtained from
patients with MGUS [40–43]. IFN-γ and IL-6 are responsible for this increased PDL-1 expression in
the MM microenvironment [44]. PD-L1 expression depends on the genetic subtype of the myeloma,
which is expressed more in hyperdiploid cases as compared to nonhyperdiploid disease [45]. There is a
reduced expression of PD-1 on circulating T cells obtained from patients who had the minimal disease
after high-dose chemotherapy [42].

In contrast, there is a high expression of PD-1 on circulating t cells of patients with advanced
MM [42]. In MM cells, there is an association of PD-L1 expression with drug resistance and increased
proliferation [46]. PD-L1 is also considered to play a role in clonal resistance because of its increased
expression on plasma cells obtained from patients with relapsed and refractory MM [47]. Furthermore,
there is an increased PD-1 expression on NK cells derived from MM patients which inhibit the function
of the effector cell [48]. This loss of function can be restored by blocking PD-1. Thus, the PD-1/PD-L1
pathway plays an essential role in immune escape in MM, and blocking this pathway can be a practical
therapeutic approach [49]. However, the phase III clinical trials using anti-PD-1 mAb, pembrolizumab,
have not been successful due to increased deaths in the intervention arm, and the trials were stopped
by the Food and Drug Administration (FDA) (Table 2) [50].

In MM, besides the PD-1/PD-L1 pathway, some other processes, such as the induction of T-cell
senescence [51] and CD226 [52], have also been involved in the reduction of tumor immunity.

3.2. CTLA4 Receptors

A CTLA4 blocker, ipilimumab, is the first immune checkpoint therapy drug [53,54]. It is usually
present at reduced concentrations on the surface of T cell effectors and Tregs. It functions in the
activation of T cells during the initial stages [55]. CTLA4 and CD28 homodimerize and share the same
ligands (CD80 and CD86) that are present on antigen-presenting cells (APCs). When CD28 binds
with either CD80 or CD86 to deliver costimulation, the inhibitory CTLA-4 molecule shoots to the
surface of the T cells. There, it binds with either CD80 or CD86 based on which has the higher affinity,
consequently, counteracting the costimulatory CD28 activity through the binding of phosphatases pp2A
and SHP2 [55,56]. CTLA4+ microvesicles, secreted by myeloid dendritic cells, have been shown to
mediate immune suppression. Hence, mAbs can be used for CTLA-4 blockade to elevate the response
of the immune system against cancer cells by inactivating Tregs and tumor-infiltrating lymphocytes
(TILs) and by expanding the function of T helper (Th) cells [28].

CTLA-4 and PD-1 play a similar immunoregulatory role with slight, distinct differences concerning
the regimes. CTLA-4 expression is limited to the subsets of T cells, but PD-1 expression is seen on
activated B cells and natural killer cells (NK). Unlike CTLA-4, PD-1 recognizes two distinctly related
ligands: PD-L1 and PD-L2. These ligands bind to the receptor in the setting of inflammation, and
immune regulation is mediated by this interaction, which then protects against autoimmunity during
the ongoing autoimmune response [45].

3.3. KIRs Receptors

Another type of receptors called KIRs belongs to a family of cellular receptors, which are mainly
present on NK cells. They take part in both inhibiting and activating functions. It has been shown that
the KIR ligand is disrupted to promote NK-cell alloreactivity. The most common inhibitory KIRs that
are usually articulated on NK cells in myeloma are KIR2DL1, KIR2DL2 and KIR2DL3. A recent study
showed that myeloma patients have increased the pervasiveness of KIR2DS4, which is a KIR that lacks
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function in several settings in comparison to healthy controls. Therefore, the KIR-ligand system might
be one capable therapeutic aim for immune checkpoint inhibition in myeloma [45].

Although immune checkpoint inhibition therapy has promising results, there remain many
unresolved challenges to overcome in the optimization of this approach in order to obtain maximum
effectiveness. Therefore, further studies are required in this area of research to gain better outcomes.

4. Exosomes and microRNAs (miRNAs) in MM

Exosomes are a type of extracellular, membrane-bound vesicles (EVs). These vesicles are generated
through endocytosis pathways where the cell membrane descends inside to create early endosomes,
then late endosomes, and eventually develops into exosomes [57]. Approximately, all types of cells
secrete exosomes and, in the microenvironment, they act as presenters of the signal. They contain
microRNA (miRNA) and other biological information which can be transferred to the recipient
cells [57]. In resistance of drug and tumor growth, exosome plays an essential role by delivering
bioactive molecules such as cytokines, miRNAs, signaling molecules and growth factors [58]. Recipient
cells take up the exosome through numerous ways: (1) phagocytosis, (2) target cell fusion with plasma
membrane, (3) endocytosis mediated by receptor or lipiodraft or (4) micropinocytosis [57,58]. Exosomes
can be considered as potential biomarkers for the diagnosis and classification of disease mainly due to
the presence of miRNA [57,59]. The miRNA differs in number and types on different exosomes and
different cells, and they are highly conserved in various species. The abnormal expression of these
miRNA is associated with clinical diagnosis.

miRNAs are highly dysregulated in cancer [60]. miR-15a and miR-16 are tumor-suppressor
miRNAs that are downregulated in refractory or relapsed MM (RRMM). These miRNAs are involved
in the inhibition of growth and proliferation of MM cells both in vivo and in vitro. Also, the expression
of these miRNAs downregulated the secretion of VEGF from MM cells and, therefore, reduced
proangiogenic activity on endothelial cells [58,61,62]. Moreover, when normal cell lines/patients were
compared with MM cell line/patients, the latter exhibited lower miR-133a, miR-124a, miR-125b, miR-16,
miR-1 and miR-15 expression [63].

Various studies have revealed that abnormal regulation of miRNAs induces the stimulation of
the PTEN-PI3K/AKT signaling pathway [64], associated with the development of bladder cancer,
non-small cell lung cancer and breast cancer. As miRNAs play a significant role in many cancers, their
modulation through therapeutics can serve as an essential approach in cancer study. miR-20a is known
to work as an oncomir in several human cancers. It is upregulated in MM cells and also in the plasma
from multiple myeloma patients [65]. The expression of miR-20a in the plasma of stage III patients was
remarkably higher than in the patients of stages I and II, showing an essential role in the prediction of
survival. The correlation between PTEN and miR-20a was also discovered, in which PTEN was seen to
be targeted by miR-20a, and the overexpression of miR-20a suppressed the expression of PTEN.

Moreover, in MM cell lines, miR-20a serves as a PTEN negative regulator. In vivo, downregulation
of miR-20a resulted in the MM cell growth inhibition [66]. Therefore, miR-20a is considered to play an
essential role in MM through the modulation of PTEN-PI3K/AKT signaling [67].

In addition to the correlation of miR-20a and PTEN in the PTEN-PI3K/AKT signaling pathway,
the relation of miR-21 and STAT3 has also been observed. The increased expression of miR-21 was seen
in MM cells compared to the control cells, indicating its involvement in the pathogenesis of the disease.
IL-6 has been seen to increase the oncogenic miR-21 levels through the STAT3 signaling pathway,
which indicates that induction of miR-21 contributes to cancer progression through STAT3 [67,68].

5. Wnt/β Catenin Signaling Pathway and Its Association with MM

Wnt signaling pathways maintain tissue homeostasis in mature organisms [69]. Dysregulation of
Wnt signaling pathways lead to different human pathologies, particularly cancer [70]. Migration of cells
during embryonic development, hematopoiesis and homeostasis of tissues are some of the functions
that are regulated by the Wnt, which comprises two pathways: β-catenin-dependent pathway and the
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β-catenin-independent pathway. The β-catenin-dependent pathway functions in the regulation of the
cell cycle, while the β-catenin-independent is involved in the regulation of intracellular calcium and
planar cell polarity [71].

Interruptions in the Wnt pathway, mainly in the β-catenin-dependent pathway, are linked to
cancer and a series of other developmental diseases. In the absence of the Wnt ligand, β-catenin is
phosphorylated and marked for proteasomal degradation by the destruction complex, which consists
of GSK3β, AXIN, APC and CK1α. On the other hand, when the Wnt ligand binds to its receptor,
the docking site for AXIN is formed by the phosphorylated co-receptors, LRP5/6. Subsequent
removal of AXIN results in disruption of the destruction complex, which allows translocation of
nonphosphorylated β-catenin to the nucleus (Figure 3) [72]. In the nucleus, β-catenin binds to T-cell
factor/lymphoid enhancer factor 1 (TCF/LEF1) [70]. The establishment of this transcription factor
complex causes the transcription of several genes. In addition to the cytoplasmic pool, β-catenin binds
to E-cadherin (ECAD) on the cytoplasmic domain. ECAD is a protein that functions in intracellular
adhesion. The gene CDH1 codes for ECAD, and the loss of this gene is related to the increased invasion
of tumors and contributes to metastases.
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PI3K/Akt, NF-kB, Ras/Raf/MEK/Erk and Wnt/β-catenin participate in the pathogenesis of disease by
mediating the angiogenesis, proliferation, survival, differentiation, invasion and migration of MM cells.

It has been shown that β-catenin/transforming growth factor (TGF)/LEF1 functions in
transcriptionally activating CCDN1 and MYC, which are upregulated in MM (Table 1) [73,74]. The
β-catenin/TGF/LEF complex downregulates p16INK4a and miR-15a/16 expressions, which further
cause cyclin D1 upregulation and enhance angiogenesis in MM [61,75,76].

Inhibitors of Wnt Signaling

Proteins that inhibit the Wnt pathway are divided into two classes: the secreted Frizzled-related
protein (sFRP) class and the Dickkopf (Dkk) class [77]. The sFRP class consists of the sFRP family,
Cerberus and Wnt inhibitory factor 1 (WIF-1); all of these directly bind to Wnt ligands. Whereas,
the Dkk class comprises of the Dkk protein family, which inhibits the Wnt pathway by binding to
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LRP5/6. Besides this, it has been shown that miR-34a, MiR-203, miR-21 and miR-200a are inhibitors of
the Wnt pathway. In MM, miR-34a and MiR-203 are downregulated, while miR-21 and miR-200a are
upregulated [73].

The antagonists of Wnt participate indirectly in tumor growth by reducing the differentiation
of osteoblasts. The osteoblast precursors support the growth of tumors by secreting higher levels of
growth factors and cytokines such as VEGF, HGF, BAFF, IL-6 and IL-10, which suggests that inhibition
of osteoblast differentiation is involved in tumorigenesis [78–80]. The impairment of osteoblast
differentiation also forms osteolytic lesions due to a Wnt antagonist (Figure 2) [72].

6. Role of PTEN-PI3K/AKT Signaling in MM

The PTEN-PI3K/AKT pathway is known as a significant molecular pathway in the progression and
development of malignant cells [81,82]. This pathway is highly activated in the cancer cells; thus, it is
involved in drug resistance, growth, survival, invasion and migration of cancer cells (Table 1) [66,83,84].

The PI3K/AKT pathway starts with the activation of PI3K via three different pathways, two of
which are stimulated by the activation of one of the tyrosine kinases receptors through an extracellular
growth factor, which causes the dimerization and phosphorylation of the receptor monomers. Different
proteins tend to bind to the receptor’s phosphorylated domain, which functions as a binding and
activation site for the PI3K. Besides, PI3K can get activated by binding directly to one of the tyrosine
kinase receptors. The third pathway begins with a Ras protein, in which PI3K gets activated by
binding to an active Ras protein. The active PI3K moves inside the cell membrane and gets attached
to phosphatidylinositol (4,5)-bisphosphate (PIP2), a common element of the cell membrane that is
held by two fatty acids in the lipid layer of the membrane. PI3K phosphorylates PIP2 to PIP3, which
then activates the kinase AKT. AKT plays a pivotal role in the downregulation of apoptosis, as it
activates protein formation or translation and inhibits BAX proteins from binding to the mitochondrial
membrane to prevent apoptosis [85].

PTEN (cancer suppressor gene) is a vital signal protein in the PI3K/AKT pathway that functions
in dephosphorylating lipid phosphatidylinositol-3,4,5-triphosphate (PIP3). PIP3 is a product of PI3K
that accumulates when PI3K is overactivated [86].

The targeting of the PI3K/AKT pathway in MM is an important therapeutic choice, because this
pathway plays a vital role in the pathogenesis and drug resistance of MM. It has been shown that
the growth and progression of MM cells are significantly reduced in vitro and in vivo when AKT is
inhibited by TAS-117, which is a potent and selective allosteric inhibitor of AKT [87]. TAS-117 results
in a stress response in the endoplasmic reticulum (ER), as well as autophagy and apoptosis. Moreover,
it was found that TAS-117 inhibits the secretion of IL-6 from the BMSCs by regulating the activity of
NF-κB [83]. Hence, the signaling pathway PTEN-PI3K/AKT is considered as an essential pathway for
drug discovery, because it plays a vital role in cell proliferation, cell growth, apoptosis and metabolism.

Table 1. The role of dysregulated signaling pathways in multiple myeloma (MM) pathogenesis.

Signaling
Pathways MM Pathogenesis Factor of

Solubility Role in MM Pathogenesis Affected Gene References

Wnt/β-catenin

Apoptosis
Proliferation

Migration
Differentiation
Self-Renewal

Osteolytic bone
disease

IL-6
The Wnt/β-catenin

promotes signaling and
cell growth in MM.

cyclin D1
c-myc
axin-2

[72,79,88–91]



Int. J. Mol. Sci. 2020, 21, 5002 9 of 24

Table 1. Cont.

Signaling
Pathways MM Pathogenesis Factor of

Solubility Role in MM Pathogenesis Affected Gene References

PI3K/Akt/mTOR

Survival
Apoptosis

Proliferation
Resistance
Migration

Angiogenesis

IL-6

The PI3K/Akt/mTOR
pathway is involved in

growth, survival and drug
resistance in MM plasma

cells. This signaling
pathway is also involved

in managing establishment
and activity of osteoblasts

and osteoclasts.

Gene 6 (Gas6) [92–97]

NF- κB

Survival
Apoptosis

Proliferation
Angiogenesis

Metastasis
Osteolytic bone

disease

IL-6
IL-8

APRIL

NF- κB is an important
transcription factor that
regulates cell survival in
various cells. When it is

activated, it protects some
hematopoietic neoplastic

cells from apoptosis.

Gene 6 (Gas6) [94,98–103]

JAK/STAT

Survival
Apoptosis

Proliferation
Resistance
Migration

Differentiation
Transformation

IGF-1
IL-6

The JAK/STAT pathway
plays a pivotal role in the

organization of the
immune system,

particularly cytokine
receptors, and they can

change the polarization of
T helper cells.

SHP-1
SHP-2

SOCS-1
[104–109]

Ras/Raf/MEK/Erk

Survival
Proliferation

Migration
Angiogenesis

VEGF
IL-10

The RAS/MEK/ERK
pathway is considered to
be activated in about half

of MM cases and is,
therefore, a primary

therapeutic target in MM.

HSV-2 gene
ICP10PK [110–114]

RANK/RANKL/OPG Osteolytic bone
disease HGF

RANK/RANKL/OPG play
an essential role in bone

metabolism, affecting
osteoclast formation and

activity.

- [115,116]

7. Role of JAK/STAT Signaling and Suppressors of Cytokine Signaling (SOCS) in MM

Janus-associated kinase-signal transducer and activator of transcription (JAK-STAT) pathway
is a principal signaling cascade that controls the expression of genes by transferring extracellular
signals to the nucleus [117]. The JAK family consists of four tyrosine kinases that are: Janus kinase
1–3 (JAK1, JAK2 and JAK3) and tyrosine kinase 2 (TYK2). These kinases bind to cytokine receptors
in the juxta-membrane region. The kinase activity of JAK is initiated when the ligand is attached to
its receptor in the process of receptor dimerization [118]. The cytoplasmic region of the receptor is
phosphorylated through subsequently activated JAKs. The activated complex of the JAK-cytokine
receptor phosphorylates and recruits specific transcription factors, STAT proteins. Seven STAT family
proteins found in human cells are STAT1-6, in which STAT5 includes STAT5a and STAT5b [117].
The phosphorylated STAT proteins form dimers and move to the nucleus where they function in gene
transcription by interacting with several regulatory elements [119].

In the myeloma cells and the myeloma cell lines obtained from patients, STAT3 has been seen to
be active, yet it remains inactive in the plasma cells obtained from healthy individuals [120,121]. IL-6 is
a stimulator of STAT3 in myeloma. When IL-6 binds to its receptor (IL-6R), it causes the activation
of tyrosine kinases that belong to the JAK family of proteins [122]. STAT3 plays a significant role in
the survival, proliferation and chemoresistance of MM cells [122]. Due to the function of IL-6 as a
proliferative factor in MM cells, its inhibition was considered as a therapeutic strategy for MM [10].
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SOCS

The regulation of several biological functions (such as healing of wounds and immunity) is carried
out by cytokines, which are also crucial for commencing the JAK/STAT pathway protein. The JAK/STAT
pathway, facilitated by cytokine signaling, plays a vital role in processes that are involved in cancer
initiation and growth, such as multiplication, maturation, differentiation and apoptosis of various cell
types [123,124]. In mammals, the SOCS family contains eight members that are: cytokine-induced
SH2 containing protein (CIS) and SOCS1-7. SOCS 1 and 3 are predominantly effective inhibitors
of the JAK/STAT pathway (Figure 3) [125]. Cytokine signals are inhibited by SOCS protein in four
ways, which are: (1) Block the recruitment of STATs to the cytokine receptor by masking the STAT’s
receptor binding sites. (2) Target proteins for degradation by proteasome through ubiquitination.
(3) Bind to JAKs and inhibit their kinase. (4) Target the degradation of JAKs through the proteasome.
Based on observation, SOCS1 expression is decreased in numerous cancers, such as prostate cancer,
MM, lymphoma, hepatocellular carcinoma, acute myeloid leukemia, pancreatic cancer and laryngeal
carcinoma [126,127].

The persistent activation of STAT3 has been found in many tumor cells, such as breast cancer,
head and neck cancer [128], colorectal cancer, hepatocellular carcinoma [129], renal cell carcinoma,
prostate cancer, ovarian cancer [130] and leukemia [131]. The expression level of SOCS3 has been
shown to be reduced in cancerous lesions that are infected with HCV compared to noncancerous
lesions. Reduced levels of SOCS3 may cause the hyperactivation of STAT3, which induces multiple
tumor-promoting genes and, hence, contributes to malignancies and carcinogenesis.

Suppressing cytokine signaling by using SOCS can be a useful therapy in cancer treatment [125].
One such way for treatment is the suppression of the tumor that promotes STATs by overexpressing
the SOCS protein, which will inhibit the growth of the tumor. Another way is through anticancer
immunity enhancement by SOCS silencing in the dendritic cells or tumor cell lysates.

It has been shown that in vivo and in vitro SOCS1 overexpression inhibits the growth of human
melanoma cells. Furthermore, SOCS1 is associated with Cdh1, which initiates the degradation by
proteasomes [132]. In non-small lung cancer cells, growth is inhibited by the overexpression of SOCS3.
Also, the radio-sensitivity of treated non-small lung cancers cells is enhanced by the overexpression
of SOCS3. Hence, SOCS 1 and 3 or SOCS-mimetic overexpression can become useful therapy in
cancer treatment. Based on the JAK/SOCS complex structural analysis, SOCS development is highly
desirable [125].

8. Role of Nuclear Factor-kappaB (NF-κB) in MM

Nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) is detected in the cytosol in
most of the cell types. It inhibits apoptosis and promotes inflammation, metastasis and the proliferation
of cells [133]. It is nonfunctional when it is associated with inhibitors of the IκB family [134,135].
NF-κB is activated when activators such as TNF-α activate IκB kinase (IKK), which phosphorylates
and degrades IκB through the 26S proteasome. NF-κB then moves to the nucleus from the cytoplasm,
where it starts the transcription of the target genes [122,136].

NF-κB is a complex of proteins that play a role in the immunity, transcription of DNA, inflammation
and cell survival [137]. NF-κB works in many cells, and it coordinates adaptive and innate immune
responses. However, dysregulation of NF-κB signaling has been reported in many human malignancies,
including cancers [138]. The NF-κB family has five monomeric subunits which are structurally
somewhat similar: RelA (also known as p65), RelB, c-Rel, p50 (produced as a p105 precursor protein
and encoded by NF-κB1) and p52 (produced as p100 precursor protein and encoded by NF-κB2) [2].
The mature subunits associate with each other to create 15 possible hetero or homodimeric transcription
factors, out of which, the most common dimers are RelB:p52 and RelA:p50. The N-termini of NF-κB
proteins contains a conserved Rel homology region (RHR), which possesses a nuclear localization
sequence as well as domains for DNA-binding and dimerization. NF-κB dimers recognize the κB
motif, a large DNA sequence. In resting cells, the inhibitor proteins keep the NF-κB factors in their
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inactive form in the cytoplasm [2]. The two NF-κB pathways, canonical and noncanonical, are
triggered by extracellular stimuli to move NF-κB dimers into the nucleus where they initiate the
expression of hundreds of stress response and immune response genes, as well as pro-survival and
immune-differentiating factors [2].

The canonical and noncanonical pathways differ in biological functions and signaling
components [139]. The canonical NF-κB pathway’s activation mainly relies on the degradation
of IκBs, specifically IKBα, which is mediated by the IκB kinase through phosphorylation [140,141]. The
IKK phosphorylates IκB-specific and terminal serine residues. The inhibitory subunits IkBα, IkBβ and
IkBε undergo proteasomal breakdown after phosphorylation [142]. Therefore, the NF-κB dimer gets
transferred to the nucleus. The noncanonical NF-κB pathway is primarily involved in B cell maturation,
osteoclast differentiation, lymphoid organogenesis and immune system functioning. In the inactivated
form of the NF-κB complex, there are a series of proteins which are bound to each other and function
in the proteasomal degradation of NF-κB-inducing kinase (NIK).

Interleukins and Growth Factors

BMSCs activate the canonical NF-κB pathway upon adhering to MM cells, which induces IL-6
expression [143]. Moreover, the IL-6 production is also caused by IL-1β through the induction of the
canonical NF-κB pathway in BMSCs. IL-6 induces the production of VEGF and also exerts pro-survival
and pro-proliferative gene expressions in MM cells. NF-κB-target genes also encode some of the
VEGF isoforms. Furthermore, the NF-κB dependent antiapoptotic gene expression is caused by
IGF-1, which is secreted by BMSCs [144,145]. The canonical NF-κB pathway is activated by TNF
(a pro-inflammatory cytokine) in both myeloma cells as well as in BMSCs, and it is also secreted by the
canonical pathway [2]. NF-κB promotes the downstream signaling of the receptors that is initiated by
the growth factors, e.g., epidermal growth factor receptor (EGFR). Due to the activation of EGFR, P13K
is released in the plasma membrane, which causes the production of PIP3 [146]. PIP3, with the help
of phosphoinositide-dependent kinase-1 (PDK1) and the mammalian target of rapamycin complex
2 (mTORC2), activates protein kinase B (AKT/PKB). The mutations that affect mTOR and EFGR are
particularly crucial in activating AKT, which in turn activates NF-κB through IKK. This activation of
NF-κB results in the transcription of prosurvival genes and, thus, inhibits cancer cell death.

There are many treatment strategies for MM patients, such as histone deacetylase inhibitors
or proteasome inhibitors and immunomodulatory drugs [147]. Besides these, there are some novel
therapies, which include chimeric antigen receptor T cells (CAR-T cells) and small molecule inhibitors.
Table 2 discusses the mechanism of action of some drugs alone, or in combination with other drugs, on
MM patients.

The NF-κB pathway, besides being essential for normal lymphoid cells, is also required for the
survival and proliferation of B-cell acquired cancers, including MM [147]. Thus, the NF-κB signaling
pathway is the primary or secondary target of many compounds which are used to treat MM [147].

9. Role of FOXM1 in Drug Resistance of MM

Forkhead box M1 (FOXM1) regulates numerous biological processes which are all associated
with the progression of tumors and their reaction to targeted therapies [148]. These processes involve
the repair of DNA damage, cell cycle progression, stem cell self-regeneration and senescence [149].
FOXM1 is involved in tumor cell proliferation and is overexpressed in numerous types of cancers [150].
In vitro, the upregulation of FOXM1 has been shown to increase drug resistance in myeloma [148].
In MM cells, this transcription factor supports the progression of the cell cycle and also interacts with
the cyclin D-CDK4/6-Rb-E2F pathway to promote drug resistance [148].

Regarding the various biological roles ascribed to the FOXM1 in MM, it resembles some
well-recognized transcription factors of myeloma, such as myelocytomatosis oncoprotein (MYC)
and interferon regulatory factor 4 (IRF4) [151]. FOXM1 is also involved in the progression of
other B-lineage neoplasms, which include chronic lymphocytic leukemia [152], acute lymphoblastic
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leukemia [153], follicular lymphoma [154] and diffuse large cell lymphoma [155]. According to a new
pan-cancer meta-examination of nearly 18,000 gene expression signatures, FOXM1 is recognized as a
significant predictor of detrimental outcomes in 39 hematologic and solid malignancies, including
MM [156].

In newly diagnosed myeloma patients, the FOXM1 gene is associated with high risk [157], which,
upon tumor relapse, experiences further increases in most cases [156]. FOXM1’s interaction with
NIMA-related kinase 2 (NEK2) and the CDK4/6-Rb-E2F axis, in myeloma cells, is considered to
be useful from a therapeutic aspect, because CDK inhibition is thought to be effective in myeloma
treatment [156–159]. Furthermore, in cancer, NEK2 is targeted by FOXM1, and it has been shown to
cause drug resistance in MM and some other malignancies [160,161]. Small compounds that exhibit the
properties to inhibit kinase activity can be used to target it [162] or can indirectly cause deterioration
of a target by a process that involves an interruption in the binding of NEK2 to the NDC80/HEC1
component of the kinetochore complex [148].

Drug resistance is the primary concern in cancer treatment [163]. In drug-sensitive cells of breast
cancer, FOXM1 is downregulated by chemotherapy, but in the resistant cells, FOXM1 maintains its
levels [164]. Among these chemotherapy agents, cisplatin, which is a highly effective drug, forms
adducts of platinum on genomic DNA, causing the damage of DNA and, eventually, cell death [163].
It has been shown that, in the cell line MCF-7, treatment with cisplatin activated the repair of DNA in the
resistant MCF-7-CISR as compared to MCF-7 cells. The active FOXM1 expression in cisplatin-sensitive
MCF-7 cells also contributes resistance, but FOXM1 silencing can make the cells sensitize to the
drug [164]. FOXM1 confers resistance in cancer cells by increasing DNA damage repair; thus, the drugs
targeting FOXM1 can prove promising results in inducing cell death in resistant tumor cells [163].

RNA interference can be used as a strategy to downregulate FOXM1, which eventually inhibits
the invasion and proliferation of cancerous cells. The transcription factor FOXM1 is considered a direct
target of thiostrepton, which is a proteasome inhibitor, and blocks the binding of FOXM1 to its target
genomic sequence, thus abort its transcriptional activity [165]. The overexpression of FOXM1 is linked
with the expression of VEGF and MMP-9. VEGF and MMP-9 are the proteins that are involved in the
angiogenesis of cancer and in the degradation of the ECM. In a study conducted by Siraj A K et al. [166],
it was shown that treatment of breast cancer cells with thiostrepton noticeably downregulated FOXM1,
MMP-2, MMP-9 and VEGF expression.

Table 2. Mechanism of action and/or toxicities of different drugs in MM patients.

Drug/Antibody Model/System Mechanism of Action/Toxicity Reference

Pembrolizumub
(Phase III clinical trial)

301 newly diagnosed MM
patients (NDMM)

The adverse events in patients
included cardiac arrest, cardiac

failure, myocarditis, pneumonia,
intestinal ischemia, pulmonary

embolism, cardiorespiratory arrest,
sepsis and large intestinal

perforation

[167]

Pembrolizumub
(phase III clinical trial) 249 patients having (RRMM)

Adverse reaction of the drug
included pericardial hemorrhage,

neutropenic sepsis, Steven-Johnson
syndrome, myocarditis, respiratory
tract infection, sepsis, cardiac failure

and myocardial infarction.

[168]

Ixazomib
(phase III clinical trial) 722 patients having RRMM

Ixazomib is a proteasome inhibitor
that binds to the 20S proteasome at
β5 subunit and inhibits its activity.

It reduces the release of cytokines by
inhibiting the NF-κB pathway
in vitro in multiple myeloma

stromal cells.

[169]
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Table 2. Cont.

Drug/Antibody Model/System Mechanism of Action/Toxicity Reference

Thalidomide
(phase II clinical trial)

34 patients, previously treated
with three or fewer therapies

Thalidomide inhibits the production
of TNF-α by monocytes. It also

inhibits the survival of MM cells by
affecting the BM microenvironment.

[170,171]

Isatuximab in combination
with

Pomalidomide/dexamethasone
307 patients who had RRMM

Isatuximab is an IgG1 κmAb. It
binds to CD38 on a unique site and
kills tumor cells through different
mechanisms such as phagocytosis
and cellular cytotoxicity. Cellular
cytotoxicity, which is mediated by

NK cells, is the highly effective
mechanism caused by isatuximab.

[172,173]

AMG 424 Mice and cynomolgus
monkeys

This antibody causes multiplication
of T cells and is targeted at CD38,
which is a cell surface marker of
MM. It results in the complete

killing of myeloma cells that express
high and low levels of CD38.

[174]

Daratumumab 53 patients with RRMM

Daratumumab is a human
monoclonal IgG kappa antibody
which targets CD38. The adverse

events associated with
daratumumab include some

hematological toxicities.

[175]

Lenalidomide (LEN) in
combination with

dexamethasone (DEX)

98 patients were treated with
one cycle of LEN/DEX and 48

patients with 6 cycles

Lenalidomide is an
immunomodulatory drug, and it

possesses apoptotic and
antiangiogenic properties.

[176,177]

Elotuzumab/immunomodulatory
drug and dexamethasone

33 patients with RRMM (safety
and efficacy of elotuzumab)

Elotuzumab causes activation of NK
cells by SLAMF7 ligation to exert its
anti-myeloma function. Moreover, it
also results in antibody-dependent
cellular cytotoxicity. The frequent

adverse event recorded was
lymphopenia.

[178]

Carfilzomib
(pooled analysis of phase I and

II studies)

121 newly diagnosed MM
patients were analyzed, those
who were transplant-ineligible

Carfilzomib is a proteasome
inhibitor (PI). PIs mainly target the
20S proteasome, which is involved

in the proliferation of cancerous
cells.

[179,180]

MOR202
38 RRMM patients

(safety and efficacy of
MOR202)

MOR202 is a HuCAL-derived,
anti-CD38 monoclonal antibody
which shows effective cellular

cytotoxicity, cell-mediated
phagocytosis and significant activity

in preclinical multiple myeloma
models. MOR202 was found to be

safe and well-tolerated.

[181]

Bortezomib, dexamethasone
and lenalidomide

(phase II clinical trial)
64 patients with RRMM

Preclinical studies in MM cells have
demonstrated that the activity of
dexamethasone is stimulated by

bortezomib, and the introduction of
lenalidomide makes the cells

sensitive to bortezomib, suggesting
that the combination of these

proteasome inhibitors and
immunomodulatory drugs can

enhance patients’ survival rates.

[182]

10. Conclusion and Future Perspective

MM remains an incurable malignancy owing to drug resistance, which requires further
investigation to find a cure. The changes in the expression of cytokines and adhesion molecules are
major reasons for dysregulated signaling pathways in tumor cells. Therefore, it seems likely that the
inhibition of cytokine-dependent MM signaling pathways can help in overcoming drug resistance.
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Moreover, the thorough understanding of the association between inflammation and MM can help in
developing effective therapeutic interventions.

Over the last decade, several new therapies for the treatment of myeloma have been considered
and investigated. The new therapies not only include novel drugs but antibodies and vaccine-based
therapies and new immune and cellular approaches as well. Theoretically, the combination of drugs
with cellular and immune therapies may have better outcomes for MM patients, like a disease-free,
long-term survival.
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Abbreviations

FGFR3 Fibroblast growth factor receptor 3
APC Adenomatous polyposis coli
IL-6 Interleukin 6
IL-8 Interleukin 8
VEGF Vascular endothelial growth factor
BAF Barrier-to-autointegration factor
BAFF B-cell activating factor
IGF-1 Insulin-like growth factor 1
FGF Fibroblast growth factor
SDF-1 Stromal cell-derived factor 1
CXCL-12 C-X-C motif chemokine 12
ICAM Intercellular Adhesion Molecule 1
NCAM Neural cell adhesion molecule
CD40 Cluster of differentiation 40
VLA 4 Very Late Antigen-4
LFA 1 Lymphocyte function-associated antigen 1
CD45 Cluster of differentiation 45
SOCS Suppressors of cytokine signaling
Bcl2 B-cell lymphoma 2
Bcl-xL B-cell lymphoma-extra large
MCL1 Myeloid cell leukemia 1
BCL2L10 Bcl-2-like protein 10
PUMA p53 upregulated modulator of apoptosis
TNFR Tumor necrosis factor receptor
RIP Ribosome-inactivating protein
TAK1 TGF-β–activated kinase 1
IKKβ Inhibitor of nuclear factor kappa-B kinase subunit beta
EGFR Epidermal growth factor receptor
EGF Epidermal growth factor
MMP-2 Matrix metalloproteinase-2
MMP-9 Matrix metalloproteinase-9
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PD-1 Programmed cell death protein 1
PD-L1 Programmed death-ligand 1
KIRs Killer-cell immunoglobulin-like receptors
IL-2R Interleukin-2 receptor
SHP-1 Src homology phosphatase-1
HGF Hepatocyte growth factor
bFGF basic Fibroblast growth factor
TGF-β Transforming growth factor beta
TNF-α Tumor necrosis factor alpha
SDF-1α Stromal cell-derived factor 1 alpha
DKK-1 Dickkopf-related protein 1
MIP-1 α Macrophage inflammatory protein 1 alpha
RTK Receptor tyrosine kinase
IRS-1 Insulin receptor substrate 1
PTP Protein tyrosine phosphatase
DSH Dishevelled
APC Antigen-presenting cell
GSK3 Glycogen synthase kinase-3
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