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Abstract

The rugged energy landscape of biomolecules together with shortcomings of traditional molecular
dynamics (MD) simulations require specialized methods for capturing large-scale, long-time
configurational changes along with chemical dynamics behavior. In this report, MD-based methods
for biomolecules are surveyed, involving modification of the potential, simulation protocol, or
algorithm as well as global reformulations. While many of these methods are successful at probing the
thermally accessible configuration space at the expense of altered kinetics, more sophisticated
approaches like transition path sampling or Markov chain models are required to obtain mechanistic
information, reaction pathways, and/or reaction rates. Divide-and-conquer methods for sampling and
for piecing together reaction rate information are especially suitable for readily available computer
cluster networks. Successful applications to biomolecules remain a challenge.

Introduction and context
It has been said that, while the 19th century belonged to
chemistry and the 20th century to physics, the 21st
century is and will continue to be dominated by ground-
breaking science in biology. However, it is clear that
biology without the tools of mathematics, physics,
chemistry - not to speak of computer science and
engineering innovations - would be severely limited. In
fact, computer modeling and simulation offer a modern
tool for simulating conformational events in a variety of
molecular systems and subsequently extracting related
mechanistic, thermodynamic, and kinetic information.

One spectacular example of themodernmarriage between
technology and biology involves the theory and practice
of molecular dynamics (MD). MD, with variations and
extensions, has become a universal tool for probing
relationships among biomolecular structure, flexibility,
and function. Since successful applications were reported
in the 1970s in protein dynamics [1], MD has become a
universal tool, ‘as if it were the differential calculus’ [2].

Of course, MD is simply statistical mechanics by
numbers, or Pierre-Simon de Laplace’s vision of using
physical laws to simulate time-dependent events [3], on
modern supercomputers. And impressive progress in the
development of biomolecular force fields, coupled to
spectacular computer technology advances, has now
made it possible to overcome the difficulty noted by Paul
Dirac of solving the complex equations of motion [4].

Now, sophisticated dynamics programs, like NAMD,
Desmond, or GROMACS, adapted to parallel and
massively parallel computer architectures, have made
simulations of biomolecular systems of one microse-
cond and longer feasible in several weeks of computing
[5-8]. However, the hunger for longer simulations as an
end by itself may not be justified given that such
simulations lead to as many questions as answers, and
underscore the notion that computer power alone is not
likely to solve ‘folding’ problems. Indeed, many approx-
imations (for example, in force field functional form as
well as numerical values) and sampling limitations still
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persist. And besides potential function inaccuracies,
sampling the vast conformational space remains a
grand challenge because standard MD methods cannot
sample the vast thermally accessible configuration space
of biomolecules to capture large-scale rearrangements,
including reaction pathways, mechanisms, and rates.
Rather, MD applications are valuable in probing local
system fluctuations (Figure 1, bottom left) for different
single-residue variants of DNA polymerase l [9].

An enormous range of methods has been developed and
applied to molecular systems in an attempt to enhance
coverage of the thermally accessible conformational
space. The efficacy/ability of each approach depends on
the goals of the computation and the available comput-
ing resource. No review or presentation could possibly
list them all. Instead, I will present some general
concepts and highlight selected interesting applications
in this brief perspective. See [10,11] for recent reviews.

Figure 1. Illustrations of various sampling methods

(Top left) Principal component analysis (PCA) of a polymerase b/DNA complex during the conformational closing rearrangement following nucleotide binding
revealed dominant motions of the thumb subdomain, correlated to other regions of the protein [13]. Only the protein is shown. (Top right) Transition path
sampling (TPS) of the same complex for the closing conformational change for both correct and incorrect base pairs reveals the free energy profiles and major
barriers involved [58,59]. (Bottom right) Monte Carlo (MC) simulations of a coarse-grained multiscale model of the chromatin fiber showed the influence on
the monovalent salt concentration on the oligonucleosome configurations [14]. (Bottom left) Molecular dynamics (MD) simulations of seven single-residue
variants of the polymerase l/DNA complex at residue 517 showed the importance of this residue in stabilizing the complex, as evident by the wide range of
fluctuations observed [9]. PCA image reprinted with permission from Biophysical Journal [13]. Copyright 2004, Elsevier.
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In the first review of this series [12], Monte Carlo (MC)
approaches (simulated annealing, hybrid MC, and
parallel tempering), harmonic approximations (methods
based on spectral decompositions like principal
component analysis [PCA] and essential dynamics), and
coarse-graining formulations (multiscale models for
protein and supramolecular systems) were surveyed;
methods like PCA provide information on dominant
functional motions, such as subdomain movements in a
polymerase b/DNA complex [13] (Figure 1, top left), and
MC simulations are especially effective for coarse-grained
models, such as chromatin [14] (Figure 1, bottom right).

Here, methods based on MD are considered. These can
be as simple as modifying the potential or the basic
protocol or can involve more complex modifications of
the algorithms, including global reformulations. Meth-
ods in all categories (for example, replica exchange MD,
or REMD) are generally effective for gaining insights into
broader structural and thermodynamic questions than
possible in typical MD, although a rigorous assessment
of their performance is generally lacking. However,
increasingly sophisticated methods - grouped as global
reformulations - are needed for describing mechanisms,
free energy profiles, and/or detailed kinetics. These
include transition path sampling (TPS), forward flux
simulation (FFS), and Markov chain models, all of which
pay special attention to preserving microscopic reversi-
bility and thermal distributions of the systems.

Major recent advances
Modifying the potential energy function
The simplest and crudest approach for enhancing the
sampling is to manipulate the energy function used as a
basis for MD by using restrained potentials, as in targeted
MD (TMD) or umbrella sampling (US) by using various
experimentally based biases or guides.

In TMD, an artificial restraint potential term is added like
a Lagrange multiplier with a parameter l (0 at the initial
state and 1 at the target state) so as to force the system to
evolve toward a certain state (for example, closed and
open state of an enzyme) in a specified number of steps.
However, the actual trajectory obtained using this
restraint leads to unphysical dynamics since incorrect
transition states are often achieved. Nonetheless, TMD
can be used to explore space in a preliminary manner.

In 2002, Kong et al. [15] reported a TMD application to
the opening of an Escherichia coli membrane channel
whose open and closed states were modeled. The
simulations suggested a four-stage process in the open-
ing, unlike simpler paths suggested previously. An F1000
commentator writing on this work considered TMD to be

‘one of the most promising methods to suggest possible
pathways for large-scale conformational changes’ [16].

Similar in spirit is the simplified multiple-basin Hamil-
tonian funnel-based potential model [17]. Developed
for very large molecular complexes with known endpoint
structures, such a model can be used, as in TMD, to
simulate very large-scale motions, such as transitions
between ligand-bound and unbound states.

However, over the past few years, we have come a long
way. Now, we have more mathematically rigorous
methods to sweep conformational space, deduce
mechanisms, and compute reaction rates as well as free
energies by a variety of innovative methods. Still,
because the applications of those more sophisticated
methods are far from routine for biomolecules, there is
room for the simpler, albeit more artificial, approaches.

US focuses on specific regions of phase space by using a
restraining potential. In a recent application, Mills and
Andricioaei [18] developed a ‘guided US’ for biomole-
cules in which experimental restraints [for example,
end-to-end distance determined by fluorescent reso-
nance energy transfer (FRET) experiments] are used to
formulate potential restraints. They showed dramatic
improvement in efficiency (that is, faster convergence
and better final distances for the guided versus
unguided US).

Another interesting example of using experimental
restraints was reported by Paci et al. [19]. They
constructed transition state ensembles (TSEs) of simple
two-state (fast) folding proteins by restraining the
conformational energy to states that satisfy experimen-
tally known contact values of f (ratio of the number of
native contacts present in the protein transition state to
that in the native state). Interestingly, their computed
TSEs for three fast-folding proteins revealed that mem-
bers of these TSEs have approximately 70% native-like
folds even though rms distances, relative to the folded
state, can be large.

Besides various constraints or restraints, the energy can
be alternatively modified by using other types of added
energy terms. For example, McCammon’s group [20]
recently used accelerated MD in which a term is simply
added to the potential energy ‘to boost’ the potential to
allow escape from minima. For numerical considera-
tions, the addition is implemented so that the gradient is
continuous. Moreover, to be effective, the boost can be
applied to one term only (for example, torsional terms)
so as not to destroy liquid water structure around the
biomolecule.
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Such a boost approach is based on many other proposals
of adding biasing potentials to overcome barrier crossing
reported previously. These include Grubmüller’s confor-
mation flooding inwhich the bias is determined based on
a coarse-grained simulation for the conformational space
density [21], Voter’s hyper-MD in which the biasing
potential is constructed based on the smallest eigenvalue
of theHessianmatrix [22], the simple local boostmethod
based on the total potential energy [23], and a bondboost
method based on bond-length deviations [24].

Modifying the simulation protocol
The MD simulation protocol rather than the energy can
also be manipulated. In this subclass, we have the
popular approach LES (locally enhanced sampling), in
which several configurations are generated in a single
energy evaluation [25], and REMD [26], based on
parallel tempering MC [27], which itself is based on
Metropolis-coupled Markov chain MC.

The idea in REMD is to simulate multiple, non-
interacting copies (replicas) of identical systems at
different temperatures. Periodically, the configurations
of the replicas are exchanged (and thus the thermo-
dynamic, or temperature, states are exchanged) with a
transition probability P that maintains each tempera-
ture’s equilibrium ensemble distribution in the canoni-
cal ensemble so as to retain those systems that are
making better progress:

P ¼ minf1; exp½ðbnew − boldÞðUnew − UoldÞ�g

where bi = 1/(kBTi) and Ui are the internal energies of
states i (new and old). These temperature-ensemble
exchanges are meant to accelerate crossings of energy
barriers. Though obeying detailed balance for an
extended ensemble of the canonical states, the state-
exchange probability destroys real kinetic properties.
However, REMD has been successfully used to simulate
folding/unfolding equilibria of biomolecules.

REMD has been increasing in popularity for applications
ranging from small peptides to complex biological
systems. However, its success has largely been empirical.
For example, among the numerous applications to
biomolecules reported, the folding of a small solvated
RNA hairpin from an extended state [28] revealed a
diverse ensemble of conformations with differing stack-
ing and base pair arrangements; applications to solvated
protein A [29] also revealed the folding as the
temperature decreases from about 600 to 280 K (see
posted animations [30]). REMD villin folding simula-
tions of 200 nanoseconds in length consistently folded
within 1.78 Å of the native state [31].

More recently, practitioners of REMD have emphasized
the need to formulate careful configurational swapping
protocols (temperature ladders and exchange/acceptance
ratios) and other ways to increase the conformational
sampling efficiency (see [32,33], for example). Other
practical considerations have been discussed. For example,
because efficient sampling in REMD requires a large
number of replicas to enhance the swapping rate, the user
must have a large number of concurrent processors
available for the REMD simulation; this may not be the
case for the average user, and the REMDvariant distributed
replica sampling [34] may be preferable. Kamberaj and
van der Vaart [35] describe an efficient multiple scaling
REMD in which a Tsallis biasing potential increases
sampling efficiency because barrier crossings are enhanced
so the number of replicas can be reduced. For a note on
the likely computational advantage of REMD for systems
with relatively high energy barriers, see [36].

Cooke and Schmidler [37] recently presented a thorough
analysis of REMD, explaining that the formulation of
REMD by extension of parallel tempering MC to MD has
introduced sampling and ergodicity problems stemming
from the failure of the underlying constant-temperature
(canonical) MD integrators to preserve certain variants.
This is because, while the MC analog is based on Markov
chains, REMD algorithms cannot use the symplectic
leap-frog integrator popular for microcanonical (con-
stant energy) MD and resort to isothermal (constant
temperature) integrators like the Berendsen heat-bath
algorithm or the Nosé-Hoover thermostat method,
which are not rigorously ergodic; this can affect the
dynamics of even small systems. As a remedy, combining
REMD with hybrid MC to ensure ergodicity is suggested
[37], thereby returning to the original advantages of
parallel tempering MC. Recently developed entropy-
preserving constant-temperature integrators can also
solve the ergodicity problem in REMD [38].

Many other REMD combinations have been reported.
Chebaro et al. [39] combined REMD with a coarse-
grained implicit solvent model of proteins (OPEP) to
determine equilibrium ensembles of proteins. Bolhuis
[40] combined REMD with transition interface sampling
(TIS) to compute the free energy profile and rate
constants when high barriers are involved. These
combinations emphasize how different sampling meth-
ods can be combined in clever ways to suit the problem
and enhance sampling further.

Modifying the MD algorithm
Besides altering the energy function as in TMD and
simulation protocol as in REMD, the MD algorithm itself
can be altered.
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Many integrators have been developed to address
stability and resonance limitations of MD integrators
due to the high-frequency vibrational modes and the
intricate coupling among the vibrational modes of a
biomolecule spanning a wide spectrum. See [41], for
example, for a discussion of these issues and various
solutions; most successful approaches to both stability
and resonance problems consist of multiple-timestep
integrators combined with stochastic dynamics.

Langevin dynamics and Brownian dynamics (BD), in
which solvent collisions and thermal fluctuations are
incorporated in an average sense, have long been used as
a way to allow larger timesteps and hence larger
timespans in dynamics simulations. For stochastic
dynamics methods, it is also easier to prove ergodicity.

An interesting approach in which the algorithm is
modified was recently reported by Sweet et al. [42].
Their approach, called ‘NML’, is an extension of a LIN
[43] developed as a way to increase the timestep in
standard MD integration. The idea in LIN was to use
implicit integration for the low-frequency modes and
normal-mode analysis (NMA) for the high-frequency
modes; Langevin, rather than Newtonian, dynamics was
also used to dampen resonance effects, which limit the
timestep to around 3.3 femtoseconds when all light-
atom motions are considered [41]. Sweet et al. [42]
replace NMA by the less costly BD for the high-frequency
modes and therefore keep the fast oscillations around
their equilibrium values; the low-frequency modes are
propagated by Langevin dynamics as in LIN.

An interesting recent algorithm for sampling the
canonical distribution is based on the Nosé-Hoover
formulation in the context of Markov chain MC [38]; this
solution to the lack of ergodicity in the context of Nosé-
Hoover integrators is similar to the idea of Cooke and
Schmidler [37] for REMD. Systematic discretization
errors are also eliminated by this hybrid MC approach
for canonical sampling.

In this altered MD algorithm category, a noteworthy and
unusual example is interactive MD (IMD) developed by
the Schulten group to probe mechanisms of biological
reactions using computer graphics and simulation
(VMD + NAMD) [44,45]. The user steers the system to
the desired state by ‘feeling’ the potential force and
applying any desired magnitude (to ‘pull’ the system).
IMD is particularly appropriate for studies of induced-fit
mechanisms, in which substrate/solvent/protein inter-
play are crucial for selectivity and biological function. It
requires, however, a sophisticated device on the user’s
desktop.

Note that MD in internal-coordinate space has been
used sporadically with the rationale that the fewer
degrees of freedom compared with Cartesian coordi-
nates will allow longer integration timesteps and hence
greater sampling. Indeed, peptide folding and refine-
ment with dihedral-angle MD demonstrated a com-
putational advantage of several orders of magnitude
compared to Cartesian analogs [46]. However, internal-
coordinate MD is not generally used, possibly due to
the significant effect of vibrational coupling on biomo-
lecular dynamics and the computational difficulties
involved in transforming internal coordinates to/from
Cartesian coordinates; it is nonetheless worth more
consideration in the context of simplified models, such
as macroscopic united-residue models of proteins and
nucleic acids.

Global reformulations
Many innovative methods have been developed by
mathematicians, physicists, and chemists in this category
of algorithmic reformulations. (Note: citations below
often refer to a recent work rather than the original paper,
which can be found in the recent article.)

Examples of methods that aim to explore the free
energy landscape include: (a) canonical adiabatic free
energy sampling (CAFES) [47], which propagates
dynamics of decoupled solute and solvent systems so
that the former follows adiabatic dynamics of the free
energy surface created by the latter at increased
temperatures; (b) reference potential spatial warping
algorithm (REPSWA) [48], which introduces a variable
transformation in the classical partition function that
increases attraction to basins; (c) metadynamics [49],
which involves exploring the free energy surface by
following non-Markovian dynamics determined by
rewriting the equations of motion in terms of a few
collective variables so that key regions of space are
identified as simulation time increases; and (d) a
sweep method that combines temperature-accelerated
MD (TAMD) with a free energy reconstruction from
the mean force using radial basis functions via
optimization [50].

Methods that deduce mechanisms include: (a) TPS by
Chandler and colleagues, which follows an MC protocol
in MD-trajectory space to locate key transition states (as
recently reviewed in [51]); (b) the nudged elastic band
(NEB) method [52] that optimizes minimum energy
pathways; (c) the max-flux approach [53], which
constructs variationally optimized reaction pathways
based on the max flux for diffusive dynamics; and (d)
the string method [54], which prunes MD trajectories to
retain reactive segments.
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Methods that compute reaction rates include (a) FFSs
[55], which use interfaces to partition phase space; (b)
‘milestoning’ [56], which coarse-grains temporal and
spatial descriptors of the system by sequential transi-
tions; and (c) the popular Markov state models (MSMs)
[57], which define transition networks to describe
biomolecular kinetics and thermodynamics. Essentially,
all of these methods compute rates by various divide-
and-conquer strategies.

TPS developed by Chandler, Bolhuis, Dellago, and
Geissler has been popular and successful in various
biomolecular application contexts [51]. The idea is to
run an MC in trajectory space in a way to create reactive
trajectories that preserve microscopic reversibility and
local thermal distributions. Full kinetic information can
be extracted by clever extensions (such as efficient US,
BOLAS [58], and network models). For example, an
application of TPS to DNA polymerase b deduced the
mechanism, free energy profile, and rate for pol b’s
closing conformational change [59]: a complex land-
scape was revealed where sequential, subtle, side-chain
rearrangements lead the enzyme from open to the closed
state and where Arg258 is a ‘gatekeeper’ for the reaction
(Figure 1, top right); the overall computed rate of 10 per
second corresponds to the 27kBT barrier and agrees well
with the experimental value of 3 to 10 per second for the
overall reaction. The application of BOLAS [58], instead
of US, was crucial for achieving acceptable margins of
error; unlike US, BOLAS avoids large biases (which in
turn lead to large error bars) by sampling each window
by many short MD trajectories.

The same TPS protocol applied to the mismatch (G:A
instead of G:C) suggested that the higher free energy
barrier for the mismatch comes from the instability of
the closed mismatched state compared with the matched
base pair system [60].

Rogal and Bolhuis [61] recently extended TPS to connect
several intermediate states in phase space.

The idea in the popular MSMs [57] is to compute
reaction rates from different interfaces. Combinations
such as by Pan and Roux [62], which employ the single-
sweep method of Vanden-Eijnden and colleagues [50]
with MSM, can be successful for proteins because phase
space is surveyed to map dynamically important regions,
from which free simulations are initiated, and then the
transition matrix is constructed by piecing the informa-
tion together.

The FFS approach [55] similarly enhances phase space
sampling of rare events in stochastic non-equilibrium

systems in which the phase space distribution is not
known a priori. The phase space is partitioned, and an
adaptive procedure is used to find kinetic ‘bottleneck
regions’ by estimating rate constants associated with
reaching subsequent interfaces. Then, FFS concentrates
on sampling those bottleneck regions only. FFS is
appropriate for discretely defined surfaces, like protein
folding on a lattice; a recent application located the
most probable transition state isosurfaces for a 48-unit
protein [63].

Finally, the similar idea in milestoning [56] is to recover
reaction kinetics by integral equations and global path
optimization strategies. Milestoning is compared with
MSM, FFS, and TIS in [64], where advantages of
milestoning compared with the other methods are
suggested in terms of accuracy, efficiency, and parallel-
machine implementations.

Numerous other innovative mathematical methods use
various constructs from physics, mathematics, and
engineering such as domain decomposition, clustering
techniques, or Markov models to sample and/or survey
conformational space and dynamics. For example, a
robust Perron cluster analysis propagates a system’s
essential dynamics with preservation of Markov proper-
ties [65], and a hierarchical clustering approach by a
Markov model helps identify groups of configurations
with common features and transitions between them
[66].

Future directions
Certainly, long MD simulations are being reported more
regularly now compared with several years ago as a result
of efficient and parallel simulation packages like NAMD,
Desmond, GROMACS, and others [5-8], and new
computer systems like Anton, hard-wired for long MD
simulations [67]. For example, a 1-microsecond atomic-
level simulation of the voltage-modulated potassium
channel Kv1.2 (120,000 atoms) recently described the
opening/closing mechanism involved [8]. Thus, many
problems thought to be intractable several decades ago
are now being solved. But faster computer technology
alone is insufficient to address challenging biomolecular
problems. Algorithmic developments for enhanced
sampling such as described here, especially those
divide-and-conquer methods suitable for loosely
coupled processor architectures that are more readily
available to the average user, are needed to complement
long atomistic simulations.

While simple potential modifications like TMD can
provide conformational insights and REMD approaches
can enhance sampling, success has been empirical rather
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than rigorous; because the actual kinetics of the systems
are altered, caution is warranted in biological interpreta-
tions. However, enhanced sampling protocols can be
useful in specific contexts, as recently demonstrated by
using accelerated MD [20] to reproduce residual dipolar
coupling measurements concerning the slow modes
from nuclear magnetic resonance data on a domain of
the protein GB3 [68]. Furthermore, the studies pin-
pointed the slow motions and led to a model of the
potential energy landscape of the protein.

REMD has recently received some scrutiny concerning
effective ensemble exchange protocols, general computa-
tional efficiency, and ergodicity questions, and this has
led to variants with stochastic elements - motivated by
REMD’s origin in MC parallel tempering methods - that
can improve sampling (for example, [37]). Because
REMD applications require concurrent processors (one
per replica), the technique may not always be practical,
especially for large atomistic systems. Variants like the
distributed replica sampling [34] can be more viable by
performing stochastic moves of independent replicas
instead of pairwise exchanges of replicas.

TPS, MSMs, and approaches that aim to compute
reaction rates have been more rigorously grounded in
theory, and successful biomolecular applications have
been reported. Still, their application to biomolecules in
general remains far from routine. In this goal, various
combinations of methods that deduce mechanisms
and compute reaction rates by divide-and-conquer
approaches will undoubtedly be effective in today’s
readily available distributed computing resources of
cluster networks, especially by enhancing them with
coarse-grained models and MC elements.

Ultimately, the most successful applications reflect a
combination of novel and rigorous mathematical ideas
with physical intuition. And such applications can be
successful not only by reproducing experimental data
concerning slow motions but also in helping suggest
mechanistic and energetic details. Clearly, the gap
between experimental and theoretical timeframes is
steadily narrowing, leading to renewed interest in MD-
based modeling by theorists and experimentalists alike.
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