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An indirect adaptive controller is developed for a class ofmultiple-inputmultiple-output (MIMO) nonlinear systemswith unknown
uncertainties. This control system is comprised of an 𝐿

1
adaptive controller and an auxiliary neural network (NN) compensation

controller. The 𝐿
1
adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-

pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary
compensation controller is designed to approximate the unknown nonlinear functions byMIMORBF neural networks to suppress
the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights
bounded.The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO
system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.

1. Introduction

The control of nonlinear systems with uncertainties is still
one of the hardest problems within control systems society.
The following two factors make it difficult to design a high
performance and yet universal enough controller for general
uncertain nonlinear systems: (i) it is difficult to treat various
nonlinearities under a unified framework, and (ii) in most
situations, due to the limited knowledge about the system
parameters or the external disturbance, it is also impossible
to quantitatively describe the uncertainties.

In recent years, there has been a dramatic proliferation
of research concerning the controller design for nonlinear
systems. By many researchers, different control efforts have
been developed from a point of view of adaptive control [1–
5]. Khalil [1] addressed the adaptive tracking control of a
class of nonlinear systems which can be represented by an
input-output model. In [2], a modified adaptive backstep-
ping design procedure was proposed for a broader class of
nonlinear systems with a high degree of uncertainty. Hung
et al. [3] developed a new adaptive control framework to
compensate for uncertain nonlinear parameters in robot
manipulators, and this controller can solve a very broad class

of nonlinearly parameterized adaptive control problems and
guarantee global boundedness of the closed-loop system.

Because of the coupling characteristic, the control design
is very difficult for MIMO nonlinear systems and conse-
quently the extension of the control design methods from
SISO systems to MIMO systems is nontrivial in general.
In recent decades, a quantity of work has been performed
on MIMO systems with uncertainty. In [6], direct adaptive
control was developed for a class ofMIMOnonlinear systems
in the presence of uncertain failures of redundant actuators.
Chen et al. [7] proposed an adaptive tracking controller
for a class of uncertain MIMO nonlinear systems with
nonsymmetric input constraints; moreover, to avoid the
tedious analytic computations of virtual control laws in the
backstepping procedure, command filters were adopted to
implement the emulate of actuator physical constraints.

Adaptive control has been widely used into various sys-
temswith uncertainties. Even so, adaptive control systems are
designed by assuming that the plant is linear or by modeling
the plant as a nonlinear system whose unknown parameters
are linearly related to linear or nonlinear functions, and
the adaptation law may lose stability even when a small
disturbance appears [8]. In order to tackle the limitations of

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 942094, 8 pages
http://dx.doi.org/10.1155/2014/942094

http://dx.doi.org/10.1155/2014/942094


2 The Scientific World Journal

classical adaptive control systems, adaptive control of nonlin-
ear systems with unknown functions has attracted increased
interest.Themost popular method is to incorporate feedback
linearizationmethod [9, 10], robust control technique [11–15],
or intelligent system [16] into the adaptive control to attenuate
the disturbance of unknown function. Feedback lineariza-
tion adopts geometric technique to transform the certain
nonlinear systems into a linear control problem, yet this
scheme assumes that the plant should be described by known
nonlinear functions precisely. Robust adaptive controller is
composed of two components, in addition to the adaptive
controller, and an additional robust item is adopted to atten-
uate the effect of the nonlinear function. However, although
the asymptotic tracking is still preserved, the performance is
conservative and the steady state tracking error can only be
shown to stay within an unknown region, whose size depends
on the disturbances. To approximate the unknown nonlinear
function, two intelligent systems have been popular: fuzzy
system [17–19] and neural network [20–26].

Starting from Narendra and Parthasarathy [20] firstly
introducing the rigorous stability proof of neural network,
the field has evolved significantly over the past two decades.
Theoretically, as long as a sufficient number of neurons are
employed, a neural network can approximate a continuous
function to an arbitrary accuracy [21].This universal approx-
imation capability of neural network has enabled researchers
to introduce it to control systems in the presence of general
nonlinear uncertainties that could not be globally or linearly
parameterized in unknown parameters. Hovakimyan et al.
[22] proposed a Gaussian Radial Basis Neural Network
using a tapped delay line of available measurement signals
to compensate the modeling uncertainties for a class of
nonminimum phase nonlinear systems. Rong et al. [23]
presented an indirect adaptive neural control scheme based
on the single-hidden layer feedforward network for a general
high-order nonlinear continuous system.

Although a large amount of work has been carried out on
the construction of adaptive controllers for SISO or MIMO
nonlinear systems and that most of these works deduced
the convergence performance of the tracking error, very few
results mentioned the transient performance characteriza-
tion. In practice, it is difficult to establish performance issues
analytically on transient behavior (i.e., overshoot and conver-
gence rate) even in the case of known nonlinearities. Such
issues have been discussed only in terms of the 𝐿

2
norm of

the tracking error which is derived to be a function of explicit
design parameters and initial estimation errors [27–29]. Lin
et al. [30] proposed an output feedback variable structure
model reference adaptive controller (VS-MRAC) with a high
gain switching mechanism scheme for uncertain SISO linear
plants to guarantee the prespecified transient performance
specifications, but the involved infinite-gain feedback terms
introduced control chattering. Bechlioulis and Rovithakis
[31] presented two robust adaptive control schemes for SISO
strict feedback nonlinear systems possessing unknown non-
linearities, capable of guaranteeing prescribed performance
bounds. However, in these papers only the tracking errors
were computed and the bounds of control signals were not
considered.

In 2006, Cao and Hovakimyan [32, 33] firstly introduced
the𝐿
1
adaptive control theory and applied this technique into

various systems, such as state feedback and output feedback.
The 𝐿

1
adaptive control architecture hinges on an indirect

architecture of model reference adaptive control (MRAC),
which enables low-pass filtering of the control signal. The
benefit of this new adaptive architecture is in its ability of fast
adaptation that leads to desired transient response in addition
to stable tracking for system’s both signals input and output
simultaneously.

In this paper, we extend the methodology from [34] to
MIMO systems with unknown nonlinear function and define
a neural network 𝐿

1
adaptive controller. In comparison with

the previous research, four main advantages of the proposed
scheme can be summarized as follows. (a) Formulation of
the plant is so general that it can represent various kinds of
MIMO dynamic systems, and the coupling of the multiple
variables has been taken into account. (b) A single-hidden-
layer MIMO radial basis function (RBF) network is used to
approximate the uncertain nonlinear functions. (c) Not only
the stability of the closed-loop system is proved according
to Lyapunov theory, but also the 𝐿

∞
norms of tracking

errors and control signals are deduced, which characterize
the transient performance of input and output signals. (d)
Bandwidth of the control channel can be chosen according to
the performance of the actuator through the low-pass filter,
but it does not influence the performance bounds obviously.

This paper is organized as follows. Section 2 gives the
problem formulation. In Section 3, the neural network 𝐿

1

adaptive controller is presented. Stability and transient per-
formance for the controller are analyzed in Section 4. In
Section 5, simulation results are presented, while Section 6
concludes this paper.

Throughout this paper, the following notations are used:

(a) ‖ ⋅ ‖ stands for Euclidean norm of vectors and induced
norm of matrices;

(b) 𝜆max(B) and 𝜆min(B) denote the largest and smallest
eigenvalue of square matrix B, respectively;

(c) 𝜒(𝑠)denotes the Laplace transformof time signal𝜒(𝑡).

2. Problem Formulation

In this paper, we are concerned with the following MIMO
system dynamics:

ẋ (𝑡) = Ax (𝑡) + B (u (𝑡) − f (𝑡, x (𝑡))) ,

y (𝑡) = Cx (𝑡) x (0) = x
0
,

(1)

where x ∈ R𝑛 is the system state vector (measurable), u ∈
R𝑚 is the control signal (𝑚 ≤ 𝑛), y ∈ R𝑚 is the regulated
output, A is a known 𝑛 × 𝑛 constant matrix, B is a known
𝑛×𝑚 constant matrix, and (A,B) is controllable,C ∈ R𝑚×𝑛 is
a known full-rank constant matrix, and (A,C) is observable;
f(𝑡, x) : R×R𝑛 → R𝑚 is unknown nonlinear functionwhich
represents the general uncertainty.
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Throughout this paper, we assume that the function f(x)
satisfies the following conditions:

(A1) The function f(x) is Lipschitz continuous, so that
there exists 𝐿 such that

f (x1) − f (x2)
∞
≤ 𝐿
x1 − x2

∞
. (2)

(A2) There exists 𝐵 > 0 such that

‖f (0)‖ ≤ 𝐵 (3)

holds for all 𝑡 ≥ 0, where 𝐵 is a known constant.
We further assume that the nonlinear function f(𝑡, x(𝑡))

can be approximated over a compact set𝐷
𝑥
by an RBF neural

network up to a desired accuracy [35]:

f (𝑡, x (𝑡)) =WT
Φ (x) + 𝜀 (x) , (4)

where W ∈ R𝑛×𝑚 is a matrix of unknown parameters that
belongs to a known (conservative) compact set Ω and, Φ(x)
is a vector of Gaussian radial basis functions with its 𝑖th
element:

𝜙
𝑖
(x) = exp(−

x − z𝑖


2

𝛿
2

𝑖

) , (5)

where z
𝑖
and 𝛿

𝑖
are the prefixed centers and widths, respec-

tively, ‖𝜀(x)‖
∞
≤ 𝜀
∗ is the uniformly bounded approximation

error, and 𝜀∗ is a constant.

3. NN 𝐿
1

Adaptive Control

In this section, we consider the problem of characterizing
NN 𝐿

1
adaptive full-state feedback control for nonlinear

uncertain dynamical systems to achieve reference model
trajectory tracking.

For system (1), consider the controller given by

u (𝑡) = u
𝑏
(𝑡) + uad (𝑡) , (6)

where u
𝑏
(𝑡) is the baseline controller:

u
𝑏
(𝑡) = −KT

𝑥
x (𝑡) + KT

𝑔
r (𝑡) , (7)

uad(𝑡) is the adaptive increment, K
𝑥
is a designed feedback

gain matrix ensuring that A
𝑚
= A − BKT

𝑥
is Hurwitz, K

𝑔
=

1/CTA−1
𝑚
BT is the feedforward gain matrix that provides unit

DC gains from the commanded signals to the corresponding
system outputs, and r(𝑡) is a bounded piecewise continuous
reference input with known upper bound of ‖r‖

𝐿
∞

.
Assuming no uncertainties (i.e., f(𝑡, x(𝑡)) = 0), the

nominal controller u
𝑏
(𝑡) leads to the desired reference system

ẋ
𝑚
(𝑡) = A

𝑚
x
𝑚
(𝑡) + B

𝑚
r (𝑡) , (8)

where x
𝑚
∈ R𝑛 is the reference state vector and B

𝑚
= BKT
𝑔
.

The control objective is to design a state feedback con-
troller to ensure that y(𝑡) tracks the output response of desired
system (8) both in transient and steady state, while all other

error signals remain bounded. For this purpose, we design
a neural network adaptive controller uad(𝑡) to cancel out the
uncertainties. The complete controller (6) leads to the fol-
lowing closed-loop dynamics:

ẋ (𝑡) = A
𝑚
x (𝑡) + B

𝑚
r (𝑡) + B (uad (𝑡) − f (𝑡, x (𝑡))) ,

y (𝑡) = Cx (𝑡) x (0) = x
0
.

(9)

Substituting the RBF NN (4) into (9) leads to the linearly
parameterized system dynamics:

ẋ (𝑡) = A
𝑚
x (𝑡) + B

𝑚
r (𝑡)+B (uad (𝑡) −W

T
(𝑡)Φ (x) − 𝜀 (x)) .

(10)

For system (10), we consider the following state predictor:
̇̂x (𝑡) = A

𝑚
x̂ (𝑡) + B

𝑚
r (𝑡) + B (uad (𝑡) − Ŵ

T
(𝑡)Φ (x)) ,

ŷ (𝑡) = Cx̂ (𝑡) x̂ (0) = x
0
,

(11)

where x̂ ∈ R𝑛 is the prediction state vector and Ŵ(𝑡) is the
adaptive parameter. Then, the following error dynamics can
be derived from (9) and (11):
̇̃x (𝑡) = A

𝑚
x̃ (𝑡) − BW̃T

(𝑡)Φ (x) + B𝜀 (x) , x̃ (0) = 0,
(12)

where x̃(𝑡) = x̂(𝑡) − x(𝑡) is tracking error and W̃(𝑡) = Ŵ(𝑡) −
W(𝑡) is estimate error.

Define the adaptive laws as follows:
̇̂W (𝑡) = ΓProj (Ŵ (𝑡) ,Φ (x) x̃PB) , (13)

where Γ is the positive adaptation gain, P = PT
> 0 is the

solution of the algebraic Lyapunov equationAT
𝑚
P+PA

𝑚
= −Q

for arbitrary symmetricQ = QT
> 0, andProj(⋅, ⋅)denotes the

projection operator [36]

Proj (𝜃, 𝑦)

≜

{{{{

{{{{

{

𝑦 if𝑓 (𝜃) < 0,
𝑦 if𝑓 (𝜃) ≥ 0 , ∇𝑓T𝑦 ≤ 0,

𝑦 −
∇𝑓

∇𝑓


⟨
∇𝑓

∇𝑓


, 𝑦⟩𝑓 (𝜃) if𝑓 (𝜃) ≥ 0, ∇𝑓T𝑦 > 0,

(14)

where 𝑓 is the following smooth convex function:

𝑓 (𝜃) ≜
(𝜀
𝜃
+ 1) 𝜃

T
𝜃 − 𝜃
2

max
𝜀
𝜃
𝜃
2

max
, (15)

with 𝜃max being the norm bound imposed on the vector 𝜃,
and 𝜀
𝜃
> 0 is the projection tolerance bound of our choice.

Letting

r (𝑡) = ŴT
(𝑡)Φ (x) , (16)

then the adaptive controller can be designed as

uad (𝑠) = C (𝑠) r (𝑠) , (17)

where C(𝑠) is a diagonal transfer function matrix with 𝐶
𝑖
(𝑠)

strictly proper stable and low-pass gain 𝐶
𝑖
(0) = 1 and r(𝑠) is

the Laplace transformation of r(𝑡).
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Remark 1. Considering the Laplace transform of system (11)
with the controller defined in (17) as follows:

x̂ (𝑠) = G (𝑠) r (𝑠) + G (𝑠) r (𝑠) , (18)

G (𝑠) = (𝑠I − A
𝑚
)
−1B
𝑚
, (19)

G (𝑠) = (𝑠I − A
𝑚
)
−1B (C (𝑠) − I) , (20)

it can be viewed as an LTI system with two inputs, reference
input signal r(𝑡), and time-varying disturbance r(𝑡) which is
related to f(x). G(𝑠) is the transfer function of the desired
reference system (8) and G(𝑠) can be viewed as the transfer
function of r(𝑡).

Remark 2. Equation (20) implies that G(𝑠) can be viewed as
the cascade of a low-pass system:

H (𝑠) = (𝑠I − A
𝑚
)
−1B (21)

and a high-pass system (C(𝑠) − I). Then, if the bandwidth
of C(𝑠), which approximately corresponds to the cut-off
frequency of (C(𝑠) − I), is designed to be larger than the
bandwidth ofH(𝑠), the resultingG(𝑠)will be a “no-pass filter.”
So, to ensure that the close-loop system (10) tracks the desired
reference system (8), the design of C(𝑠) has to satisfy the 𝐿

1

gain requirement:


G (𝑠)𝐿

1

<
1

𝐿
, (22)

where the 𝐿
1
norm definition can be found in [37]. The illus-

tration of requirement (22) will be discussed in Section 4.

The complete neural network 𝐿
1
adaptive controller con-

sists of (6), (7), (11), (13), and (17) subject to (22). The closed-
loop system architecture is presented in Figure 1.

4. Analysis of NN 𝐿
1

Adaptive Controller

4.1. Stability Analysis. Considering error dynamics (12), the
following lemma will state that the system is stable and its
state is bounded.

Lemma 3. Consider that the closed-loop system consists of
error dynamics (12) and adaptive law (13); all of the signals in
this system are uniformly bounded and the tracking error is as
follows:

‖x̃‖𝐿
∞

≤
2
PB𝑚

 𝜀
∗

𝜆min (Q)
, (23)

where 𝜆min(Q) is the minimum eigenvalue of Q; P and Q are
introduced in (13).

Proof. The proof is given in the Appendix.

Remark 4. We notice that the bound in (23) is derived
independently of uad(𝑡), and this implies that we cannot apply
Lyapunov theory or Barbalat’s lemma to conclude asymptotic
convergence of x(𝑡). Both x̂(𝑡) and x(𝑡) can diverge at the same
rate, maintaining a uniformly bounded error of x̃(𝑡).

System

State predictor

Adaptive lawRBF NN

x

C(s)
−

−

u

uad

x̂

x̃
KT
x

KT
g

r

Ŵ

ub

Figure 1: Closed-loop system with NN 𝐿
1
adaptive controller.

Next, we will prove that, with the adaptive feedback (17),
the prediction state x̂(𝑡) remains bounded and consequently
leads to asymptotic stable of closed-loop system (9).

Lemma 5. If u
𝑎𝑑

is defined as (17) and condition (22) holds,
the prediction state x̂(𝑡) will be uniformly bounded:

‖x̂ (𝑡)‖𝐿
∞

≤

‖G (𝑠)‖𝐿
1

‖r (𝑡)‖𝐿
∞

1 − 𝜆
+


G (𝑠)𝐿

1

(𝐿
0
+ 𝜀
∗
)

1 − 𝜆

+
𝜆 (2

PB𝑚
 𝜀
∗
/𝜆min (Q))

1 − 𝜆
,

(24)

where

𝜆 =

G (𝑠)𝐿

1

𝐿. (25)

Proof. The proof is given in the Appendix.

Theorem 6. For system (1) and controller defined via (7) and
(17) subject to the L

1
gain requirement (22), the closed-loop

system (9) is stable.

Proof. Using Lemmas 3 and 5, we immediately conclude that
x̃(𝑡) and x̂(𝑡) are bounded. At the same time, the adaptive
laws in (13) ensure that Ŵ(𝑡) is bounded. Hence, it can be
checked straightforwardly that all of the signals in the closed-
loop system (9) are bounded; that is to say, the system is stable.
This completes the proof of Theorem 6.

4.2. Transient Performance Analysis. From the relationships
(A.8), we have

‖x(𝑡)‖𝐿
∞

≤

‖G(𝑠)‖
𝐿
1

‖r(𝑡)‖𝐿
∞

1 − 𝜆
+


G(𝑠)𝐿

1

(𝐿
0
+ 𝜀
∗
)

1 − 𝜆

+
𝜆 (2

PB𝑚
 𝜀
∗
/𝜆min (Q))

1 − 𝜆

+
2
PB𝑚

 𝜀
∗

𝜆min (Q)

(26)

which states that x(𝑡) is uniformly bounded including the
transient phase, as long as the NN approximation is accurate
enough.

Furthermore, considering the expressions (6), (7), and
(17), they lead to the following relationship:

u (𝑠) = −KT
𝑥
x (𝑠) + KT

𝑔
r (𝑠) + C (𝑠) r (𝑠) . (27)
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Consequently, the following bound holds:

‖u (𝑠)‖𝐿
∞

≤

KT
𝑥

𝐿
1

‖x (𝑡)‖𝐿
∞

+

KT
𝑔

𝐿
1

‖r (𝑡)‖𝐿
∞

+ ‖C (𝑡)‖𝐿
1

‖r (𝑡)‖𝐿
∞

.

(28)

Substituting (23), (24), (A.9), and (26) into (27) yields

‖u (𝑠)‖
𝐿
∞

≤ (

KT
𝑥

𝐿
1

+ ‖C (𝑡)‖𝐿
1

𝐿) 𝜌 +

KT
𝑔

𝐿
1

‖r (𝑡)‖𝐿
∞

+ ‖C (𝑡)‖𝐿
1

(𝐿
0
+ 𝜀
∗
) ,

(29)

where

𝜌 =

‖G(𝑠)‖
𝐿
1

‖r(𝑡)‖𝐿
∞

1 − 𝜆
+


G(𝑠)𝐿

1

(𝐿
0
+ 𝜀
∗
)

1 − 𝜆

+
𝜆 (2

PB𝑚
 𝜀
∗
/𝜆min (Q))

1 − 𝜆

+
2
PB𝑚

 𝜀
∗

𝜆min (Q)
.

(30)

Equation (29) illustrates that the control signals of neural
network 𝐿

1
adaptive control architecture are uniformly

bounded, as long as we choose proper K
𝑥
, K
𝑔
, and neural

network. This performance is very useful for the problem of
actuator saturation constrain.

Remark 7. From the analysis above, it follows that the 𝐿
1

adaptive controller can generate a system response to track
(8) both in transient and steady state if we set the adaptive
gain to be large and minimize ‖G(𝑠)‖

𝐿
1

. Notice that u(𝑡)
depends upon the RBF approximation r(𝑡), and this implies
that for different nonlinearities f(x), the neural network 𝐿

1

adaptive controller will generate different control signal to
ensure uniform system response. It also implies that the
tracking accuracy depends on the estimating performance of
RBF.

5. Numerical Simulations

In this section, by using the method of steps for differential
equations, we give some numerical simulations to illustrate
the theoretical results above.

Consider the following MIMO system with nonlinear
uncertainties:

ẋ (𝑡) = Ax (𝑡) + B (u (𝑡) − f (𝑡, x (𝑡))) ,

y (𝑡) = Cx (𝑡) x (0) = x
0
,

(31)

where

A = [
[

−1 0 0

0 −3 0

0 0 −2

]

]

, B = [
[

1 0 0

0 1 0

0 0 2

]

]

,

C = [
[

1 0 0

0 1 0

0 0 1

]

]

,

(32)

x = [𝑥1 𝑥2 𝑥3]
T
∈ R3 is the measurable state vector, the

initial state x
0
= [0 0 0]

T, u ∈ R3 is the control signal, y(𝑡) ∈
R3 is the output signal, and f(x) is an unknown nonlinear
function of system states. The control objective is to design
an NN 𝐿

1
adaptive controller u(𝑡) to ensure that the output

of the system y(𝑡) tracks the output of the desired systemG(𝑠)
for bounded reference inputs signal r(𝑡), both in transient and
steady state phases. In following simulations, we consider the
uncertainties:

f (x) = [
[

𝑥
1
𝑥
2

0.5 + 0.3tanh (𝑥
3
)

0.3𝑥
2

3

]

]

. (33)

For the 𝐿
1
adaptive controller, we set

K
𝑥
= 0
3×3
, A

𝑚
= A, Q = I

3×3
,

Γ = 500, 𝐿 = 1,


G (𝑠)𝐿

1

𝐿 = 0.6528, 𝐶
𝑖
(𝑠) =

3𝜔
2
𝑠 + 𝜔
3

(𝑠 + 𝜔)
3
, 𝜔 = 5,

P = [
[

0.50 0 0

0 0.17 0

0 0 0.25

]

]

, K
𝑔
= [

[

1 0 0

0 3 0

0 0 1

]

]

.

(34)

The hidden layer of the RBF neural network includes 9
neurons, and the prefixed center z

𝑖
is distributed in [−2, 2]

with the increment 0.5 and width 𝛿
𝑖
= 2. The simulation

results are shown in Figures 2–5.
Figure 2 depicts the response of the closed-loop system

to a series of step reference inputs with different amplitudes.
The solid line x represents the actual outputs of the closed-
system, the dashed line x

𝑑
represents the outputs of the

desired reference system (8), and the dotted line r repre-
sents the reference inputs. One can observe that the neural
network 𝐿

1
adaptive controller guarantees smooth transient

performance and uniform steady state performance in the
presence of nonlinear uncertainties. Moreover, the response
of the closed-loop system is close to the desired system,whose
performance specifications are desired.

From Figure 3, we can note that the incremental adaptive
controller compensates for the unknown disturbance com-
pletely and leads to desired response. Furthermore, Figure 4
illustrates that the control signal in each channel is bounded.
Figure 5 shows the estimated values of the 27 weights in the
RBF neural networks. Due to the large adaptive gain, one can
see some unexpected oscillations in this figure. Consequently,
this leads to the chattering in neural networks approximation
r of nonlinear function f(x), as shown on the top half of
Figure 6. In order to compensate the effects of the unknown
function, the adaptive control signals have to duplicate the
oscillations, yet this will hurt the transient performance, and
it will be difficult to be implemented in reality. The low-pass
filter C(𝑠) abates the chattering but does not hurt the control
performance significantly, as it is illustrated on the bottom
half of Figure 6. Furthermore, the bandwidth of C(𝑠) can be
determined according to the performance of actuator.
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Figure 2: Response of the system with the nonlinear uncertainties.
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Figure 3: Nonlinear function f(x) and adaptive increment uad.

6. Conclusion

Neural networks and 𝐿
1
adaptive control design philosophy

have been integrated to design a controller for a class
of nonlinear MIMO systems with unknown uncertainties.
The unknown nonlinear functions are approximated by
an MIMO RBF neural network to achieve a better model
compensation. NN weights are tuned on-line with no prior
training needed. The 𝐿

1
adaptive controller has guaranteed
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Figure 4: Time history of u(𝑡).
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transient response in addition to stable tracking.The low-pass
filter guarantees fast adaptive rate without high-frequency
oscillations in the control signal. Simulation studies on a
nonlinear MIMO system were clarified and verified the
proposed approach.

Appendix

Proof of Lemma 3. Choose the following Lyapunov function
candidate:

𝑉(x̃ (𝑡) , W̃ (𝑡)) = x̃(𝑡)TPx̃ (𝑡) + 1
Γ
tr (W̃T

(𝑡) W̃ (𝑡)) . (A.1)

It is obvious that the function is positive definite. The time
derivative of 𝑉 is given by

�̇� (𝑡) = ̇̃xTPx̃ + x̃TP ̇̃x + 2
Γ
tr (W̃T ̇̃W)

= x̃T (A
𝑚
P + PA

𝑚
) x̃ − 2x̃TPB

𝑚
W̃T
Φ

+ 2x̃TPB
𝑚
𝜀 +
2

Γ
tr (W̃T ̇̃W)

= −x̃TQx̃ − 2x̃TPB
𝑚
W̃T
Φ + 2x̃TPB

𝑚
𝜀

+ 2 tr (W̃TProj (Ŵ,Φx̃TPB
𝑚
))

= −x̃TQx̃ + 2 tr (W̃T
(Proj (Ŵ,Φx̃TPB

𝑚
)

− Φx̃TPB
𝑚
)) + 2x̃TPB

𝑚
𝜀

≤ −x̃TQx̃ + 2PB
𝑚
𝜀

≤ −x̃TQx̃ + 2 x̃
T
PB𝑚

 ‖𝜀‖

≤ −𝜆min (Q)

x̃T
2

+ 2

x̃T
PB𝑚

 𝜀
∗

= −

x̃T (𝜆min (Q)


x̃T −

PB𝑚
 𝜀
∗
) .

(A.2)

Therefore, �̇�(𝑡) ≤ 0 if

‖x̃‖ ≥
2
PB𝑚

 𝜀
∗

𝜆min (Q)
, (A.3)

which implies that x̃(𝑡) is uniformly bounded. It follows from
(A.2), (A.3), and the fact ‖ ⋅ ‖

∞
≤ ‖ ⋅ ‖ that

‖x̃‖
𝐿
∞

≤
2
PB𝑚

 𝜀
∗

𝜆min (Q)
. (A.4)

Furthermore, the projection algorithm ensures Ŵ(𝑡) ∈ Ω, so
all of the signals in this system are bounded.

Proof of Lemma 5. Considering the closed-loop state predic-
tor (11), (13), and (17), according to Lemma 1 in [34] leads to
the following upper bound:

‖x̂ (𝑡)‖𝐿
∞

≤ ‖G (𝑠)‖𝐿
1

‖r (𝑡)‖𝐿
∞

+

G (𝑠)𝐿

1

‖r (𝑡)‖𝐿
∞

. (A.5)

Applying the triangular relationship for norms

|‖a‖ − ‖b‖| ≤ ‖a − b‖ (A.6)

to the bound (A.4), we have


‖x̂ (𝑡)‖𝐿

∞

− ‖x (𝑡)‖𝐿
∞


≤
2
PB𝑚

 𝜀
∗

𝜆min (Q)
. (A.7)

From the resolution geometry, we have

‖x (𝑡)‖𝐿
∞

≤ ‖x̂ (𝑡)‖𝐿
∞

+
2
PB𝑚

 𝜀
∗

𝜆min (Q)
. (A.8)

From the definition of f(x) in (4) and r(𝑡) in (16), we have

‖r (𝑡)‖𝐿
∞

= f (x) − 𝜀 (x)

≤ |f (0)| + 𝐿‖x(𝑡)‖∞ + 𝜀
∗

≤ 𝐿
0
+ 𝐿(‖x̂ (𝑡)‖𝐿

∞

+
2
PB𝑚

 𝜀
∗

𝜆min (Q)
) + 𝜀
∗
.

(A.9)

Substituting (A.9) into (A.5) yields

‖x̂(𝑡)‖𝐿
∞

≤ ‖G(𝑠)‖𝐿
1

‖r(𝑡)‖𝐿
∞

+

G(𝑠)𝐿

1

× (𝐿
0
+ 𝐿(‖x̂(𝑡)‖𝐿

∞

+
2
PB𝑚

 𝜀
∗

𝜆min (Q)
) + 𝜀
∗
)

= ‖G (𝑠)‖𝐿
1

‖r (𝑡)‖𝐿
∞

+

G (𝑠)𝐿

1

𝐿‖x̂ (𝑡)‖𝐿
∞

+

G (𝑠)𝐿

1

(𝐿
0
+ 𝜀
∗
) +

G (𝑠)𝐿

1

𝐿
2
PB𝑚

 𝜀
∗

𝜆min (Q)
.

(A.10)

From the 𝐿
1
gain requirement (22), we have

‖x̂(𝑡)‖𝐿
∞

≤

‖G (𝑠)‖
𝐿
1

‖r (𝑡)‖𝐿
∞

1 − 𝜆
+


G (𝑠)𝐿

1

(𝐿
0
+ 𝜀
∗
)

1 − 𝜆

+
𝜆 (2

PB𝑚
 𝜀
∗
/𝜆min (Q))

1 − 𝜆
.

(A.11)

Since the bound on the right-hand side is uniform, x̂(𝑡) is
uniformly bounded and ‖x̂(𝑡)‖

𝐿
∞

≤ 𝜌.
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