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Development and validation of dynamic clinical
subphenotypes in acute pancreatitis patients using vital sign
trajectories in intensive care units: a multinational cohort study
Zichen Wang1,2,3,4, Wen Wang1,2,3✉, Jiayue Xu1,2,3, Qiao He1,2,3, Che Sun1,2,3, Shuangyi Xie1,2,3, Kang Zou1,2,3, Qing Xia1✉ and
Xin Sun 1,2,3,4✉

Acute pancreatitis (AP) is a heterogeneous inflammatory condition. Although emerging therapeutic strategies targeting pathways
such as calcium signaling, TNF-α, the NLRP3 inflammasome, and HMGB1 have shown promise, their efficacy may be limited by the
underlying biological heterogeneity of the disease. In this multinational retrospective cohort study across three large ICU databases
(ICU-HAI, MIMIC-IV, and eICU-CRD), we used group-based trajectory modeling of early vital signs to identify four distinct AP
subphenotypes: hyperinflammatory, hypertensive, hypotensive, and hypoinflammatory. These subtypes differed markedly in 30-
day mortality, inflammatory burden, and hemodynamic stability. Compared to the hypertensive phenotype, hyperinflammatory
and hypotensive patients had significantly higher 30-day mortality risks (HR= 3.38 and HR= 1.87, respectively), while the
hypoinflammatory phenotype carried no excess risk. Fluid resuscitation responses were phenotype-specific: hyperinflammatory
patients benefited from higher fluid volumes, whereas hypoinflammatory patients were at risk of fluid overload. Notably, distinct
subphenotypes displayed unique responses to fluid intake over the first two ICU days. For hyperinflammatory phenotype, the
algorithm-estimated lowest-risk fluid range was 4100–4300mL on day 1 and 3400–3600mL on day 2; for phenotype
hypoinflammatory phenotype, the optimal ranges were 2800–3800mL and 1400–2600mL, respectively. Early use of lactated
Ringer’s solution, which inhibited NLRP3, was associated with reduced mortality in hypotensive phenotype. These findings
underscore the clinical relevance of early physiological trajectories and support precision fluid resuscitation based on subtype. This
study establishes the largest early-trajectory-based classification of AP to date, offering new insights into immune and vascular
mechanisms that drive heterogeneity and therapeutic responsiveness.
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INTRODUCTION
Acute pancreatitis (AP) is a multifaceted emergency inflammatory
condition and is the leading gastrointestinal disease that causes
hospitalization, with a continually increasing global annual
incidence rate.1–4 Recent global estimates report an incidence of
33.7 cases and 1.6 deaths per 100,000 individuals annually,
highlighting its significant epidemiological footprint.1,5 A compre-
hensive meta-analysis by Iannuzzi et al. examined trends from
1961 to 2016 across 44 studies, revealing a significant global
increase in AP incidence, with a pooled average annual percent
change (AAPC) of 3.07%.3 This trend mirrors the rise in disability-
adjusted life-years attributable to AP, which climbed from 2.4
million in 1990 to 3.6 million in 2019, reflecting a mounting
burden on global health systems.4 In the United States, the
incidence of AP ranges between 110 and 140 cases per 100,000
population annually, contributing to over 300,000 hospital
admissions each year, with an average direct healthcare cost
exceeding USD 10,000 per patient.1,6 Approximately 20% of AP
patients progress to severe AP(SAP), characterized by persistent

organ failure that requires intensive care unit (ICU) admission,
resulting in a mortality rate of 20–40%.7–11 Despite the high
clinical burden, advances in understanding AP pathogenesis and
therapeutic intervention remain limited.1,2,12

Recent mechanistic studies have demonstrated that the
pathogenesis of AP involves a complex network of interconnected
cellular processes. Core pathological events include the premature
activation of trypsinogen within pancreatic acinar cells,13–16

endoplasmic reticulum stress,17,18 dysregulation of the unfolded
protein response,19,20 intracellular Ca²⁺ overload, and impaired
autophagy.21,22 These processes synergistically contribute to
acinar cell injury and death, triggering local inflammation and
promoting systemic immune responses. Accumulating evidence
suggests that AP has significant inter-individual variability in
disease mechanisms, clinical phenotypes, and treatment
responses. Such heterogeneity may be shaped by genetic
diversity,23 etiological factors, and patients' individualized condi-
tions at disease onset, which together result in diverse molecular
profiles across transcriptomic, proteomic, and metabolomic
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levels.24 These observations highlight the limitations of uniform
treatment strategies and underscore the need for therapeutic
approaches that are tailored to the individual’s specific patho-
physiological traits. A growing body of preclinical and early-phase
clinical studies has identified a diverse array of therapeutic
candidates targeting distinct molecular pathways, further under-
scoring the complexity of its pathophysiology. These findings
suggest that effective interventions may require pathway-specific
targeted therapies rather than uniform treatment strategies,
highlighting the need to align therapeutic approaches with the
individual’s underlying disease mechanisms. For example, CM4620
(Auxora), a selective store-operated calcium entry inhibitor, and
GsMTx4, a Piezo1 inhibitor, effectively attenuate Ca²⁺ overload and
tissue injury in experimental models. Similarly, caffeine Gut (an
inositol 1,4,5-trisphosphate receptor antagonist) and dantrolene (a
ryanodine receptor inhibitor) have shown protective effects
through modulation of calcium signaling and reduction of acinar
cell damage.25 Beyond calcium-targeting agents, immunomodu-
lators such as infliximab (anti–TNF-α monoclonal antibody),26

CXCL10-neutralizing antibodies acting downstream of MLKL
signaling,27 and lactate-mediated inhibition of the NLRP3 inflam-
masome25 have demonstrated potential in suppressing systemic
inflammatory responses. Additional agents—including heparin
derivatives neutralizing extracellular HMGB1 and dabigatran, a
dual inhibitor of proteases and coagulation pathways may
mitigate disease progression and systemic injury.25,28 Adjunctive
approaches, such as natural compounds targeting NF-κB and
MAPK signaling29 and acupuncture interventions that enhance
gastrointestinal motility and symptom relief,30 are also under
investigation.
Despite these advances, treatment outcomes may still likely be

affected by the inherent biological heterogeneity of AP. While
clinically defined as a single disease, AP encompasses diverse
molecular drivers—including variations in inflammatory signaling
and immune activation—that can differ significantly between
individuals. This mechanistic diversity corresponds with a broad
clinical spectrum, ranging from localized pancreatic inflammation
to systemic multiorgan failure. Clinical features such as hyperther-
mia, hypothermia, tachycardia, hypoperfusion, azotemia, and
metabolic derangements are frequently observed and are
essential for early risk assessment and prognostic evaluation.
Given the variability in both pathophysiology and clinical
presentation, there is a pressing need to delineate clinically
meaningful subgroups within the AP population to support
individualized therapeutic decisions.7,31–34 However, the current
studies on AP subtyping were limited. A pivotal study by Neyton
et al., leveraging dynamic multi-omics, has elucidated the diverse
molecular patterns within AP, hinting at its potential clinical
subphenotypes.24 Yet, the study’s reliance on less commonly used
omics profiling and not establishing links between subtypes and
specific treatments limits its generalizability and clinical
applicability.
In ICU settings, routine monitoring of vital signs offers dynamic

insights into patient status, thereby facilitating stratified patient
inclusion in clinical studies.35,36 Vital sign trajectories embodying
multidimensionality and dynamism have been instrumental in
sepsis subphenotyping, providing critical insights into disease
evolution and individualized treatment plans.36 Inspired by the
above evidence and driven by the growing recognition of
biological heterogeneity as well as the urgent need for
precision-guided therapies in AP, we initiated a multinational
retrospective cohort study across three large ICU databases from
China and the United States. This study was specifically designed
to identify early subphenotypes of AP that are both clinically and
biologically meaningful, by leveraging dynamic trajectories of vital
signs recorded within the first 12 h following ICU admission.
This early time frame reflects a critical period during which
systemic physiological responses emerge and initial therapeutic

interventions are most likely to influence disease progression. Our
study was structured around three key objectives. First, we aimed
to develop and validate robust, trajectory-defined AP subpheno-
types using unsupervised machine learning techniques grounded
in early physiological data. Second, we sought to comprehensively
characterize these subphenotypes in terms of clinical presenta-
tion, illness severity, and prognostic stratification, providing
surrogate indicators of potential underlying pathobiological
mechanisms. Third, we planned to explore the heterogeneity of
treatment effects—focusing particularly on the differential asso-
ciations between early fluid resuscitation strategies and outcomes
across subphenotypes.

RESULT
Baseline characteristics
A total of 3080 AP patients were included from 2011 to 2021 in
databases of China and the United States (Supplementary Fig.
1). Characteristics and clinical outcomes of developed subphe-
notypes were compared (Table 1, Fig. 1a, b, and Supplementary
Tables 1–3). Phenotype A exhibited elevated levels of amylase,
lipase, BUN, creatinine, sodium, potassium, CRP, PCT, glucose,
triglycerides, and the highest proportion of congestive heart
failure and renal disease, categorizing it as the “hyperinflamma-
tory subphenotype”. Phenotype B displayed the highest base-
line blood pressure (denoted as the “hypertensive
subphenotype”), while phenotype C had the lowest baseline
blood pressure, amylase, Hb, and hematocrit (denoted as the
“hypotensive subphenotype”). Phenotype D showed the most
aged and had the lowest heart rate, RR, TEMP, lipase, BUN,
creatinine, WBC, CRP, PCT, glucose, triglycerides, and the highest
baseline oxygen saturation and Hb and was characterized as
“hypoinflammatory subphenotype” (Table 1, Fig. 1a, and
Supplementary Table 1).

Vital sign trajectories and derivation of AP subphenotypes
The visual trajectory of vital signs 12 h after ICU admission of AP
patients in the development cohort was shown (Supplementary
Fig. 2). For each patient, vital signs exhibited intricate fluctuations,
with numerous intersections observed in the trajectory of each
patient’s vital signs that indicated a notable variability in the
disease status among patients with AP.
The application of consensus clustering successfully determined

that K= 4 represented the optimal choice for characterizing
subphenotypes within AP (Supplementary Figs. 3–5). Sensitivity
analyses involving model matrices of GBMTMs for K= 2 to 6
consistently corroborated these findings (Supplementary Table 4).
Therefore, GBMTM with 4 subclasses was identified as the final
model (Supplementary Table 5). Further analysis demonstrated
that using 9-h trajectories can achieve 91.21% accuracy for early
phenotype predictions (Supplementary Fig. 6).
Within the development and validation cohorts, phenotype A

(14.1 and 16.0%, respectively) was characterized by hyperthermia,
tachycardia, and tachypnea. Phenotype B (17.6 and 30.0%,
respectively) exhibited hypertension. Phenotype C (27.0 and
31.9%, respectively) displayed hypotensive, while phenotype D
(41.2 and 24.1%, respectively) exhibited hypothermia, bradycardia
and bradypnea (Fig. 2). Differences in vital signs distribution
between phenotypes were also evident in the temporal data
(Supplementary Fig. 7).

Clinical outcomes across subphenotypes
Phenotypes A exhibited the highest ICU/in-hospital mortality rate,
and the longest median ICU/ hospital LOS, while phenotypes D
exhibited the lowest ICU/in-hospital mortality rate and the
shortest median ICU/hospital LOS. We also illustrated the
correlation across baseline variables and the correlation between
variables and subphenotypes (Fig. 1b).
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Adjusted Kaplan–Meier plots illustrated a consistent trend in 30-
day prognosis for AP subphenotypes in both the development
and validation cohorts. Compared to phenotype B, phenotypes A
and C exhibited a higher risk of 30-day mortality, while there was
no significant difference in prognosis between phenotype B and
phenotype D (Fig. 3a, b).
In the development cohort, Cox regression analysis further

supported these findings. In comparison to phenotype B, the
crude HR of phenotype A [HR 3.17, 95% confidence interval (CI):
1.71–5.89, p < 0.001] and Phenotype C (HR 2.12, 95% CI: 1.16-3.90,
p= 0.015) showed a higher mortality risk, while no significant

difference in 30-day mortality risk was observed in phenotype D
(HR 0.94, 95% CI: 0.47–1.90 p= 0.865). After adjustment for
demographics, Phenotype A [HR 3.38, 95% CI: 1.82–6.29, p < 0.001]
and phenotype C (HR 1.87, 95% CI: 1.02–3.45, p= 0.043) also
showed higher mortality risk than phenotype B, and no significant
difference in 30-day mortality risk was observed for phenotype D
(HR 0.77, 95% CI: 0.38–1.56, p= 0.466). External validation results
showed a consistent trend, with phenotypes A and C demonstrat-
ing a higher risk before and after adjusting for demographic
characteristics, while phenotype D showed no significant differ-
ence in 30-day mortality (Table 2). Multivariate Cox regression

Fig. 1 Clinical characteristics among different subphenotypes. a Illustrates the variation in baseline vital signs and laboratory test values
across AP subphenotypes. These values have been standardized using Z-scores for clarity. Each sub-plot presents a comparison between two
phenotypes; b shows the Pearson correlation between variables and subphenotypes. In the right plot, the triangular section displays the
correlations between variables. Darker (purple) squares indicate positive correlations, while lighter (yellow) squares indicate negative
correlations. The size of each square corresponds to the absolute value of the correlation coefficient. The lower-left section depicts the
correlation between phenotypes and clinical characteristics. The color represents the correlation coefficients, while the width indicates the
significance of the correlation. Patient data from the development cohort were used for data analysis in this figure

Table 1. The clinical characteristics of subphenotypes in development cohort

Phenotype Phenotype A Phenotype B Phenotype C Phenotype D p

N 369 461 706 1076

Age 45.0 (35.0, 53.0) 45.0 (36.0, 52.0) 48.0 (39.0, 57.0) 49.0 (41.0, 60.0) <0.001

Gender

Male 235 (63.7) 329 (71.4) 457 (64.7) 720 (66.9) 0.064

Female 134 (36.3) 132 (28.6) 249 (35.3) 356 (33.1)

Race

Asia 369 (100.0) 461 (100.0) 706 (100.0) 1076 (100.0) /

Myocardial infarction (%) 0 (0.0) 1 (0.2) 2 (0.3) 3 (0.3) 0.788

Congestive heart failure (%) 33 (8.9) 28 (6.1) 57 (8.1) 53 (4.9) 0.012

Cerebrovascular disease (%) 14 (3.8) 16 (3.5) 24 (3.4) 31 (2.9) 0.817

Chronic pulmonary disease (%) 11 (3.0) 17 (3.7) 22 (3.1) 72 (6.7) 0.001

Diabetes (%) 85 (23.0) 100 (21.7) 149 (21.1) 218 (20.3) 0.710

Liver disease (%) 169 (46) 207 (44.9) 284 (40.2) 485 (45.1) 0.158

Renal disease (%) 41 (11.1) 36 (7.8) 66 (9.3) 54 (5.0) <0.001

Malignant tumor (%) 12 (3.3) 14 (3.0) 24 (3.4) 146 (13.6) <0.001

ICU mortality (%) 46 (12.5) 23 (5.0) 47 (6.7) 22 (2.0) <0.001

Hospital mortality (%) 46 (12.5) 24 (5.2) 51 (7.2) 27 (2.5) <0.001

Hospital length of stay (day) 25.0 (14.0, 39.0) 25.0 (16.0, 37.0) 23.0 (14.0, 37.0) 18.0 (12.0, 27.0) <0.001

ICU length of stay (day) 10.0 (5.00, 20.0) 9.0 (4.0, 17.0) 7.0 (4.0, 14.0) 3.0 (2.0, 5.0) <0.001
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Fig. 2 Group-based trajectory modeling of vital signs in the development and validation cohorts. AMY amylase, CRE creatinine, GLU glucose,
HCT hematocrit, LPS lipase, Pho phosphate, K potassium, Na sodium, TG triglycerides, WBC white blood cell; a displays the group-based vital
signs in the development cohort, while (b) shows the group-based vital signs in the validation cohort. The shading represents the 95%
confidence intervals for each vital sign trajectory

Fig. 3 The Kaplan–Meier of 30-day mortality for subphenotypes in development and validation cohorts. a represented the KM curve of 30-day
mortality across AP subphenotypes in the development cohort, while (b) represented the KM curve of 30-day mortality across AP
subphenotypes in the validation cohort; KM curves were adjusted by demographic characteristics (age, gender, and race)
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revealed that chronic pulmonary disease significantly increased
mortality risk in phenotypes B and C, while renal disease elevated
risk in phenotypes C and D (Supplementary Table 6).

Heterogeneity of treatment responses of fluid intake within 48 h
of ICU admission
An RF-based ICU death classifier was developed for the four AP
subphenotypes, which accurately discriminated between all mortal-
ity and survival cases A RF-based ICU death classifier was developed
for the four AP subphenotypes (Supplementary Fig. 8). Additionally,
employing the PDP algorithm, we visualized the relationship
between the first 48 hours of fluid intake volumes (summarized
daily) and the risk of ICU mortality (Fig. 4a–h). These 3D
representations highlight distinct response patterns among the
subphenotypes based on varying fluid replenishment volumes (Fig.
4a–d). Notably, for phenotype B, ICU fluid resuscitation on the first
day has minimal impact on mortality, but when fluid intake is over
4000mL on the following day significantly elevates the risk of ICU
death. Conversely, for phenotype D, the degree of risk is influenced
by both the first and the next day’s replenishment. Stratifying
according to risk gradients, we identified PDP-calculated fluid
rehydration ranges associated with the lowest mortality risk for
different AP subphenotypes (depicted in dark purple) (A: Day1
4100–4300, Day2 3400–3600; B: Day1 4000–4100, Day2 0–1800; C:
Day1 4400–4600, Day2 2400–3200; D: Day1 2800–3800, Day2
1400–2600) (Fig. 4i). Multivariate Cox regression revealed that in
phenotype C, patients who received lactated Ringer’s solution within
48 h showed reduced 30-day mortality risk compared to patients
who did not (HR: 0.48, 95% CI: 0.28–0.82) (Supplementary Table 9).

DISCUSSION
In this study, we developed and validated four robust subpheno-
types (phenotype A: hyperinflammatory, phenotype B: hyperten-
sive, phenotype C: hypotensive, and phenotype D:
hypoinflammatory) of AP using 12 h vital sign trajectories after
ICU admission. We also explored the heterogeneity of treatment
response to fluid intake within 48 h of ICU admission. In
phenotype B, ICU fluid resuscitation volume on the first day had
an insensitive impact on mortality, while fluid intake >4000mL on
the following day significantly increased the risk of ICU death. In
contrast, in phenotype D, the risk was influenced by both the first
day and the next day of resuscitation. We also explored PDP-
calculated lowest-risk ranges of fluid resuscitation in different AP
subphenotypes. Our findings indicated that AP subphenotypes
exhibit significant differences in clinical characteristics and
prognosis. Phenotype A exhibited hyperthermia, tachycardia,
and tachypnea, accompanied by elevated CRP and PCT levels,
and displayed the highest 30-day mortality risk, which represents
a hyperinflammatory condition. In contrast, phenotype D, with

higher age and lower TEMP, heart rate, RR, CRP, and PCT levels,
showed a relatively lower mortality risk, which represents a
hypoinflammatory condition.22,37 Inflammation is central to AP
pathophysiology, with dynamic and patient-specific responses
shaping disease severity and outcomes. Aberrant pancreatic
enzyme activation triggers NF-κB-mediated inflammatory cas-
cades, leading to the sequential release of pro- and anti-
inflammatory mediators (e.g., IL-6, IL-8, MCP-1; HGF, and sTNF-
αR1) with severe cases show an early pro-inflammatory surge,
while anti-inflammatory mediators dominate later stages.38,39 This
heterogeneity in inflammatory phenotypes affects immune cell
infiltration in the pancreas and is closely associated with organ
failure and complications, thus accurate identification of inflam-
matory status is crucial for personalized treatment of AP.
Interestingly, similar to our findings, Neyton et al.24 also

identified four AP endotypes with distinct molecular patterns.
Endotype A, representing a hyperinflammatory state, was asso-
ciated with the highest disease severity, systemic inflammatory
response syndrome (SIRS) prevalence, and mortality, indicating
excessive immune activation. In contrast, Endotype C, representing
a hypoinflammatory state, had a SIRS prevalence of 0% and
exhibited the lowest disease severity, further validating the
heterogeneity of inflammatory responses in AP. Their study24 also
identified molecular markers associated with these inflammatory
endotypes: hyperinflammatory Endotype A was linked to upregu-
lation of N-acetyl-3-methylhistidine, N-acetyl-1-methylhistidine,
XIRP1, and MAP3K6, whereas hypoinflammatory Endotype C was
associated with increased levels of GGT2 (γ-glutamyltransferase 2),
dopamine sulfate, citrulline, and SPTSSB. These molecules may
serve as specific targets reflecting inflammatory heterogeneity.
Using machine learning and PDP algorithms, our study further

demonstrated that phenotypes A–D exhibit distinct responses to
fluid resuscitation strategies. Phenotype B was sensitive to fluid
intake volume, especially on the second day, which may be
related to its initial hypertensive state. In phenotype C, early
administration of lactated Ringer’s solution during initial resuscita-
tion was significantly associated with improved 30-day survival.
Lactate, a key component of this balanced crystalloid, has been
shown to attenuate inflammation by inhibiting NLRP3 inflamma-
some activation and IL-1β production via the TLR4 pathway,40,41,
which suggests that targeting NLRP3-mediated inflammatory
pathways may confer benefit in patients with specific disease
mechanisms. The observed association further supports the
hypothesis that therapeutic efficacy may depend on the under-
lying biological state, highlighting the importance of tailoring
interventions to distinct clinical subphenotypes. Notably, pheno-
types A and D exhibited the highest and lowest PDP-calculated
lowest-risk ranges, respectively, potentially reflecting differences
in hyperinflammatory versus hypoinflammatory pathway activa-
tion. Our observation aligns with findings by Zhang et al. in septic

Table 2. Cox regression result between subphenotypes of 30-day mortality in development and validation cohorts Multivariate Cox regression were
adjusted by demographic characteristics (age, gender, race)

Development cohort (ICU-HAIs registry)

Phenotype B Phenotype A Phenotype C Phenotype D

HR (95%CI) P value HR (95%CI) P value HR (95%CI) P value

30-day mortality

Crude Reference 3.17 (1.71,5.89) <0.001 2.12 (1.16.3.90) 0.015 0.94 (0.47,1.90) 0.865

Adjusted Reference 3.38 (1.82,6.29) <0.001 1.87 (1.02,3.45) 0.043 0.77 (0.38,1.56) 0.466

External validation cohort (MIMIC-IV, eICU-CRD)

30-day mortality

Crude Reference 13.39 (1.72,103.99) 0.013 11.68 (1.56,87.23) 0.017 7.12 (0.83,60.99) 0.073

Adjusted Reference 15.21 (1.95,118.68) 0.009 9.57 (1.27,72.20) 0.002 1.65 (0.59,45.990) 0.138
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shock patients, where low-inflammation endotypes benefited
more from restrictive fluid resuscitation, whereas high-
inflammation endotypes demonstrated the opposite trend.42

The above findings suggested that clinical characteristics and
underlying molecular patterns influence patient responses to fluid
resuscitation strategies. The distinct molecular signatures and
individualized treatment responses of the AP subphenotypes
developed in our study provide valuable insights for future
research on targeted therapies and personalized treatment
strategies based on specific pathways and therapeutic targets. In
future work, we will focus on prospectively validating the stability
of the four AP subphenotypes identified in retrospective analyses,
assessing whether their trajectory patterns, clinical characteristics,
prognostic trends, and responses to fluid therapy remain
consistent over time. Beyond this validation, a key objective will
be to elucidate the underlying molecular mechanisms of these
subphenotypes through multi-omics analyses, aiming to establish
their correspondence with distinct endotypes. By delineating the
unique molecular features of each subphenotype, we seek to
deepen our understanding of inflammatory heterogeneity in AP,
identify key therapeutic targets, and advance precision fluid
management strategies for AP.43

Our study has strengths. It represents the largest analysis to
date of the development of AP subphenotypes using a multi-
variate longitudinal trajectory. Using readily available bedside vital
signs, we derived AP subphenotypes in the ICU using data from a
multisource database in China and validated the stability and
consistency of these findings in the US population, enhancing
their clinical utility and applicability. In addition, our study is the
first to establish correlations between AP subtypes and clinical
treatments. Using machine learning techniques, we explored the
heterogeneity in response to fluid resuscitation among different
AP subphenotypes, providing a novel approach for precision
treatment options in AP clinical management. In terms of
limitations, our study focused exclusively on ICU-admitted AP
patients, which may limit the generalizability of our findings.

However, mild AP cases, associated with lower mortality risk and
standard care, are usually self-limiting, requiring only brief
hospitalization, while ICU-admitted AP patients often present
with severe inflammation, fluid imbalances, and organ failure,
leading to higher mortality risk. Consequently, more precise
disease classification is necessary for AP ICU inpatients to optimize
treatment strategies and support clinical decisions. Additionally, as
a retrospective cohort study, our data inherently contained
outliers, unrecorded variables, high missing rate variables, and
potential confounders that could impact result reliability. To
address this, we compiled a large multinational EHR dataset of
critical care AP cases, conducted rigorous internal validation and
sensitivity analyses to determine optimal subgroups, and vali-
dated the stability of AP clinical subtypes in external cohorts.
Nevertheless, potential biases that cannot be completely elimi-
nated should still be noted. Furthermore, due to the limitations of
the retrospective design, including missing weight data, fluid
resuscitation recommendations for different subphenotypes could
not be expressed as mL/kg rates. Therefore, individualized fluid
intake needs to be further validated in future prospective studies.
In conclusion, our study unveiled four distinct AP phenotypes

derived from EHR data, illustrating diverse clinical profiles,
prognoses, and responses to fluid replacement in ICU-managed
AP patients. External validation across international datasets
substantiated the stability of these subtypes, enhancing our
insights into AP pathophysiological nuances. Leveraging machine
learning, we delved into personalized fluid resuscitation strategies
tailored to different AP subphenotypes. These findings warrant
further validation through future research endeavors.

MATERIALS AND METHODS
Study design and population
To develop dynamic clinical subphenotypes and explore the
unique clinical traits across subphenotypes to guide further
precision treatment, we conducted a retrospective, multicenter,

Fig. 4 Partial dependence plots for distinct random forest models fitted for subphenotypes. a–d represented the 3D visualization between 1st
and 2nd day fluid intake and ICU mortality among AP subphenotypes; e–h represented the 2D heat map visualization between 1st and 2nd
day fluid intake and ICU mortality among AP subphenotypes

Development and validation of dynamic clinical subphenotypes in acute. . .
Wang et al.

6

Signal Transduction and Targeted Therapy          (2025) 10:180 



observational cohort study. The overall workflow chart was
exhibited in Fig. 5. Eligibility for the study population encom-
passed diagnosed AP patients in development and validation
cohorts. In cases of multiple ICU admissions, only the first entry
was utilized for analysis. Exclusions covered individuals aged
under 18, those with ICU length of stay (LOS) shorter than 24 h,
and those lacking at least two time points of vital observation
within 12 h. We used an extensive repository of electronic health
record (EHR) data extracted from three real-world critical care
databases. These databases included the ICU healthcare-
associated infections (ICU-HAI) database, sourced from the West

China Hospital44,45; the Medical Information Mart for Intensive
Care (MIMIC)-IV originating from the Beth Israel Deaconess
Medical Center in the United States46; and the eICU Collaborative
Research Database (eICU-CRD), a comprehensive multicenter
intensive care repository including over 200 hospitals spanning
the United States.47

After data preprocessing, the ICU-HAI dataset was designated as
the development cohort for AP subphenotyping, and the
combination of the MIMIC-IV and eICU-CRD datasets served as
the external validation cohort. The characteristics and prognosis of
patients in different subphenotypes were compared after the

Fig. 5 Schema of the study design and progress
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identification of AP subphenotypes. Subsequently, the develop-
ment and validation cohorts containing subphenotype labels were
pooled into the treatment cohort to examine the differential
associations between fluid resuscitation strategies and mortality
across subphenotypes (Fig. 5).

Model development for subphenotyping
Vital sign trajectories data preparation. Vital signs [systolic and
diastolic blood pressure (SBP and DBP), heart rate, respiratory rate
(RR), and body temperature (TEMP)] measurements for AP
patients were aggregated hourly for 12 h after ICU admission.
Multiple measurements within the same hour were averaged. Our
analysis was restricted to complete hourly datasets, therefore any
hour measurement containing a missing value of the five vital
signs was omitted to maintain data integrity. Further details on
the preprocessing of vital sign trajectories can be found in
Supplementary Method A. Prior to fitting the vital sign trajectories
into the model, all values of vital signs were z-score standardized
to mitigate the impact of variable magnitudes on the model’s
fitness.

Group-based multi-trajectory model (GBMTM) development.
GBMTMs were employed for subtyping AP patients based on
their vital signs trajectory during the first 12 h after ICU admission.
GBMTM is an unsupervised algorithm that identifies distinct
trajectory patterns in multivariate time-series data, using finite
mixture models interfaced with polynomial regression, and
parameter estimation is performed through the expectation-
maximization algorithm to group observations based on their
underlying subpopulation distributions. Compared to traditional
trajectory analysis methods that often rely on single-variable
models, GBMTM can simultaneously analyze multiple markers and
cluster based on multiple trajectories, offering a more accurate
representation of a patient’s true disease progression. After data
preprocessing, the standardized data were incorporated into
GBMTMs to delineate distinct AP subphenotypes, which were
characterized by unique polynomial regression functions that
captured the vital signs’ temporal trajectory48 (Supplementary
Method B).

GBMTM model validation. Internal validation was conducted
using the development cohort data to assess subtyping strategies
across GBMTMs. Longitudinal consensus clustering algorithms
were employed to gauge the stability and reliability of potential
subtype numbers (K), ranging from 2 to 6. The evaluation criteria
for identifying the optimal K encompassed the elbow point of the
delta area under a cumulative distribution function plot with
mean consensus scores >0.8 for all subgroups (Supplementary
Methods C). For sensitivity analysis, model evaluation encom-
passed the computation of various metrics and a restricted
minimal sample size, including the Akaike information criterion,
Bayesian information criterion, integrated completed likelihood
criterion, and entropy. To ensure clinical relevance, the size of
potential subphenotypes was constrained to a maximum of 10%
of the total population.49

The final model was applied to the external validation cohort. In
the validation cohort, each patient’s individual vital signs data
were fitted to the various components (mixture polynomial
functions) within the trained GBMTM. The mean squared error
(MSE)s were calculated for each component’s fit. Patients were
then assigned to the subphenotype corresponding to the
component that yielded the lowest MSE.

Early prediction of subphenotypes before 12 h
To test whether fewer vital sign measurements were sufficient for
classification, we evaluated the agreement between the full 12-h
model and models with 6 to 12 h of vitals data. Predictions were
also conducted based on MSE calculations.

Clinical characteristics and prognosis between subphenotypes
Clinical characteristics including demographic data (age, gender,
race), baseline vital signs (heart rate, RR, SBP, DBP, TEMP, and
oxygen saturation), baseline laboratory test (amylase, lipase, blood
urea nitrogen (BUN), creatinine, sodium, potassium, calcium (Ca),
phosphate, white blood cell count (WBC), C-reactive protein (CRP),
procalcitonin (PCT), hemoglobin (Hb), hematocrit, pH, glucose, and
triglycerides), were meticulously gathered on the first day of ICU
admission. Additionally, comorbidities including myocardial infarc-
tion, congestive heart failure, cerebrovascular disease, chronic
pulmonary disease, diabetes, liver disease, renal disease, and
malignant tumors, were also documented.
Continuous variables were presented as the median (inter-

quartile range), while categorical variables were expressed as
counts (percentages). Differences between subphenotypes in
continuous variables were assessed using Kruskal–Wallis tests,
and χ2 tests were used for comparing categorical variables.
We compared 30-day mortality between AP subphenotypes

using adjusted Kaplan–Meier (KM) plots in the development and
validation cohorts. Hazard ratios (HRs) across subphenotypes were
estimated through Cox proportional-hazards regression models.
KM curves and Cox regression models were adjusted by age,
gender, and race.

Impact of comorbidities on prognoses across subphenotypes
To evaluate the impact of comorbidities on 30-day mortality by
subphenotypes, we included those with a prevalence >5% in a
multivariate Cox proportional-hazards regression and
calculated HRs.

Heterogeneous treatment response to fluid resuscitation across
subphenotype
To investigate heterogeneous responses to fluid resuscitation
among distinct subphenotypes, the development and validation
cohorts were merged into the treatment cohort encompassing all
enrolled patients. The volume of fluid intake during the initial 48 h
following ICU admission was measured and summarized for each
day. Subsequently, random forest (RF) classifiers were constructed
for ICU mortality, tailored to different subphenotype groups. The
features of these classification models included common elements
present in all datasets, comprising clinical characteristics and fluid
volume intake during the initial two days following ICU admission.
A fivefold cross-validation was employed for hyperparameter
optimization, with the receiver operating characteristic curve
serving as the metric to evaluate model accuracy. Finally, multi-
predictor interactive partial dependence plot (PDP) algorithms we
utilized to probe the relationship between fluid volume intake
during the first and second days and the risk of mortality50

(Supplementary Method D). Additionally, we examined the effect
of fluid choice on prognosis across subphenotypes. Using Cox
regression models adjusted for age, gender, and race, we
calculated the relative HR for patients receiving lactated Ringer’s
solution within 48 h compared to those who did not.

Missing data management
For the vital sign trajectories, there was no need for missing data
processing since any hourly measurement with missing values
was omitted. For the clinical characteristics, the missing rates for
variables were calculated and reported (Supplementary Table 8).
To ensure the accuracy of the results, we excluded variables with
missing rates over 20% before conducting univariable analyses of
clinical characteristics and fitting the RF model. All variables in the
development cohort were included in the descriptive analysis. In
the validation cohort, amylase, CRP, PCT, and triglycerides were
excluded, while the remaining variables were analyzed. For the
remaining missing data, four imputation algorithms (mean, CART,
RF, Lasso.norm) were conducted, generating four datasets which
were then integrated by calculating their mean values, yielding
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the final comprehensive dataset.51 These variables were subse-
quently used to construct the RF model in the treatment cohort
(Supplementary Method E).
The data from the MIMIC-IV and eICU-CRD (validation cohort)

were extracted using structured query language (SQL) in
PostgreSQL (version 15). All data were analyzed within the R
environment (version 4.3.1), and a list of dependent packages was
provided (Supplementary Table 9). For all statistical tests, a two-
tailed P value of <0.05 was considered statistically significant.
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