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Synthesis of Thermoplastic Xylan-
Lactide Copolymer with Amidine-
Mediated Organocatalyst in Ionic 
Liquid
Xueqin Zhang1, Huihui Wang1, Chuanfu Liu   1, Aiping Zhang2 & Junli Ren1

Ring-opening graft polymerization (ROGP) of l-Lactide (l-LA) is a practical method of altering the 
physical and chemical properties of lignocellulose. Previous studies have mainly investigated cellulose 
and tin-based catalysts, particularly of tin(II) 2-ethylhexanoate (Sn(oct)2), at high temperatures 
and reported low graft efficiencies. In the present study, ROGP of l-LA was successfully achieved on 
xylan-type hemicelluloses in ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([Amim]Cl) using 
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an effective organic catalyst. Mild reaction condition 
(50 °C) was used to limit transesterification, and thus enhance the graft efficiency. The hydroxyl groups 
on xylan acted as initiators in the polymerization, and DBU, enhanced the nucleophilicity of the initiator 
and the propagating chain. Xylan-graft-poly(l-Lactide) (xylan-g-PLA) copolymer with a degree of 
substitution (DS) of 0.58 and a degree of polymerization (DP) of 5.51 was obtained. In addition, the 
structures of the xylan-g-PLA copolymers were characterized by GPC, FT-IR and NMR, confirming 
the success of the ROGP reaction. Thermal analysis revealed that the copolymers exhibited a single 
glass-transition temperature (Tg), which decreased with increasing molar substitution (MS). Thus, 
modification resulted in the graft copolymers with thermoplastic behavior and tunable Tg.

Hemicelluloses, the major non-cellulose polysaccharides in wood component, are a renewable and biodegrad-
able resource, representing about 20–40% of the biomass of plants1, 2. Hemicelluloses contain varieties of sugar 
units, primarily xylans, mannans, glucans and xyloglucans, in various proportions depending on the natural 
source3, 4. Xylans are the most abundant hemicelluloses5. Recently, the production of novel composite pol-
ymers from hemicelluloses has received increasing interests due to the depletion of non-biodegradable fossil 
resources1, 6–8. However, for some applications, the properties like solubility, hydrophobicity and compatibility 
of hemicellulose-based polymers should be improved or tailored. Chemical modifications have been applied to 
confer desirable properties and functionalities to hemicelluloses, thus resulting in the improved performance of 
composite materials9–12, among which graft polymerization provides a significant route to covalently modify the 
surface of hemicelluloses with polymers4, 13–15.

Aliphatic polyesters, with desirable biocompatibility, biodegradability and permeability, are potential candi-
dates as matrixes in biocomposites16–19. Poly(l-Lactide) (PLA), one of the most promising and practical biopoly-
mers, is a hydrophobic and thermoplastic biopolymer that can be derived from renewable sources (mainly starch 
and sugar)16, 20–23. PLA is a candidate for applications in various fields, including biomedical products, food pack-
aging, fibre production and films for agro-industry24–27. Compared to traditional oil-based polymers, PLA exhib-
its high strength and stiffness and desirable optical, physical and mechanical properties28–30. However, the high 
cost of production of PLA limits its ability to directly replace conventional synthetic polymers31.

Recent advances in polymerization techniques have enabled more economical production of PLA and have 
broadened its applications28, 32, 33. Among them, ring-opening graft polymerization (ROGP) of l-LA onto renew-
able lignocellulose represents a practical means of altering the chemical properties of lignocellulose, and grafting 
PLA onto cellulose or cellulose derivatives have attracted considerable research interests15, 32, 34. Traditionally, 
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metal-based catalysts like tin(II) 2-ethylhexanoate (Sn(oct)2) are used to catalyze grafting modification of cel-
lulose with polyesters. For example, Guo et al.35 and Dong et al.23 synthesized cellulose-graft-poly(l-Lactide) 
copolymers using a Sn(oct)2 catalyst in the ionic liquids (ILs); Teramoto and Nishio36 prepared cellulose 
diacetate-graft-poly(l-Lactide) copolymers with Sn(oct)2 in dimethyl sulfoxide (DMSO). However, the resid-
ual metals from catalyst are often found attached to the chain-end of the macromolecular products, thus may 
affect the quality of the products and narrow their applications in biomedical materials, food packaging or 
electronic37–39.

Following the first report of the use of 4-dimethylaminopyridine (DMAP) as an organic catalyst for ring-opening 
polymerization (ROP) of lactide, a robust catalytic system were investigated for activity in ROP of cyclic esters, like 
acids39, 40, N-heterocyclic carbenes (NHC)41, amidines42, 43, guanidines44 and so on. Organocatalysis is a versatile 
strategy for ROP and provides a powerful alternative to the use of more traditional metallo-organic catalysts39–41, 45, 46.  
Many organic catalysts are simple, commercially available molecules that are typically easy to remove from the 
resultant polymers by simple washing or trapping in resin beads44. Previous studies about organic catalysts medi-
ated ROP were mainly conducted on cellulose at high temperature31, 39, 40. However, the high temperature may 
lead to the degradation of the initial materials, resulting in the copolymers with low graft efficiency34, 47. Recently, 
1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) has been applied as a competent nucleophilic catalyst for ROP by a 
number of researchers48–50. Advantageously, DBU mediated ROP is efficient under mild conditions38, 42.

Herein, we extend the study of ROGP of l-LA onto xylan-type hemicelluloses with the organic catalyst DBU 
to improve the graft efficiency under mild conditions. The physicochemical properties of the xylan derivatives 
were characterized by gel permeation chromatography (GPC), FT-IR, 1H-NMR, 13C-NMR, 1H-1H COSY, 1H-13C 
HSQC, 1H-13C HMBC, thermogravimetric analysis (TGA/DTG), differential scanning calorimetry (DSC) and 
X-ray diffraction (XRD).

Results and Discussion
The effects of reaction conditions on the ROGP of l-LA with xylan.  Organocatalysts such as DBU 
have been widely applied for ROP, and are considered as practical alternatives to organometallic and enzymatic 
catalysts due to their efficiency, scope and sustainability42. A homogeneous ROGP reaction of l-LA onto xylan 
backbone with the DBU catalyst was performed as shown in Fig. 1A. The proposed reaction mechanism is 

Figure 1.  The grafting copolymerization of PLA onto xylan in [Amim]Cl with organic catalyst DBU (A) and 
the possible mechanism (B).
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presented in Fig. 1B. As shown in Fig. 1B, grafting and self-polymerization of l-LA occurred simultaneously. 
Attack of the nucleophilic nitrogen of DBU on the carbon of the acetyl group in l-LA generated zwitterion 1, 
analogous to the mechanisms proposed for the activation of acyl halides and dialkyl carbonates with DBU49. The 
acylated amidinium zwitterion 1 could react via several pathways42, 51. Zwitterion 1 could experience ring-closure 
and release a cyclic polylactide 4 and DBU. Alternatively, in the presence of excess DBU and hydroxyl groups in 
xylan as initiator, zwitterion 1 could undergo chain growth to generate xylan-g-PLA copolymers 5.

Xylan-g-PLA copolymers with various graft lengths were synthesized by adjusting the reaction time, reaction 
temperature, catalyst concentration and molar ratio of monomer-to-AXU (anhydroxylose units in xylan). The 
experimental results are presented in Table 1. Grafting of PLA onto xylan at 50 °C with the DBU catalyst produced 
more and longer grafted side chains compared to the literature34. This result illustrated that the graft efficiency is 
sensitive to the catalyst and reaction conditions, particularly temperature. Dong et al.23 and Guo et al.35 observed 
a low graft efficiency for the synthesis of cellulose-g-PLA copolymers in ILs using the Sn(oct)2 catalyst at 130 
and 110 °C, with a maximum degree of polymerization (DP) of 1.70 and 2.39, respectively. Yan et al.34 prepared 
thermoplastic cellulose-g-PLA copolymers by replacing Sn(oct)2 with an organic catalyst DMAP at 80 °C, and 
observed a dramatic improvement in the graft efficiency, with a maximum DP of 4.48. However, the high reaction 
temperatures used in these previous studies may have resulted in transesterification reactions52. In the present 
study, the grafting reaction was conducted at 50 °C, and the maximum DP was 5.51. In general, these results indi-
cated that high graft efficiency can be achieved at 50 °C, probably due to the decreased degradation of the initial 
materials, the limited transesterification reactions and the practical advantages of DBU for catalyzing the ROGP 
of l-LA38, 42, 47.

FT-IR studies of the unmodified xylan and xylan-g-PLA copolymer.  The unmodified xylan and 
xylan-g-PLA copolymer sample 21 (DS = 0.58) were characterized by FT-IR spectroscopy (see Supplementary 
Fig. S1). The characteristic absorbances at 3423, 2908, 1736, 1638, 1383, 1044 and 896 cm−1 were assigned to xylan 
backbone9. The FT-IR spectrum of xylan-g-PLA copolymer sample 21 revealed an intense absorption peak from 
the carbonyl group (C=O) at 1755 cm−1, confirming the presence of the PLA polymer. The intensity of the band 
at 3480 cm−1 for O-H stretching significantly decreased due to the decrease of hydroxyl groups in xylan. The O-H 
stretching vibration was shifted to a higher wave-number domain, probably due to the decreased hydrogen bond-
ing force in xylan after modification. The absorption peaks at 2993 and 2945 cm−1 were attributed to -CH3 and 
-CH2- groups. The absorption bands at 1271, 1191 and 1091 cm−1 represented the backbone ester group of PLA.

Sample Temp. (°C) Time (h)
l-LA/AXU 
(mol/mol)

DBU 
(wt) DS DP MS WPLA (%)

1 110 1 8:1 2% 0.25 1.85 0.46 20.06

2 110 3 8:1 2% 0.47 2.51 1.18 39.16

3 110 6 8:1 2% 0.41 1.39 0.57 23.72

4 110 12 8:1 2% 0.24 1.36 0.33 15.25

5 110 24 8:1 2% 0.21 1.32 0.28 13.20

6 ambient 12 8:1 2% 0.06 1.76 0.11 5.67

7 40 12 8:1 2% 0.37 1.94 0.72 28.20

8 50 12 8:1 2% 0.41 2.65 1.09 37.29

9 70 12 8:1 2% 0.37 2.26 0.84 31.42

10 90 12 8:1 2% 0.31 2.07 0.64 25.88

11 130 12 8:1 2% 0.23 1.31 0.30 14.06

12 110 12 8:1 0.5% 0.13 1.18 0.15 7.56

13 110 12 8:1 1% 0.17 1.27 0.22 10.71

14 110 12 8:1 1.5% 0.21 1.33 0.28 13.25

15 110 12 8:1 4% 0.19 1.07 0.20 9.84

16 110 12 20:1 4% 0.25 1.94 0.49 21.09

17 50 12 8:1 0.5% 0.28 2.99 0.84 31.42

18 50 12 8:1 1% 0.33 3.37 1.11 37.71

19 50 12 8:1 1.5% 0.38 3.43 1.30 41.49

20 50 12 8:1 4% 0.45 4.06 1.83 49.95

21 50 12 20:1 4% 0.58 5.51 3.19 63.50

22 50 12 2:1 2% 0.15 2.07 0.31 14.46

23 50 12 4:1 2% 0.27 2.43 0.66 26.47

24 50 12 12:1 2% 0.45 4.09 1.84 50.09

25 50 12 20:1 2% 0.47 4.68 2.19 54.43

Table 1.  Compositional reaction parameters of xylan-g-PLA copolymers synthesized under different reaction 
conditions. (DS, the degree of substitution of xylan-g-PLA copolymers, calculated by 1H-NMR; DP, the degree 
of polymerization of PLA side chains, calculated by 1H-NMR; MS, the molar substitution of xylan-g-PLA 
copolymers, calculated by 1H-NMR; and WPLA, the weight content of PLA side chains, calculated by 1H-NMR).
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GPC analysis of the xylan-g-PLA copolymer.  Xylan-g-PLA copolymer sample 21 was also characterized 
by GPC (see Supplementary Fig. S2). The single elution peak indicated the complete removal of PLA homopol-
ymer. The GPC results (Mn = 81,200 g mol−1, Mw = 92,500 g mol−1) further confirmed the successful grafting of 
PLA onto xylan. More importantly, the narrow dispersity (PDI = 1.14) of the copolymer will facilitate the expan-
sion of the application of xylan derivatives.

1D- and 2D-NMR analysis of the unmodified xylan and xylan-g-PLA copolymer.  NMR is an 
effective characterization tool indispensable for analysis in the field of organic chemistry53. 1D (1H-NMR, 
13C-NMR) and 2D (1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC) NMR were performed to elucidate the struc-
tures of xylan and xylan-g-PLA copolymer sample 21 (DS = 0.58).

Figure 2A presents the 1H-NMR spectrum of xylan. The β-(1–4)-linked d-Xylopyranose units were charac-
terized by proton signals at 3.03, 3.32, 3.48, 3.92, 4.08 and 4.34 ppm, which were assigned to H-2, H-5a, H-3, H-4, 
H-5e and H-1, respectively. The signals at 5.29 and 5.41 ppm were attributed to the protons from the hydroxyl 
groups in AXU54. In the 1H-NMR spectrum of xylan-g-PLA (Fig. 2C, sample 21, DS = 0.58), the proton signals 
of xylan were clearly evident. The signals at 1.29, 1.46, 4.21 and 5.12 ppm were assigned to the protons in the 
attached PLA side chains of L6, L3, L5 and L2, respectively. The hydroxyl group at the end of the PLA side chains 
(L5-OH) was responsible for the proton signal at 5.51 ppm. These results confirmed the successful graft polym-
erization of PLA on xylan. Figure 2B presents the 13C-NMR spectrum of xylan. The five strong signals at 102.1, 
75.8, 74.5, 73.2 and 63.7 ppm were attributed to C-1, C-2, C-3, C-4 and C-5 of the AXU in xylan, respectively. In 
the 13C-NMR spectrum of xylan-g-PLA sample 21 (Fig. 2D, DS = 0.58), signals originated from the AXU of xylan 
were also detected. The signals at 17.1, 20.8, 65.9 and 69.2 ppm were assigned to L3, L6, L5 and L2 of the PLA side 
chains. In addition, the signals at 169.5 and 174.5 ppm were attributed to the carbonyl at the L1 and L4 positions. 
These carbon signals indicated the successful attachment of PLA onto the xylan backbone.

To confirm the correct assignment of the proton signals of the attached PLA side chains, the 1H-1H COSY 
spectrum of xylan-g-PLA copolymer sample 21 (DS = 0.58) was acquired (Fig. 3). The spectrum is presented 
at a higher contour lever (the primary signals and cross-correlations in AXU are not shown) to clearly show the 
cross-correlations of the protons of the attached PLA side chains. Strong cross-correlations for L2/L3, L3/L2, L5/
L5-OH and L5-OH/L5 of the PLA side chains were clearly observed. Moreover, the cross-correlations at δH/δH of 
1.29/4.21 and 4.21/1.29 ppm for L6/L5 and L5/L6 indicated the presence of the PLA repeating unit.

Based on the typical signals (L3 and L6 positions) from the PLA side chains and AXU in xylan (H-1 and H-4 
positions), the molar substitution (MS), DS and DP of the xylan-g-PLA copolymers, and the weight content of 
PLA side chains (WPLA) (listed in Table 1) were estimated based on the integral area of the resonances for the 
corresponding protons, according to the following equations:
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Figure 2.  1D-NMR spectra of unmodified xylan (A for 1H-NMR, B for 13C-NMR) and xylan-g-PLA copolymer 
sample 21 (DS = 0.58, C for 1H-NMR, D for 13C-NMR).
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where IL3 and IL6 are the integral areas of the lactyl-CH3 and terminal lactyl-CH3 protons respectively; IH1 and 
IH4 are the integral areas the of protons of the residual hydroxyls in xylan; 72 and 132 g mol−1 are the molecular 
weights of the l-LA monomer and xylan repeating unit, respectively.

1H-13C HSQC provides detailed information on signal overlap in the 1H- and 13C-NMR spectra and can be 
applied for qualitative and quantitative analyses of chemical structures4. Figure 4 presents the 1H-13C HSQC 
spectrum of xylan-g-PLA copolymer sample 21 (DS = 0.58). The primary correlations from xylan and the PLA 
side chains are presented in Green and Red, respectively. The strong correlations at δC/δH of 16.8/1.46, 20.7/1.28, 
66.3/4.21 and 68.9/5.13 ppm were assigned to CL3/HL3, CL6/HL6, CL5/HL5 and CL2/HL2, respectively, indicating 
that the PLA side chains were successfully grafted onto xylan. Strong correlations of C1/H1, C2/H2, C3/H3, C4/H4, 
C5e/H5e and C5a/H5a in AXU were observed at δC/δH of 101.9/4.35, 73.3/3.02, 75.1/3.24, 76.1/3.58, 63.1/3.92 and 
63.1/3.17 ppm, respectively. Moreover, the correlations at δC/δH of 73.3/4.49 and 75.1/4.80 ppm were assigned to 
the substituted C2/H2 and C3/H3 (2′ and 3′, respectively), indicating the ROGP of l-LA at C2 and C3 in the xylan 
backbone. According to the integrated resonances for substituted and unsubstituted C2/H2 and C3/H3, 46.88% and 
53.12% of the PLA side chains were attached to C2 and C3, respectively.

1H-13C HMBC is an effective tool to give correlations between carbons and protons that are separated by 
two, three, and sometimes in conjugated systems, four bonds. In theory, the positions of AXU attached with 
PLA side chains could be detected by 1H-13C HMBC. Herein, in order to further prove the attachment of PLA 
onto xylan backbone and the correct assignment of the primary signals of xylan-g-PLA copolymers, the 1H-13C 
HMBC spectrum of sample 21 (DS = 0.58) is presented in Fig. 5. To better understand the spectrum, the primary 

Figure 3.  1H-1H COSY spectrum of xylan-g-PLA copolymer sample 21 (DS = 0.58).

Figure 4.  1H-13C HSQC spectrum of xylan-g-PLA copolymer sample 21 (DS = 0.58).
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correlations from xylan backbone, PLA side chains and cross-correlations between xylan and PLA are shown in 
Blue, Red and Green. Expectedly, the Green correlations at δC/δH of 170.2/4.82 ppm (CL1/H3′) and 170.2/4.49 ppm 
(CL1/H2′) are assigned to the cross-correlations between carbonyl carbon (C = O, L1 position) in PLA side chains 
and the protons at the substituted C3 and C2 (3′ and 2′ positions), respectively. These results confirmed the 
successful grafting of PLA side chains onto xylan backbone. Apparently, more PLA side chains were attached 
to C3 position than to C2 position, corresponding to the results from 1H-13C HSQC. The cross-correlation at 
δC/δH of 175.3/5.11 ppm (CL4/HL2) illustrated the repeated PLA side chains. The other cross-correlation were 
detected in Red at δC/δH of CL1/HL2 (170.2/5.11 ppm), CL1/HL3 (170.2/1.44 ppm), CL1/HL5 (169.9/4.18 ppm), CL2/
HL3 (70.7/1.44 ppm), CL3/HL2 (17.5/5.11 ppm), CL3/HL3 (17.5/1.36 and 17.5/1.55 ppm), CL4/HL5 (175.3/4.18 ppm), 
CL4/HL6 (175.3/1.28 ppm), CL5/HL6 (65.8/1.28 ppm), CL6/HL5 (21.1/4.18 ppm) and CL6/HL6 (21.1/1.17 and 
21.1/1.36 ppm), confirming the correct assignments of primary carbon and proton signals in PLA side chains. 
Moreover, the cross-correlations originating from AXU in xylan were observed in Blue at δC/δH of 102.7/2.84 (C1/
H2), 102.7/3.05 (C1/H5), 102.7/3.25 (C1/H3), 102.7/4.49 (C1/H2′), 76.8/3.25 (C4/H3), 76.8/4.49 (C4/H2′), 76.8/4.82 
(C4/H3′), 74.9/3.66 (C3/H4), 74.9/3.05 (C3/H5), 74.9/2.84 (C3/H2), 71.9/3.25 (C2/H3), 71.9/4.84 (C2/H3′), 63.5/3.69 
(C5/H4), and 63.5/3.25 ppm (C5/H3). The cross-correlations at δC/δH of 102.7/3.66 (C1/H4) and 76.8/4.41 (C4/H1) 
ppm are associated with the linked xylose unit by β-1,4 linkage. The other cross-correlations from xylan were not 
detected under the selected contour level.

Thermal analysis.  The decomposition pattern and thermal stability of xylan and xylan-g-PLA copolymers 
with different DS were studied by TGA and DTG. As shown in Fig. 6A, the weight loss in the examined tem-
perature range could be divided into three stages. The first drop in the curves was attributable to water loss, 
representing approximately 13% (xylan), 10% (sample 24), 11% (sample 25), and 8% (sample 21) of the initial 
weight, respectively, which was probably due to the increased hydrophobic nature of the xylan derivatives after 
the grafting of PLA side chains55. Unmodified xylan began to decompose at 180 °C, whereas the xylan-g-PLA 
copolymers began to decompose at approximately 225 °C. At 50% weight loss, the decomposition temperatures of 
xylan and the grafted copolymers 24, 25, and 21 were 275 °C, 279 °C, 295 °C, and 300 °C, respectively. These results 
indicated that the thermal stability of xylan was enhanced by the increased DS of the xylan-g-PLA copolymers, 
in contrast to the decreased thermal properties of cellulose-g-PLA copolymers with increased DS14, 35. These 
differences are probably due to the diversities of structure between cellulose and xylan. Cellulose in its natural 
state has a crystalline structure, resulting in a high onset decomposition temperature of approximately 300 °C14. 
Grafting with PLA side chains may disrupt the crystalline structure of cellulose, leading to the decreased thermal 
stability of the cellulose-g-PLA copolymers. At 600 °C, the pyrolysis residues of xylan and samples 24, 25 and 21 
were 24%, 18%, 15% and 15%, respectively, indicating that the inorganic salts content of the samples decreased 
after modification13.

DTGmax indicates the maximum degradation rate and can be used to compare the thermal stability between 
samples. In the DTG curves (Fig. 6B), xylan and samples 24, 25 and 21 exhibited DTGmax at approximately 270, 
275, 280 and 300 °C, respectively. Thus, the degradation range of xylan was decreased after grafting of the PLA 
side chains, indicating that chemical modification led to the increased thermal stability. However, the graft copol-
ymers decomposed in one step, in contrast to the thermal degradation of cellulose-g-PLA copolymers, which pro-
ceeded in two steps for the decomposition of PLA and cellulose14. The single-step decomposition in the present 
study was probably due to the low MS of the copolymers, similar to the results observed by Yan et al.34.

DSC analysis.  Thermograms of unmodified xylan, xylan-g-PLA copolymers and commercial neat PLA 
(Mw = 14,000 g mol−1) on second heating are presented in Fig. 7. No melting temperature (Tm) or glass transition 
temperature (Tg) was observed in the curve of unmodified xylan, indicating that the xylan was amorphous5, 55. 
The neat PLA exhibited a Tm of approximately 188.4 °C and a Tg of 64.5 °C, consistent with the literature11, 56. For 
the xylan-g-PLA copolymers, each curve exhibited a clear Tg. As MS increasing from 1.84 to 3.19 (DS from 0.45 
to 0.58), Tg decreased from 59.8 °C to 42.5 °C, indicating that the relatively long grafted PLA side chains increased 

Figure 5.  1H-13C HMBC spectrum of xylan-g-PLA copolymer sample 21 (DS = 0.58).
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the intermolecular distance and chain mobility, thus playing an effective role as an internal plasticizer of xylan11, 57.  
The tunable Tg values of the xylan-g-PLA copolymers indicated the probability of subsequent melt-processing of 
the materials under mild conditions into biobased plastic products with desirable thermal tolerance. No melting 
peaks were observed in the DSC curves of the copolymers, indicating that the copolymers were amorphous and 
consistent with the results of the XRD measurements. Previously reported cellulose reinforced PLA biocompos-
ites were also amorphous34, 56, 57.

Figure 6.  TGA (A) and DTG (B) curves of xylan and xylan-g-PLA copolymers samples 21 (DS = 0.58), 24 
(DS = 0.45) and 25 (DS = 0.47).

Figure 7.  DSC curves of xylan, neat PLA (Mw = 14,000 g mol−1) and xylan-g-PLA copolymers samples 21 
(DS = 0.58), 24 (DS = 0.45) and 25 (DS = 0.47).
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XRD analysis.  X-ray diffractograms of unmodified xylan, neat PLA (Mw = 14,000 g mol−1) and xylan-g-PLA 
copolymer sample 21 (DS = 0.58) are investigated (Supplementary Fig. S3). Unmodified xylan exhibited a broad 
diffraction peak at 2θ = 19.2°, indicating that xylan was amorphous. The neat PLA was semicrystalline, with 
two main diffraction peaks at 2θ = 16.6° and 18.9°. In the XRD curve of xylan-g-PLA copolymer sample 21, 
only one disperse broad peak around 2θ = 19.5° was observed, indicating that the xylan-g-PLA copolymers were 
amorphous. This probably due to the grafted PLA side chains were not sufficiently long to form a new crystal-
line structure, in agreement with the DSC results. Consequently, the PLA-reinforced biocomposites were indeed 
non-crystalline, as previously reported23, 57.

Conclusion
In the present study, xylan-g-PLA copolymers with high graft efficiency were successfully synthesized in [Amim]
Cl under mild conditions. The hydroxyl groups on xylan acted as initiators in ROGP of l-LA, and DBU was 
applied as an organic catalyst to enhance the nucleophilicity of the initiator and propagate the PLA chain. By 
varying the reaction conditions, the DS and DP of the obtained copolymers could be selectively tuned, resulting 
in a maximum DS of 0.58 and DP of 5.51 at 50 °C. GPC, FT-IR and NMR confirmed the successful ROGP of 
l-LA with xylan. 1H-13C HSQC analysis of the structure of the xylan-g-PLA copolymers indicated that 46.88% 
and 53.12% of the PLA side chains were attached to C2 and C3 of xylan, respectively. The thermochemical prop-
erties of the copolymers indicated that the modification transformed xylan to a thermoplastic material with a 
tunable glass-transition temperature (Tg) from 42 °C to 60 °C. Further studies will be focused on the application 
of xylan-g-PLA copolymers.

Experimental
Materials.  Xylan with a xylose content of greater than 90% (isolated from beech wood) was purchased from 
Sigma-Aldrich Co., LLC (Shanghai, China). The average molar mass of xylan was 58,000 g mol−1. l-LA and neat 
PLA (Mw = 14,000 g mol−1) with a purity of 99.5% were purchased from Sigma-Aldrich Co., LLC (Shanghai, 
China). DBU with a purity of 99% was purchased from Aladdin Reagent Co. (Shanghai, China). [Amim]Cl with 
a purity of 99% was supplied by Cheng-Jie Chemical Co., Ltd. (Shanghai, China) and was dried under vacuum 
for 48 h at 70 °C before use. All other chemicals were of analytical reagent grade and were used directly without 
further purification.

Synthesis of xylan-g-PLA copolymer.  A typical procedure for the grafting of PLA onto xylan was as 
follows. Dry xylan (0.11 g, 1.67 mmol) was dissolved in [Amim]Cl (10 g) at 80 °C in a sealed 25-mL three-neck 
reaction flask. The xylan solution was treated with three cycles of vacuum and nitrogen (N2) under vigorous 
stirring to remove moisture. After approximately 1 h, l-LA was added to the solution, and the same procedure 
described above was followed to remove moisture. Then, DBU as a catalyst was slowly added to the solution, and 
the reaction was performed at an appropriate temperature and time under a N2 atmosphere with vigorous stir-
ring. After cooling to room temperature, the xylan-g-PLA copolymers were isolated by precipitation in deionized 
water and subsequently purified by dialysis against water to remove [Amim]Cl, catalyst and unreacted monomer. 
The copolymers were then washed by Soxhlet extraction with dichloromethane for 24 h to completely remove any 
free homopolymer, and dried under vacuum for 48 h at 70 °C.

Characterization.  GPC was performed using a Waters model 1515 (USA) equipped with a 2414 dif-
ferential detector and Styragel HR3 and Styragel HR4 columns. The measurement was performed at 35 °C. 
N,N-dimethylformamide (DMF) was used as the mobile phase (0.6 mL/min). The run time and volume were 
50.0 min and 50.00 μL, respectively.

FT-IR spectra of the unmodified xylan and xylan-g-PLA copolymers were obtained in the range of 4000–
400 cm−1 using a Bruker spectrophotometer (Tensor 27, Germany) in KBr disc containing 1% (w/w) of finely 
ground sample.

1H-NMR, 1H-1H COSY, 13C-NMR, 1H-13C HSQC, 1H-13C HMBC spectra were recorded from 40 mg samples 
in 0.5 mL of DMSO-d6 on a Bruker AVIII 600 M spectrometer (Germany) with a 5 mm multinuclear probe (see 
Supplementary Experimental Details).

TGA/DTG was performed using a TGA Q500 thermogravimetric analyzer (TA, USA). The sample (9 to 
11 mg) was heated from 30 °C to 600 °C at a heating rate of 10 °C/min and an air flow rate of 25 mL/min.

DSC (Q200, USA) was performed to assess the Tg. The specimens (5 to 7 mg) were transferred into the pan 
used for DSC measurements. For the successive heating/cooling cycling measurements, the following thermal 
procedure was used: 10 °C/min ramp from ambient temperature to 100 °C, isotherm at 100 °C for 5 min, cool to 
0 °C, isotherm at 0 °C for 5 min, 10 °C/min ramp from 0 °C to 200 °C and cool to ambient temperature naturally.

XRD was performed using a D/max-III A X-ray diffractometer (Japan) with nickel-filtered Cu Kα radiation 
(40 kV, 40 mA). Data were measured in a range of 2θ = 5 to 40° with a step size of 0.04° and time per step of 0.2 s 
at room temperature.
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