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Abstract

Machine learning methods have been widely applied to big data analysis in genomics and epigenomics research. Although
accuracy and efficiency are common goals in many modeling tasks, model interpretability is especially important to these
studies towards understanding the underlying molecular and cellular mechanisms. Deep neural networks (DNNs) have
recently gained popularity in various types of genomic and epigenomic studies due to their capabilities in utilizing
large-scale high-throughput bioinformatics data and achieving high accuracy in predictions and classifications. However,
DNNs are often challenged by their potential to explain the predictions due to their black-box nature. In this review, we
present current development in the model interpretation of DNNs, focusing on their applications in genomics and
epigenomics. We first describe state-of-the-art DNN interpretation methods in representative machine learning fields. We
then summarize the DNN interpretation methods in recent studies on genomics and epigenomics, focusing on current data-
and computing-intensive topics such as sequence motif identification, genetic variations, gene expression, chromatin
interactions and non-coding RNAs. We also present the biological discoveries that resulted from these interpretation
methods. We finally discuss the advantages and limitations of current interpretation approaches in the context of genomic
and epigenomic studies.
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Introduction
The recent development in deep neural networks (DNNs) has
been applied to various tasks and achieved state-of-the-art per-
formance [1–5]. In comparison with early shallow neural net-
works, DNNs have more complex architectures, including classi-
cal feedforward neural networks such as fully connected neural
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networks and convolutional neural networks (CNNs), recurrent
neural networks (RNNs) and their improved versions [3]. DNNs
have essentially revolutionized the problem-solving approaches
in computer vision and natural language processing (NLP) fields
[4, 5]. For example, CNNs have dominated image recognition [6],
object detection [7–9] and activity recognition [10]. RNNs have
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been widely applied to text mining and machine translation
[11, 12].

With the rapid accumulation of large-scale high-throughput
omics data in the past decades, such as genomic and epige-
nomic data, DNNs have also received increased attention in
bioinformatics [13, 14]. They have demonstrated superior per-
formance to traditional machine learning approaches in many
bioinformatics problems such as sequence motif finding [14–
16], chromatin interaction prediction [17–19] and genetic variant
detection [20].

However, with their black-box nature, DNN-based approaches
often encounter difficulties in explaining the relationships
between inputs and predicted outputs, also known as the
explainability and interpretability issue. There are various
perspectives on the difference between interpretability and
explainability. For example, Doshi-Velez et al. recently described
interpretability as ‘the ability to explain or to present in
understandable terms to a human’, while Gilpin et al. defined
interpretability as ‘the science of comprehending what a
model did’ [21, 22]. These studies referred to interpretability
as the first step of explainability, and it alone is necessary but
not sufficient for reasoning and understanding. However, in
Montavon et al., interpretation was defined as ‘the mapping of an
abstract concept into a domain that the human can make sense
of’, whereas explanation as ‘the collection of features of the
interpretable domain that have contributed for a given example
to produce a decision’ [23]. In this survey, we also assume
that interpretability is the first step toward explainability.
The challenge in interpretability and explainability faced
by current DNNs is especially true for many bioinformatics
studies. This is because bioinformatics tasks often are not
completed at the prediction stage. Bioinformatics data modeling,
in general, requires an in-depth understanding of why the
input variables/features lead to the output classification to
gain insights into phenotypes and their underlying biological
mechanisms [24].

The necessity to understand how DNNs perform in each of
the prediction tasks motivated the recent surge of research on
model interpretations [23, 25–30] with applications in various
bioinformatics domains, including genomics and epigenomics
research. In this study, we will first review current methods
in DNN interpretations. We then survey most data-intensive
genomics and epigenomics problems to illustrate the recent
application and development of DNN interpretation techniques.

Current methods for DNN interpretation
In the past decade, there has been an increasing interest in find-
ing ways to interpret the features discovered by neural networks,
particularly in computer vision and NLP [4, 5]. The beginning of
the method development can be traced back to the visualization
and interpretation for CNNs in image analysis [25, 29]. Various
DNN interpretation categorizations have been proposed since
then.

However, there has not yet been a unified terminology to
classify the developed methods. For example, Grun et al. clas-
sified the existing methods into three categories: input modifi-
cation, deconvolutional and input reconstruction, among which
the deconvolutional methods can be further divided into three
subcategories: deconvnet, backpropagation and guided back-
propagation approaches [26] (Figure 1). Singh et al. used different
terms for their categorization: deconvolution, saliency maps,
class optimization and others [31] (Figure 1). Zhang et al. catego-
rized CNN visualization methods into gradient-based methods

and up-convolutional net techniques [32]. The gradient-based
methods [25, 29, 33, 34] take advantage of gradients to visualize
patterns of convolutional layers, whereas the up-convolutional
net methods [35] take a different interpretation direction by
converting feature maps to images. A more recent survey sum-
marized the interpretation methods into two primary categories:
input perturbation and backpropagation [24]. Backpropagation
techniques were further categorized into saliency maps and
input reconstruction approaches. Although the terminologies
are not unified, they have similar concepts underneath. For
instance, saliency maps used by Singh et al. is similar to a
backpropagation-based deconvolutional method used by Grun
et al. Similarly, the class optimization approach by Singh et al.
is similar to the input reconstruction approach by Grun et al.
In addition to these categories with CNN models, the attention
mechanism is a popular interpretation strategy used with RNN
models specially in NLP tasks, where the attention to different
parts of the sequence input on the output can be used as features
[36] (Figure 1). In the following, we present the most popular
strategies based on Grun et al.’s and Singh et al.’s classifications
on CNNs and the attention mechanism on RNNs.

Input modification methods

Input modification methods determine the input feature impor-
tance by estimating an altered input’s impact on its immediate
layers or the DNN output. For example, an input modification
technique called occlusion was developed to estimate the impor-
tance of different image parts to the image classification [25].
The occlusion method works by systematically covering up a
portion of the input image with a gray square and then calcu-
lating the filter activation difference in the convolutional layer.
By moving the square left to right and top to bottom of an image,
the importance of different parts of an image was measured. A
heatmap can be created from the resulting changes in activation
that represent the activation map of an image. The objects in
the image that affect the probability of its predicted classes can
also be identified [25]. Although this approach can help create
an interesting and clear visualization map for the whole input
image, the huge number of training passes needed for every
input image to create the visualization map is a significant
overhead.

An input modification approach was later developed to iden-
tify the receptive field of each unit in each convolutional layer [9].
This approach, in general, followed the above image occlusion
method with the exception that, a square patch with random-
ized pixel values was defined in place of a square patch of fixed
color for image occlusion, since the latter could introduce a bias
towards a fixed feature. Similar to the above occlusion method,
a discrepancy map could also be constructed to show how much
each pixel affects the activation of the unit in question. By
repeating this process over a large number of images, the dis-
crepancy maps could be aggregated into a combined discrepancy
map that was invariant across images, showing which pixels
comprised the receptive field of a unit and allowing for semantic
interpretations of what each unit was learning to recognize. The
significant overhead of generating a huge number of extra data
set for each input image also remained as a disadvantage in this
study.

Another input modification technique was used by Zintgraf
et al. that measured the effect of removing an input dimension
on the classification decision and used this piece of information
to assign a relevance score to that input dimension [37]. Because
relatively few classifiers were permitted to replace the value
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Figure 1. A classification of common DNN interpretation approaches. The underlined ones are used in genomic and epigenomic studies.

of an input dimension with an unknown value, and because
retraining a neural network to exclude the dimension in ques-
tion would be prohibitively expensive, removing the dimension
was simulated by marginalizing it. Given every feature except
the one in question, the conditional probability of predicting a
particular class was then approximated with a formula based
on the probability of predicting that class given all features
and the empirical distribution of the feature whose absence
was to be simulated. The accuracy of this approximation was
improved by replacing the empirical distribution of the feature
to be marginalized with either a conditional probability of that
feature’s value given the value of its neighbors or multivariate
analysis in which a sliding window of features were removed
simultaneously. This formulation was adopted as a deconvolu-
tional technique, in which instead of considering the impact of
input modification on the final class prediction, the impact of an
unknown hidden unit on the intermediate output was calculated
for the corresponding layer to measure the relevance of that unit
to that layer’s output. This technique was then propagated, layer
by layer, similar to Montavon et al. [38].

Deconvolutional methods

Deconvolutional methods attempt to use the network structure
to make sense of the predictions. Iteratively computing how
much each unit of the lower layer contributes to the activation of
interest and tracing the work of convolutional layers backward
until reaching the input layers, deconvolutional methods are
able to identify the contribution of input units to the output
predictions.

Deconvnet. Deconvnet, a deconvolutional approach devel-
oped by Zeiler and Fergus, attached a deconvolutional layer to
each convolutional layer in the network to probe the activity of
a CNN trained for image classification [25]. The output of each
convolutional layer was fed to the associated deconvolutional
layer, which reconstructed the activity in the previous layer that
led to those activations. Attaching a deconvolutional layer to

each convolutional layer allowed this process to be extended
from the prediction output all the way down to the input layer, to
determine which pixels and structures of an input image were
most responsible for the activation of the predicted class. One
disadvantage to this method is that it suffers from significant
overhead, requiring the training of a second neural network
to analyze the features of the first and requiring a separate
deconvolutional neural network for each layer of the original
convolutional network that one wants to analyze. In addition to
the extra space required to store all these networks, they must
also be trained, taking additional time as well.

Similarly, deconvolutional layers were used to reverse the
work of convolutional layers in image classification [35]. Instead
of attaching a deconvolutional layer to each individual convolu-
tional layer, a separate deconvolution network was trained using
the feature vector generated confidently by a set of images as
input. The deconvolution network was used to predict a pre-
image that had been created from the weighted average of those
images. This facilitated a way to visualize the feature interpre-
tation by every layer of a CNN. This was similar to the decoding
portion of an autoencoder. This approach shared the drawback
of the above Zeiler and Fergus’ method [25], as it required storing
and training a second network.

Backpropagation, guided backpropagation and saliency
map. A backpropagation-based deconvolutional method called
saliency map was introduced by Simonyan et al. [29]. A saliency
map was constructed for each image, reflecting the contribution
of each pixel to the classification decision. Instead of using
deconvolutional layers to reverse the work of a trained CNN,
a single pass of backpropagation through a trained model
was used to determine the relative importance of pixels in
an input image. The deconvolutional technique employed here
improved deconvnet [25] by eliminating the need to train and
store multiple deconvolution networks, achieving a similar goal
using only the existing model weights and backpropagation.
A deconvolutional approach called guided backpropagation
was further developed by combining the deconvnet and
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backpropagation-based methods [34]. Note that deconvnet
masks out the negative contribution of a neuron using the
rectified linear unit (ReLU) only during the backward pass, while
backpropagation clips out the negative activation of a neuron
using the ReLU in the forward pass and then updates the weights
during the backward pass, and the guided backpropagation
clips out both the negative activation in forward pass and
negative contribution in the backward pass, using ReLU units
both during the forward and backward propagation steps [26,
34]. In contrast to the earlier deconvolutional approaches, guided
backpropagation methods can be applied to networks that do
not contain max-pooling layers.

Saliency map technique was also considered by Montavon
et al. that used deep Taylor decomposition to map the output
activations of a CNN layer to the relevance of that layer’s inputs
[38]. Deep Taylor expansion works by taking the first-order Taylor
expansion of the function approximated by a unit in one layer in
terms of the units in the previous layer. These approximations
are then summed across a layer. A heatmap can be constructed,
showing how relevant each unit in the previous layer was to
the output of the current layer [38]. Propagating this backward
through the network also allows the construction of a heatmap
showing the relevance of pixels in the input image to the predic-
tion made by the output layer [38]. This approach improves over
the previous technique in that it also generates saliency maps
showing the features recognized by the input layer as well as
each of the intermediate layers, but it is able to do so with much
less overhead, due to using only Taylor expansions.

A deconvolutional technique for processing images or videos
by CNN layers was created by Yosinski et al., where the activation
of each unit in each layer in real-time in response to changing
images or video frames could be visualized [30]. While straight-
forward visualization of layer activations was not new, showing
the impact of changes in input on the activations in real-time
was an improvement over earlier deconvolutional techniques
and allowed the authors to gain insight into how CNNs learn
intermediate object detectors (such as shoulders and faces) to
help make higher-level classification decisions, even when not
trained on those classes explicitly.

Another deconvolutional technique called ‘population
encoding’ was developed in Wang et al. to visualize the features
learned by each layer of a CNN by clustering the layer’s responses
[8]. At each intermediate layer of the network, responses were
sampled at a spatial grid of that layer. Every response in a
specific grid position of that layer corresponded to a patch
of the input image. K-means++ clustering was performed to
cluster similar responses. Clusters were ranked based on their
goodness according to a weighted sum of the Davies–Bouldin
index and the normalized count of each cluster, and similar
clusters were merged, with higher-ranked clusters absorbing
lower-ranked clusters that had at least 50% similar contents. The
consolidated clusters corresponded to visual features (patches)
of the original input image that were important in identifying
the class under consideration. This technique incurs greater
overhead than previous methods but is able to provide more
detailed information about the features recognized by each layer
of the network, rather than providing a saliency map of only the
input layer.

A backpropagation-based deconvolutional method called
class activation map (CAM) was created in Zhou et al. [39].
A CAM is an activation map associated with a given class,
representing the discriminative power of regions in an image.
CAM works by first performing a global average pooling on
the last convolutional layer in CNNs, then projecting back

the weights of the output layer to the last convolutional layer
and finally carrying out a weighted sum of the feature maps
in the last convolutional layer. A CAM is essentially the local
explanation for a particular classification result. In the case of
image classification, a CAM indicates a region that is responsible
for the image classification results.

Input reconstruction methods

Input reconstruction methods attempt to construct a synthetic
input that either maximizes the activation of a specific class or
matches the output of certain standards to understand better
what features are learned along the way [26]. For example, an
input reconstruction technique was used in Simonyan et al. to
generate an image for each class that maximized the prediction
score of that class, with the intent of using that image as an
archetypical example of the network’s model of that class [29].

An input reconstruction method was developed to help
answer the question of whether CNNs were able to learn the
correspondence between different parts of an object [40]. The
output vector of each layer was used to construct an image out
of a library of patches of pixels obtained from the input corpus
using K-means clustering. The resemblance of the reconstructed
image with the input image was obtained by comparison. Like
the previous methods, this approach also incurs a significant
overhead by creating and storing a library of image patches.

Another input reconstruction technique used regularized
optimization in image space to visualize features at each layer
of a neural network as well [30]. The regularizations applied
to images in this technique included the L2 norm, Gaussian
blurring, clipping pixels with a small norm and clipping pixels
with a small contribution. These regularizations corrected
several confounding factors found in images. Using all four
was found to result in more natural and interpretable images,
potentially making the features discovered using other neural
network interpretation techniques more meaningful.

An input reconstruction method called ‘activation maximiza-
tion’ was applied to visualize multifaceted feature representa-
tions [27]. It was observed that one class, such as bell peppers
or convertibles, often has many facets: bell peppers come in
multiple colors and can be whole or cut open, and convertibles
can come in multiple colors and look different when viewed from
different sides. The neurons in the output layer responsible for
recognizing one of these classes must be able to recognize multi-
ple distinct facets of the class in order to do so. An algorithm was
developed to visualize multiple facets that the neuron respon-
sible for recognizing a particular class must recognize. This
algorithm extracted the encoding of the penultimate layer of the
network for each image in an input set corresponding to a par-
ticular class, used the principal component analysis to reduce
the dimensionality of those encodings, used an algorithm called
t-SNE to produce 2D embeddings from those reduced encodings,
performed K-means clustering on the embeddings, calculated a
mean image for each cluster by averaging the 15 nearest images
to each cluster’s centroid and used each mean image to initialize
activation maximization. Each cluster represented one facet of
the class in question, and the mean image calculated was an
exemplar of that facet. Activation maximization was used to
refine that exemplar into one more natural looking and more
easily interpretable by a human. This technique not only allows
humans to observe what features are important for identifying
each class but also allow a more detailed examination of how the
network uses those disparate features to make its final decision
and incurs relatively little overhead while doing so.
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Attention mechanism

The above three categories of DNN interpretation methods were
initially created for CNN-based DNNs. In the RNN-based DNNs,
attention mechanisms are frequently used to selectively empha-
size parts of the input during prediction, in addition to other
interpretation methods [41]. For example, for the document
classification problem in NLP, a hierarchical attention mecha-
nism on a model with gated recurrent units was developed to
focus on the important words in the important sentences [42].
Separate attention weights can be used for word and sentence
encoder modules, and the important words in the important
sentences can be visualized after normalizing the word weights
by sentence weights. Another example, attention mechanism
has been used in the analysis of clinical data as well [43]. In
this study, a deep learning model with stacked long short-term
memory (LSTM) was used which paid attention to the topics
generated from the clinical notes of patients. Using the attention
mechanism, this study found lists the most important topics
from the early clinical notes of the patient that were useful
for the model to predict the mortality of patients with high
efficiency.

Deep learning model interpretation
in bioinformatics
In this section, we survey DNN interpretation methods adopted
in genomics and epigenomics research and their resulted bio-
logical understanding. We majorly focus on popular bioinfor-
matics problems including DNA/RNA binding sequence motif
identification [14–16, 20, 44, 45], gene expression prediction [13,
20, 44–46], epigenetic problems such as chromatin accessibility,
interaction and DNA methylation predictions [17, 19, 47–50], as
well as various directions in non-coding RNA (ncRNA) studies
[31, 51, 52].

The adopted interpretation methods in these bioinformat-
ics studies can be categorized into five major classes: input
modification, input reconstruction, saliency maps, convolution
kernel analysis and attention mechanisms (Table 1, Figure 2).
Studies that we failed to categorize with the above are listed
in others (Table 1). Note that the convolution kernel analysis, a
direct analysis of the convolutional filters/kernels, has not been
described in Section 2, as it is a bioinformatics-specific approach
that is popular for sequential motif finding problems in bioinfor-
matics [24, 53, 54]. In this analysis, a motif-representing position
weight matrix (PWM) is often generated either by input sequence
alignments [14, 45] or directly calculating a frequency of input
subsequences [44, 48] that activates specific patches of a filter in
the first convolutional layer.

For the remaining four classes mentioned in Section 2, input
modification in bioinformatics is often known by the term in sil-
ico mutagenesis. In this method, parts of the input are perturbed
with a controlled amount of noise. The subsequent difference in
classification performance is used to calculate the importance of
that perturbed parts in the model training. Finding the most sig-
nificant area by exhaustive perturbation of the input segments
involves high computation cost. Hence, most of the time, the
sequence segment to be perturbed is determined beforehand
by either random selection or by selecting a reasonable win-
dow centering on a known single nucleotide polymorphism or
motif along the input sequence. Bioinformatics studies using
input reconstruction strategies follow a more straightforward
technique of reconstructing the input representation for a fixed
output label or class and comparing it with an input that had Ta
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Figure 2. DNN feature interpretation approaches used in genomics and epigenomics. (A) In input modification approach, the effect of changes in the input sequence

on the classification decision is measured and visualized as perturbation map. (B) Input reconstruction approach rebuilds an exemplar input that best represents

the training weights of the model, which is later compared with the original input. (C) The contribution of the input matrix segments is measured and visualized as

saliency maps using backpropagation. (D) In motif finding problems, the first convolution filter of the CNN model is visualized and compared with known motifs. (E)
The attention weight mechanism focuses on specific part of the input of an RNN and generates an attention map for that specific input segment on generation of

certain output segment.

been evident as a standard representative of that class in pre-
vious studies. Saliency map-based approaches are backpropa-
gation strategies. They track the activation of the filters in the
different convolutional layers to find the input contributions.
These approaches were proved better than input perturbation
in terms of computational cost, since often, they only required
a single backward pass to obtain the complete interpretation.
Bioinformatic studies using RNN models tended to apply atten-
tion mechanisms to find the input contribution on a hidden state
of the LSTM by using backpropagation strategies.

DNA/RNA sequence alterations and their impacts
on protein binding

DNA- and RNA-binding proteins show specific binding site pref-
erences when they bind to DNA/RNA sequences [53, 55, 56].
Their binding site preference patterns are usually called binding
motifs and can often be represented by PWMs [57–59]. Binding
motif identification is essential to understanding gene regula-
tion [60–62] and is thus regarded as a classical bioinformatics
problem that has been attempted by many algorithms [53, 63–
66]. However, due to the intrinsic properties of motifs such as
randomness and degeneracy, the problem remains challenging
[54, 60, 67–69]. Recent DNN-based methods have demonstrated
their superior power in motif identification (Table 1). Their inter-
pretation of motifs also represents early efforts towards DNN
interpretation in the bioinformatics domain.

DeepBind. DeepBind was among the first studies to perform
a large-scale genome-wide identification of sequence binding
specificity of proteins using DNN models [14]. Trained with

experimental data, these CNN-based models showed their
scalability and ability to characterize DNA- and RNA-binding
protein specificity. In order to visualize a discovered transcrip-
tion factor (TF) binding pattern, a convolution kernel analysis
approach was applied: all test sequences were fed through
the convolution and rectification stages of a DeepBind model,
sequences that contributed to activating a convolution kernel
in at least one position by a particular threshold were aligned.
From this alignment, subsequences of the average length of
a TF binding motif centered around the maximum activating
position were extracted to generate a PWM [70]. Since genetic
variants in TF binding sites (TFBSs) are likely to perturb gene
regulation [71], TF binding affinities were further utilized to
identify the functional effects of non-coding genetic variants.
For this task, an input modification technique called mutation
map was applied. The mutation map was calculated by first
obtaining the network’s prediction for a given input sequence,
and then, for each position, substituting the original nucleotide
found there with one of the alternative nucleotides. The
network’s prediction for the mutated sequence was compared
with its prediction for the original sequence to obtain the
sequence’s sensitivity to the mutation at a specific position.
The overall sensitivity score was obtained for substitution at
every position of the input sequence with all possible alternative
nucleotides. Thus, the mutation map showed the importance
of every position of the input sequence to the network’s
classification decision. Using these two interpretation strategies,
DeepBind generated several examples that were supported
with experimentally validated phenomena. Single nucleotide
variations from Human Gene Mutation Database [72] were used
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to show the experimental support. For instance, a TFBS of SP1
was detected in the low density lipoprotein receptor (LDLR) gene
promoter region using the convolution kernel analysis approach.
Then the mutation map created by the input modification
strategy showed how a single nucleotide mutation in that region
disrupted the SP1 binding site, which was experimentally shown
to lead to familial hypercholesterolemia [73].

DeMo. A DNN model named DeMo was proposed to predict
TFBSs as well [15]. The architecture of DeMo features multi-
ple convolutional layers and a highway multilayer perceptron.
DeMo models were trained with 108 ChIP-Seq TF data sets
on leukemia cell line K562 as DeepBind [14], where 101 bp
sequences centered around ChIP-Seq peaks were converted into
one-hot encoding serving as positive training samples. The neg-
ative training samples were generated by shuffling the sequence
nucleotides in the positive samples. An input reconstruction
technique inspired by Simonyan et al. [29] was adopted for visu-
alization and interpretation. The approach involved backprop-
agation through an already trained model with fixed weights
to find input sequences that maximally activated the output
for a chosen class. The sequences were then converted into a
PWM using Laplace smoothing. The motif PWMs found from
the reconstructed input sequences were compared with known
motif PWMs in the JASPAR database for 57 of the 108 TF test
data sets by the tool TOMTOM [69, 74]. The 36 out of the 57
JASPAR motifs could be identified by their method with a signif-
icant match (q-value<0.5). The affinities of their motifs on the
TFBS test sequences were also compared against JASPAR motifs,
showing that the motifs outscored the JASPAR motifs for 29 out
of the 57 TFs.

DeMo Dashboard. Later, DeMo was extended into a DNN-
based toolkit called Deep Motif Dashboard (DeMo Dashboard)
to predict TFBS and visualize TFBS motifs [16]. DeMo Dashboard
toolkit includes three different models based on CNN, RNN and
CNN-RNN hybrid, respectively. Toward TFBS motif visualiza-
tion, DeMo Dashboard implemented three techniques: saliency
map, temporal output scores and class-specific visualization. A
saliency map was generated for a test sequence by calculating
the derivative of the DNN score function with respect to the
input vector. Pointwise multiplication between the saliency map
and the one-hot encoding of the test sequence indicated the
importance of each nucleotide position to the classification deci-
sion. The temporal output score method was much akin to the
input modification technique. In this strategy, a test sequence
was fed to the RNN and the CNN-RNN models sequentially,
one nucleotide at a time. The prediction scores of the RNN
models were observed to find out the exact position in the input
sequence, where the model’s prediction was changed. Since the
CNN model processed the whole input sequence at once, this
strategy was applied only on the RNN and CNN-RNN models.
Unlike the above two techniques for which the visualization was
specific to an input test sequence, the class-specific visualiza-
tion method aimed to generalize the visualization to represent
the class, which was essentially an input reconstruction method
similar to that in previous work [15], where stochastic gradient
descent through an already-trained network was used to con-
struct an optimal sequence that maximized the prediction prob-
ability of a class, i.e. a TFBS. Using these three techniques, DeMo
Dashboard reported a good number of TFBS motifs that signifi-
cantly matched the JASPAR motifs. The saliency map approach
showed that in order to make a decision about a TFBS, the CNN
focused on small subsequences of the input sequence, while
RNN concentrated on the entire input sequence. The temporal
output scores showed that the positions that made the model

change their decision to positive were often in the JASPAR motif
area. Considering these two strategies, CNN-RNN worked the
best, since it was able to achieve the temporal information about
the TFBS while concentrating on the motif area. In the case of
the input reconstruction strategy, the CNN model did the best
at generating concise TF motif representations from a known TF
class label.

A deep belief network-based approach. Besides TFBS
identification, alternative splice site identification also reveals
sequence alterations can have critical effects on gene transcrip-
tional regulation. A deep belief network (DBN) was trained to
recognize non-canonical splice sites of gene exons [75]. The non-
canonical splice sites could be any combination of nucleotides
of varied lengths apart from the canonical splice sites such as
AG (acceptor) and GT (donor). The DNA sequence containing
canonical splice sites was used to train the model, which later
was tested on sequences containing non-canonical splice sites.
The DBN contained two weight matrices: W1, which mapped
the input features to the hidden layer and W2, which mapped
the hidden layer to the output layer. The columns of W1 were
regarded as feature vectors and the corresponding rows of W2

as labels. Each row of W2 had one element per output class,
measuring the confidence of the model’s prediction of that
class. Rows in which all elements had similar values represented
feature vectors that could not confidently discriminate between
classes. In contrast, rows with a larger difference in values
specified features that could more effectively discriminate
between classes. The feature vectors generated for different
sequence inputs were ranked based on their variance, which
was indicative of their discriminability of class labels. The five
vectors with the highest discrimination were extracted and
compared to determine which motifs contributed to effective
class discrimination. Along with the canonical splice sites, some
non-canonical splice sites were identified such as GCA or NAA
in intron boundaries or contiguous A’s in exon boundaries. This
technique had the same advantage of relatively low overhead
that was seen in several of the deconvolutional approaches of
the previous section.

It can be observed from these instances above, as was the
case with the broader field of machine learning, both decon-
volutional techniques extracting motifs from convolutional fil-
ters, and input reconstruction techniques creating an exemplar
sequence for a given class are popular in motif finding (Table 1).
Deconvolutional techniques are a natural fit for motif finding,
as the local receptive field of each filter of a convolutional
layer will naturally specialize in detecting short, local patterns,
such as motifs and sequence features. This makes the infor-
mation learned by the filters of convolutional layers a natural
source from which to extract motifs that the network learned
to recognize as significant. Input reconstruction techniques, on
the other hand, are a natural fit for associating motifs with
classes of biological interest, since it associates a class with its
exemplary input, as learned by the model, and motifs associated
with that class can be extracted from that exemplary input.
Unlike other fields in machine learning, however, input recon-
struction techniques appear to be comparatively more popular
(Table 1).

Epigenetic effects of DNA sequence alternations

Epigenomics is a field to study the locations and functions of
chemical modifications of genetic materials such as DNAs and
histone proteins in a cell. Deep learning has found success
in recent years in analyzing large-scale high-throughput
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epigenomic data. Studies in this direction mostly focused on
employing epigenomic and DNA sequence data to predict
epigenetic effects of DNA sequence alterations such as chro-
matin accessibility, DNA methylation and histone modifications
(Table 1).

DeepSea. A CNN model named DeepSEA was built to simul-
taneously predict multiple chromatin effects of DNA sequence
alterations, including TF binding, chromatin accessibility and
histone marker activities [20]. DeepSEA consists of three convo-
lutional layers, one fully connected layer and a sigmoid output
layer. To generate input data, DeepSea split the genome into 200
bp bins. Only the bins with at least one chromatin feature in
consideration were kept for further analysis, which covered a
total of 17% of the whole genome. A 1 kilobase (kb) long sequence
centered around each of the 200 bp bins was converted to one-
hot coding, forming the input matrix. The output was a binary
vector corresponding to the predictions for all 919 chromatin
features. Trained with ENCODE and Roadmap Epigenomics data,
DeepSEA was able to predict chromatin features such as TF
binding profiles, DNase I hypersensitive site (DHS) profiles and
histone mark profiles. Since specific DNA sequence features
are associated with protein activities that regulate chromatin
accessibility [66, 76], in order to measure the importance of
the DNA sequence features, in silico saturated mutagenesis, an
input perturbation approach was implemented. Similar to the
mutation map [14], one bp was mutated at a time resulting
in 3000 extra sequences for every 1 kb long sequence. Then
the log-likelihood of every mutated sequence with respect to
the original sequence was computed to get the most important
positions of that sequence. In this way, FOXA1, FOXA2 and GATA1
affinity were identified by C-to-T, T-to-C and A-to-G alterations,
respectively, in different cell types.

Basset. Another CNN-based DNN model named Basset was
created, only focusing on the prediction of chromatin accessi-
bility [44]. The full architecture of Basset contains three con-
volutional layers and two fully connected layers. The input of
Basset was a one-hot code represented 600 bp long sequence
centering on a DHS. The output was the predicted probability of
DNase I hypersensitivity. Basset was trained with DHS data from
164 human cell types. In order to identify sequence features,
convolution kernel analysis was performed [44]. In detail, for
each filter in the initial convolutional layer, sequences that
activated this filter were grouped into a subset, the nucleotide
frequencies corresponding to each position in sequences belong
to this subset were computed and were converted to a PWM. The
motif database CIS-BP [77] was then queried for binding proteins
that matched a given PWM using a threshold for a significant
similarity (false discovery rate ¡0.1). As a result, 45% of the
filter-corresponding PWMs were aligned significantly to protein
binding motifs in CIS-BP. Many identified PWMs were found
supported by previous experimental evidence, such as known
enrichment of higher GC content in TF-bound DHSs, CpG islands
and poly-AT stretches and nonconsecutive C’s and G’s. To further
pinpoint exact nucleotides that impact chromatin accessibility,
Basset also implemented the input modification approach, in
silico saturation mutagenesis [44], which generated a heatmap
showing influence each possible mutation at each nucleotide
position had on the predicted accessibility. Two scores, loss score
and gain score, were defined for each position corresponding
to the largest possible decrease and increase of accessibility,
respectively. If any position in a sequence motif was associated
with a high loss or gain score in case of mutation, then the
nucleotide at this position was potentially driving accessibility.
For example, performing in silico saturation mutagenesis in the

AP-1 motif-containing accessible region in embryonic stem cells
showed decreased accessibility.

DanQ. A hybrid (CNN+LSTM) DNN model named DanQ was
created to predict the chromatin effects of non-coding DNA
sequence alterations [45]. The convolutional layer could identify
local sequence features such as DNA motifs. Also, the bidirec-
tional LSTM layers were able to learn dependencies between
DNA motifs. DanQ utilized the same data set of DeepSEA for
training and testing [20]. Similar to the approach used by Deep-
Bind [14] and Basset [44], DanQ also used the convolution ker-
nel analysis technique to identify PWM-represented sequence
motifs. Applying a comparison significance cutoff E-value ¡ 0.01
with 320 known motifs, DanQ identified 166 of them in this
process. The 166 motifs were also clustered into 118 different
varieties to show their model’s ability to learn discriminative
functionality of the input genome sequences.

DeepCpG. A DNN model called DeepCpG was designed to
predict single-cell methylation states [78]. The model was a com-
bination of a CNN and a gated recurrent unit (GRU) network [26].
The convolution kernel analysis approach was implemented
for sequence feature visualization, in which the filters learned
by the first convolutional layer in the CNN component were
visualized as sequence logos to capture the learned motifs. The
importance of the 128 discovered motifs was assessed by mea-
suring their co-occurrence in sequence windows and their asso-
ciation with increased or decreased methylation states predicted
by the network. Principal component analysis and hierarchal
clustering were used to analyze co-occurrence, and motifs with
similar nucleotide compositions were found to co-occur more
frequently. In addition, motifs rich in CG nucleotides were found
to correlate positively with demethylation and negatively with
increased methylation. The 128 motifs were also compared with
known motifs, with 20 of the 128 motifs matching known motifs,
17 of which were motifs of TFs with known interactions in the
methylation process, and 13 of which were known to interact
with two enzymes prominently associated with methylation.
These results were encouraging in showing that the network
independently learned to recognize features with known bio-
logical relevance to the matter of interest helped establish a
framework for evaluating visualization criteria and the features
learned by a network.

DeepHistone. A DNN model called DeepHistone was designed
to accurately predict histone modification sites based on
sequences and DNase-Seq data [49]. The architecture of
DeepHistone contained three modules corresponding to a
DNA sequence, chromosome accessibility and a joint module,
respectively. Sequence and chromosome accessibility modules
are built on densely connected CNNs. The joint module then
combines the previous modules into a feedforward network
that produced the final prediction. Similar to DeepCpG [78],
DeepHistone implemented the convolution kernel analysis
technique to visualize the learned sequence motifs. The
sequence motifs were represented as PWMs generated from
the first convolutional layer of each CNN and compared with
the JASPAR motifs [69]. DeepHistone has shown its ability to
focus on biologically significant motifs and motifs that were
functional in the cell lines of interest. In different cancer
cell lines, several of the motifs recovered corresponded to
motifs known to be associated with those forms of cancer.
For example, in a lung cancer cell line, DeepHistone retrieved
E2F3, a TF that was known to be overexpressed in lung cancer
tissue. DeepHistone also retrieved PROX1 and NR2F6 in a
cervical cancer cell line, both prominently associated with
the progression and spread of cervical cancer. In addition to
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sequence feature identification, DeepHistone also implemented
the input modification technique to investigate the contribution
from DNA sequence and chromosome accessibility modules.
By modifying the original two-module input into one-module
input only architecture, DeepHistone compared the prediction
from the alternative DeepHistone (DNA-only) and DeepHistone
(DNase-only) models and revealed more contributions from
sequence than chromatin accessibility information.

Chromatin interactions

The interaction between different types of gene regulatory
regions such as enhancers and promoters is critical to fully
understanding gene transcriptional regulation [17–19, 71, 79–86].
Lately, although numerous enhancer regions in different human
cell lines have been predicted and experimentally validated [79,
83, 87–91], the driving factors behind the interaction between
an enhancer and a promoter are still debatable [79, 83, 87–
92]. Researchers working in this area have already started
introducing deep learning models to solve this problem (Table 1).
Some of the studies also worked on finding important motif
features learned by their models. Studies using convolutional
layers tend to analyze the convolution kernels/filters after
training converges. Some designed their kernels according to a
matrix representation of the known TF motifs to see if the input
sequence activates the neuron using that filter. Others converted
the kernels to a similar matrix representation of the known TF
motifs and then compared them to see what important motifs
they models were able to learn. Another common trend is the
traditional input perturbation technique. Here the sequence
inputs are scanned for a known TF motif, and a certain portion
of the motif occurring region is mutated with random noise to
observe the change in prediction scores.

SPEID. SPEID is among the first DNN models for enhancer–
promoter interaction (EPI) prediction using only known enhancer
and promoter sequences [17]. The SPEID model included mainly
a pair of modules corresponding to enhancers and promoters,
each consisting of convolution, activation, max-pool layers,
an LSTM and a fully connected layer. The input modification
method was implemented to study how changes in input
sequences affect the predictions for those sequences. In this
procedure, annotated human TF binding motifs were used to
scan each enhancer and promoter sequence. The identified
occurrences of a TF binding motif in the sequences were
then replaced with random noises and the resulted prediction
changes were calculated. Averaged prediction accuracy changes
were then defined as the importance scores of the corresponding
TFs. Correlations of the importance scores of the TFs were shown
across six different cell lines. Some of the identified important
TFs were also reported by previous studies or supported by
experimental evidence to be involved in modulating chromatin
loop formation and gene regulation processes. In addition to
the input modification approach, convolution kernel analysis
was also implemented in SPEID, in which the filters of the
convolutional layer were converted into PWMs and then
compared with the annotated TF motifs. This procedure was
performed for the enhancer and promoter modules separately.
TFs that matched with at least three filters with sufficient
statistical significance were extracted and compared with the
TFs found by TargetFinder [18].

DeepTACT. A DNN model named DeepTACT was created to
predict 3D chromatin contacts [48]. DeepTACT was trained by
chromatin accessibility data measured with DNase-Seq along
with enhancer and promoter sequence data. Two separate

DeepTACT models were designed with the same architecture
but two different inputs: promoter–promoter and promoter–
enhancer interaction data. DeepTACT consisted of three mod-
ules: a sequence module that takes promoter and/or enhancer
sequences as inputs and contains two separate convolutional
layers; an openness module that takes the DNase-Seq data
corresponding to the input promoter and promoter/enhancer
sequences and also contains two separate convolutional layers;
finally, an integration module that merges the output of the
two modules with an RNN containing a bidirectional LSTM and
an attention layer. Similar to SPEID [17], DeepTACT applied
the convolution kernel technique to explain the discovered
sequence motifs. The filters of the four convolutional layers
in the sequence and openness modules of their model were
first converted into PWMs. The PWMs were then compared
with annotated TF motif PWMs. A list of closely related TFs
was captured by the two ensemble models that were built on
promoter–promoter and promoter–enhancer interaction data.

A predictor of chromatin state representative sequences. A
DNN model was built with one convolution filter (forward model)
to predict a 1D chromatin state sequence representation of the
chromatin structure in Drosophila [50]. This model consisted
of one convolution layer and a fully connected neural network
and was trained to predict a w × w Hi-C contact matrix using
a genomic sequence of length 3w and its overlapping peaks
with M chromatin factors. So, the input was a M × 3w matrix
calculated for every chromatin factor and site pair, ranging from
0 to 1, based on the fraction of the site that contained the
corresponding factor peak. To create the w × w output matrix,
Hi-C data of 10 kb resolution in Drosophila was used. The w × w
represented mapping between m = w(w + 1)/2 unique sites in
its upper diagonal. The only convolution layer with filter width 1
helped the model generate a 1D chromatin state sequence rep-
resentation from the 2D chromatin factor representation matrix
of size M × 3w during the training of the forward model. After
training the model, an input reconstruction strategy was used to
find the 1D chromatin state sequence that was responsible for
the chromatin contact of every pair of sites among the m site
mappings. When focusing on a neuron representing the contact
between a pair of sites among the m site pairs, the gradient of the
chromatin contact values of those site pairs was calculated with
respect to the weights learned by the model after training. After
a full pass of backpropagation, a 1D chromatin state sequence of
length w was reconstructed. This state sequence would be highly
similar to the 1D chromatin state sequence generated during the
training of the forward model, suggesting that given only the
chromatin structure, it was possible to generate a likely chro-
matin state representation that produced it. The reconstructed
1D sequence was a fairly efficient representation of the 2D
contact map which provided insights on the difference between
the structural and sequential aspects of a chromatin model.

Basenji. A CNN model named Basenji was trained to predict
cell-specific epigenetic and transcriptional profiles such as chro-
matin accessibility [47]. The model consisted of a CNN with max-
pooling layers, dilated convolution layers and a fully connected
neural network. Dilated convolution layers were multiple layers
of convolution filters with gaps where the gap size increased by
a factor of two in each layer. The model could be trained with
any input DNA sequence up to 131 kb to predict a target vector.
Each entry of the target vector represented different epigenetic
signals such as CAGE, DNase-Seq, ChIP-Seq and so on, across
every 128 bp window of the input sequence. In order to interpret
the contribution of the input region on the prediction, a saliency
map was calculated with the dot product of the 128 bp bin
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representation found after the max-pooling step and the gradi-
ent of the summed predicted values across the input sequence
with respect to the bin representations. For every saliency map,
a P-value was calculated by generating saliency maps with shuf-
fled input sequences. The positive saliency score in a region
represented enhancing influence of the distal regulatory regions,
while the negative score represented silencing influence. The
relative saliency scores on putative enhancer, promoter and
CCCTC-binding factor (CTCF) binding regions against shuffled
backgrounds revealed a significant difference.

EP2vec. Apart from using feedforward networks or RNNs
directly to learn the sequence features, NLP techniques were
applied in several works to extract features from the input
sequences to train a machine learning model. A model named
EP2vec was developed to predict EPIs [19]. EP2vec used paragraph
vector [93] that originated from word2vec [94] to extract feature
vectors from the enhancer and promoter sequences. Here para-
graph vector was used to generate a d-dimensional sentence
vector for each sequence. EP2vec was trained with the same
enhancer and promoter data set as SPEID. Once the training
was converged, a sentence vector and word vector embeddings
were obtained for each sequence. The learned sequence vectors
for each enhancer and promoter sequence pair were further
concatenated to train a gradient boosted regression trees model
to predict the interaction between that enhancer and promoter.
Using the extracted sentence vector and word vectors, EP2vec
also determined the importance of each k-mer word within its
sequence, based on the similarity of the corresponding sentence
vector and word vectors. A similarity score was calculated for
every k-mer in a sequence based on the multiplication between
the k-mer-associated word vector and the sequence-associated
sentence vector. The importance score of each k-mer was then
determined by normalization based on the similarity scores of
all the k-mers generated from that sequence. The two sets of
most important word vectors (for enhancers and promoters)
were used to compare with the known motifs. In this way,
known motifs that were highly represented in a sequence were
identified. EP2vec discovered cell-specific TF motifs involved in
a diverse developmental role in the human body.

Despite being able to find a large number of experimentally
supported regulatory TF motifs in different cell lines, the fea-
ture interpretation part of the above-mentioned studies is con-
fined to the motif finding in enhancer and promoter sequences,
respectively. Therefore, the interpretation is not directly related
to the physical interactions between the enhancers and promot-
ers. Certain pairs of interacting TFs are shown to bind enhancers
and promoters, respectively, which contribute to the interaction
of enhancers and promoters [95–97]. Therefore, Identifications
of features that are directly relevant to EPIs will benefit further
modeling EPIs.

Gene expression prediction

Gene expression in multicellular organisms is normally mea-
sured by the amount of messenger RNA (mRNA) transcripts
generated in the cell at a given time. The underlying mecha-
nism of gene expression regulation is quite complex, involving
various inter-connected transcriptional networks formed by TFs,
RNA polymerase II, cis- and trans-regulatory regions, different
histone modification events and so on [68, 83, 98–100]. Large
amount of data such as TF ChIP-Seq, histone modification ChIP-
Seq, Hi-C and RNA-seq have enabled exploiting DNN models to
study the regulatory mechanisms underlying gene expression.
The DNN feature interpretation methods in these studies, as

detailed below, are diverse, covering the convolution kernel anal-
ysis, attention mechanisms, input reconstruction and others
(Table 1).

A predictor of gene functional elements. One of the very early
attempts to utilize DNNs was to understand gene expression
[51]. In this study, a CNN model was created to predict a gene’s
transcriptional expression level labeled as either an ‘induced’ or
‘repressed’ state. The input data was formatted as an 8 × 200
input matrix corresponding to the TF ChIP-Seq binding profiles
of four TFs over a 20 kb long DNA sequence surrounding gene
transcription start sites (TSSs) in two different types of cell lines.
The model architecture contained three convolutional layers, a
fully connected layer and a softmax layer. Two deconvolutional
methods, deconvnet and backpropagation, were implemented
for model interpretation [25, 29]. To illustrate the biological dis-
covery, the authors averaged the input representations for the
best 10 examples. The input representations suggested an inter-
play between TFs in the relevant cells. For example, the induced
genes showed a joint enrichment for a pair of TFs, GATA1 and
TAL1, in one type of cells while a joint enrichment for another
pair, GATA2 and TAL1, in other types of cells. Also, the alignment
of GATA1 and GATA2 signals in one type of cells at the proxim-
ity of the TSS was observed in their interpretation, suggesting
supportive action of both TFs in gene inducement.

DeepChrome. Another DNN model called DeepChrome was
also created to predict gene expression [46]. DeepChrome
focused on using histone modification data to predict gene
expression in different human cell types. DeepChrome was
trained with gene expression levels and five different histone
modification signals in 56 different cell types [101]. To visualize
the combinatorial histone interactions and their effect on
the prediction, the authors implemented a four-step input
reconstruction technique to construct an optimal input cor-
responding to a classification label. First, a random input was
initialized. Then the input vector was updated by the gradient
of the loss function with respect to the current input so that
the loss function was minimized for the desired label. Each
iteration performed stochastic gradient descent on the gradient
calculated using the same learning rate used to train the model.
After the optimal input and the label of interest were trained,
the third step was to clamp the value of each bin with 0 and then
normalize it to keep within an interval [0, 1]. Finally, a value ¿ 0.25
was used to identify active bins. The frequency of active bins for
each histone mark was counted, and those histone marks with
significantly above average counts were considered to have a
significant impact on achieving the gene expression level indi-
cated by the output label of interest. The result was a heatmap
that showed which histone modification signals were important
to achieving a particular gene expression level, independent
of the specific gene in question. This input reconstruction
method enabled multiple discoveries supported by various
studies before. For instance, the correlation between H3K4me3
and H3K36me3 histone marks and H3K4me3 and H3K4me1
histone marks were observed in their generated heatmaps. Also,
previously reported coexistence of H3K9me3 and H3K27me3
repressor marks was observed around repressed genes.

AttentiveChrom. Using the same training data set as
DeepChrome [46], another model called AttentiveChrom was
developed [31]. AttentiveChrom contained a hierarchy of LSTMs
to model and analyze the complex dependencies among
chromatin factors that regulated gene expression. In this study,
the H3K27me3, H3K9me3 markers were considered as the
repressed gene markers, H3K4me1 was defined as the enhancer
marker, H3K4me3 was defined as the promoter marker, and
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Table 2. Examples of the features identified by the DNN studies on genomics and epigenomics

Area Studies Feature interpretation results

Motif finding Lee and Yoon,
2015

Along with the canonical splice sites (GT and AG), some non-canonical splice sites were
identified such as, GCA or NAA in intron boundaries or contiguous A’s in exon boundaries.

Alipanahi et al.,
2015

Several examples were generated that were supported by experiments. For instance, a single
nucleotide mutation that disrupted an SP1 binding site in the LDLR promoter leads to familial
hypercholesterolemia.

Lanchantin et al.,
2016

The 36 out of 57 JASPAR motifs were identified with a significant match (q-value ¡ 0.5), 29 of
which are better than the corresponding JASPAR motifs.

Lanchantin et al.,
2017

A good number of motifs were reported that significantly matched the JASPAR motifs.

Epigenomics Zhou et al., 2015 FOXA1, FOXA2 and GATA1 affinity were identified by C-to-T, T-to-C and A-to-G alterations,
respectively, in different cell types.

Kelley et al., 2016 The 45% of the filters aligned significantly to protein binding motifs in CIS-BP. Some findings
were supported by previous experimental evidence, such as known enrichment of higher GC
content in TF-bound DHSs, CpG islands and poly-AT stretches and nonconsecutive C’s and G’s.

Quang et al., 2016 The 166 of the 320 known motifs could be identified by the interpretation method. The model
was shown to learn discriminative functionality of the input genome sequences.

Angermueller et
al., 2017

Motifs with similar nucleotide compositions were found to co-occur more frequently. In
addition, motifs rich in CG nucleotides were found to correlate positively with demethylation
and negatively with increased methylation. The 20 of the 128 motifs matched known motifs,
17 of which were transcription factors with known interactions in the methylation process,
and 13 of which were known to interact with two enzymes prominently associated with
methylation.

Yin et al., 2019 E2F3 was retrieved in a lung cancer cell line, and PROX1 and NR2F6 were retrieved in a cervical
cancer cell line.

Chromatin
interaction
prediction

Singh et al., 2019 The importance scores of the TFs were fairly correlated across six different cell lines. Some of
these important TFs (CTCF, SRF, JUND, SPR1, SP1, EBF1, JUN, BCL11A, ZIC4, E2F3, FOXK1, etc.)
were known to be involved in modulating chromatin loop formation and gene regulation
processes.

Li et al., 2019 A list of closely related TFs was reported.
Farre et al., 2018 The reconstructed input sequences were fairly correlated (0.73) with the original input

sequences in their test data set.
Kelley et al., 2018 Promoters were found to have extreme scores at both high and low ends, which were far lesser

for enhancers showing lower repressive contribution of enhancers that promoters on gene
expression.

Zeng et al., 2018 Known motifs that are highly represented in a sequence could be identified. Cell-specific TF
motifs could also be retrieved that are reported to be involved in diverse developmental roles
in the human body.

Gene
expression
prediction

Denas et al., 2013 The interpretation method suggested an interplay between GATA1 and GATA2 in the G1E cells.
The induced genes showed a joint enrichment for both GATA1 and TAL1 in the ER4 cells and
analogous signal alignment between GATA2 and TAL1 in the G1E cells. Also, the alignment of
GATA1 and GATA2 signals in ER4 cells at the proximity of the TSS observed in their
interpretation suggesting supportive action of both GATA proteins in gene inducement in ER4
cells.

Singh et al., 2016 Correlation between H3K4me3 and H3K36me3 histone marks and H3K4me3 and H3K4me1
histone marks were observed in their generated heatmaps. Also, previously reported
coexistence of H3K9me3 and H3K27me3 repressor marks were observed around repressed
genes.

Singh et al., 2017 A high correlation between the attention weights for a new histone signal data and the
preprocessed separate histone mark profiles were reported for the five different histone
signals used in their model.

Sekhon et al., 2018 H3K4me1 and H3K4me3 received relatively high weights in upregulated genes and relatively low
weights in downregulated genes, while H3K27me3 received relatively low weight in
upregulated genes and relatively high weight in downregulated genes, results which had been
experimentally demonstrated for these particular cell lines.

Zeng et al., 2019 NANOG, FOXQ1, ETS1, MYC, etc. were reported as the top TFs, which tend to involve in
embryonic development, cell cycle regulation, tissue-specific gene expression, cell signaling,
apoptosis, tumorigenesis, etc.

ncRNA
identification
and regulation

Park et al, 2017 Visualization of the attention weights heatmap along the positive and negative human
pre-miRNA sequence data showed a clear difference in signal along the 10–50% sequence
positions where a mature miRNA is located within the pre-miRNA sequences.

Manzanarez-
Ozuna et al.,
2018

The 23 miRNAs were generated which played the most important roles in the predictive
decisions of the DNN. Five of these miRNAs play roles in breast cancer, which together
accumulated 40% of the relative importance assigned by their predictive model. Among the
rest, six of miRNAs were involved in other cancer types which contributed 23% of the relative
importance of their model.

Hill et al., 2018 Only 0.227% of the point mutations were able to change the prediction for true mRNAs from
coding to noncoding. Among these classification-flipping mutations, 67.1% fell within coding
regions and 42.6% of these coding region mutations created an early stop codon
(UGA/UAG/UAA). The most significant pair of mutations occurred at a CAC codon, and
together created a premature UAA stop codon, which the classification from coding to
non-coding. For the other transcript, pairs of positions, not in the same codon, changed the
synergy score more when mutated together than when mutated separately.
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H3K36me3 was the gene body structure marker. Inspired by Yang
et al. [42], AttentiveChrom jointly trained two levels of attention,
one attending to the important chromatin markers and the other
attending to the important positions within chromatin markers.
The attention weights trained by these attention layers served
as a form of visualization giving insight into specific important
positions considered by the model when making classification
decisions. A high correlation between the attention weights was
reported for a new histone signal data and the preprocessed
separate histone mark profiles for five different histone signals
used in the model. For the ‘ON’ genes, high attention weights
were found around the promoter, enhancer and gene structure
markers, while they were low or average around the repress
markers. The opposite was observed for the ‘OFF’ genes. Similar
results were also shown for different cell types separately using
cell-specific data.

DeepDiff. A model called DeepDiff was built to predict dif-
ferential gene expression in different cell lines from histone
modification signals [102]. Similar to the attention mechanism
technique [31], DeepDiff model was built on a hierarchy of LSTMs
with two jointly trained levels of attention weights and trained
on the same data sets. For a specific gene in a specific cell line,
a 5 × 200 matrix was generated representing the five histone
marker signals across the 20 kb long region around the gene
TSS. Two such matrices created in this way corresponding to two
different cell types served as the input of DeepDiff. Alternative
inputs were defined as difference and concatenated histone
marker signals in the given two cell types. Like DeepChrome
[46], the attention weights learned by the network were used as
a means of visualizing the features learned by the algorithm.
HM level and bin level attention mechanisms were added to
represent the contribution of every histone modification pattern
and every bin of every histone modification pattern in prediction
results, respectively. In order to interpret the differential gene
expression using the attention weights, one of the best perform-
ing samples was selected from the test set. The learned attention
weights were then recorded for the five histone modification
markers corresponding to the predicted top five upregulated/-
downregulated genes in the cancer cells. Among the five his-
tone markers, H3K4me1 and H3K4me3 received relatively high
weights in the upregulated genes and relatively low weights in
the downregulated genes. In contrast, H3K27me3 received rela-
tively low weight in the upregulated genes and relatively high
weight in the downregulated genes, which were experimentally
demonstrated in particular cell lines.

DeepExpression. DeepExpression [13] is another DNN model
to predict gene expression using the promoter sequence fea-
tures and distal EPI features. The model contains two separate
modules: one for extracting features from DNA sequences in
promoter regions and the other for extracting features from EPI
signals. To interpret the underlying feature patterns, DeepEx-
pression used a convolution kernel analysis similar to the inter-
pretation process adopted by SPEID [17] and DeepTACT [48]. The
filters of the first convolutional layer in the proximal promoter
module that activated a neuron were converted to motifs, and
these motifs were then compared with known motifs with a low
E-value cutoff. Identified TFs are shown involved in embryonic
development, cell cycle regulation, tissue-specific gene expres-
sion, cell signaling, apoptosis, tumorigenesis and so on.

ncRNA identification and regulation

ncRNAs are RNA transcripts that are not translated into proteins.
The majority of transcripts produced by the human genome are

ncRNAs in contrast to only 12∼% transcripts as coding RNAs.
Despite the abundance of ncRNAs in the human genome, their
localization, function and regulation are largely unknown. For
instance, for one of the most widely studied types of ncRNAs,
microRNAs (miRNAs), we do not yet have a complete picture of
their biogenesis, interactions and regulatory mechanisms [103].
Recently, DNN models have been applied to computational stud-
ies of ncRNAs. Most of these studies focused on model prediction
accuracy. A few of them attempted model interpretation by
investigating the importance of extracted features (Table 1).

DeepMiRGene. An RNN model was developed to identify
precursor miRNAs (pre-miRNAs) [103]. Both nucleotide and sec-
ondary structure information of RNA sequences were integrated
as the input of the model. To determine which part of the
sequential input was important for the classification decision,
the authors implemented an RNN-based CAM approach. An
attention mechanism was applied in the LSTM part of their
model to learn long-term dependencies of the primary and
secondary structure of an RNA molecule. An activation map was
formed by performing global average pooling on the attention
weighted output to obtain a weight vector. The activation map
for a given input sequence was then generated based on the
pointwise multiplication of the attention weighted output and
the weight vector. Although all pre-miRNA motifs or sequence
patterns learned by the model were not reported in this study,
the presented CAM technique can be useful for visualizing the
most significant sequence features in different studies.

A predictor of miRNA regulation. Using the expression values
of 179 miRNAs and mRNA-Smad7 in 1074 samples of patients
with breast cancer, a DNN model was designed to predict mRNA-
Smad7 expression regulation by miRNAs [52]. A genetic algo-
rithm was used to find the structure of the DNN model with
the best predictive ability, along with the best input data set for
the model. Forty-four miRNAs were selected to train their best
DNN model. The relative importance of each of these miRNAs
on the expression of mRNA-Smad7 was evaluated using the
Olden algorithm [28, 104]. The Olden algorithm is a classical
feature interpretation technique that focuses on the connection
weights and direction of the neural network to evaluate feature
importance. A greater weight with a positive direction represents
greater relative importance. Twenty-three miRNAs were iden-
tified as the most important in the predictive decisions of the
DNN, among which five have experimentally validated roles in
breast cancer. Six miRNAs were shown to be involved in other
cancer types, which contributed 23% of the relative importance
of their model.

mRNN. A DNN model called mRNN was developed to under-
stand the coding potential of RNAs. mRNN was a GRU-based RNN
[105]. Each RNA sequence was converted into one-hot encoding
serving as the input matrix. The model output was generated as
a score representing the coding potential of the input sequence.
Full-length human transcript sequences for mRNA and long
ncRNAs (lncRNAs) from GENCODE were used to train mRNN
[106]. Four input modification techniques were implemented to
interpret the model. First, a region from the 5’ UTR, CDS and
3’ UTR regions of an mRNA was randomly selected and shuf-
fled, the analysis of which suggested higher coding potential
of the CDS than the UTR regions. Second, a single nucleotide
was mutated (point mutation analysis) at every position of an
mRNA transcript. Only 0.227% of the point mutations were able
to change the prediction for mRNAs from coding to noncoding.
Among these classification-flipping mutations, 67.1% fell within
coding regions, and 42.6% of these coding region mutations cre-
ated an early stop codon. The third input modification technique
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involved mutating a pair of nucleotides. In order to remove the
effect of the point mutation from the pair-wise mutation, a syn-
ergy score was defined to exclude the change in the prediction
score resulted from a single nucleotide mutation. Finally, the
sharpest changes in prediction score (spikes) were identified
when truncating an input sequence in different places. In a
test set with 500 mRNAs and 500 lncRNAs, the most significant
spikes were identified in 82% of the mRNAs and only 9% of
lncRNAs. The distribution of the significant spike positions for
mRNAs peaked within the CDS, shortly after the start codon.
Within a 50 bp window around the center of the spikes, 11
significantly enriched codons were identified. Mutating these
codons decreased the spike heights 97.4% of the time.

Although the recent bioinformatic studies regarding ncRNAs
tend to apply deep learning techniques with an increasing rate,
only a handful of them considered probing their DNNs to explore
interpretation possibilities. There is currently a lack of DNN
studies on ncRNA-disease association or ncRNA classification
that attempted to identify feature interpretations. Two studies
we summarized above adopted the old technique involving neu-
ron weights and the computation-intensive input perturbation
techniques. One of the future directions in the field of ncRNA
research is thus to exploit state-of-the-art feature interpretation
techniques.

Discussion
During the past several years, following the triumph of DNNs
in various research areas of computer vision and NLP dealing
with big data, numerous studies have applied them to solve
problems in genomics and epigenomics where a large number
of experimental data sets are publicly available. Although the
majority of these studies focus only on the prediction perfor-
mance of DNNs, a number of recent studies attempted model
interpretations by identifying the underlying features that were
vital to the predictions (Table 2). Since bioinformatics covers a
wide spectrum of research topics, we confined this study to five
recent topics where DNNs were most adopted and illustrated
the recent development and application of DNN interpretation
techniques in genomics and epigenomics.

The surveyed DNN interpretation methods mostly focused
on evaluating the importance of individual features rather than
interacted feature groups (Table 2). For example, to evaluate a
sequence variant’s impact on function, studies often aim to
mutate one or two nucleotides and observe their influence on
the predictions. However, most bioinformatics problems involve
interacting entities such as genes in the same pathways, pro-
teins involved in the same complex and different types of RNA
species regulating each other. Incorporating feature interactions
into the model interpretation is necessary for realistic problem
understanding. Recent DNN development toward this direction
starts to consider the relationship among different features,
including both linear and nonlinear relationships [107–109]. In
the meantime, although many methods have been developed,
there is not a unified way to evaluate the methods. When
it comes to the omics domain, methods that achieve good
explanation and interpretability would require the evaluations
specific to particular problems.

If we follow our definitions of explanation and interpretation,
i.e. interpretation is the first step toward explanation, then the
learned features from the surveyed DNN models thus have lim-
ited capability of explaining the model’s decision-making. Never-
theless, to a certain degree, a lot of current DNN models reviewed
here focusing on feature identification are able to interpret how

and why the prediction is made using these features in a given
scenario. Even so, the interpretation of DNN models towards
understanding the biological mechanism is still far from reach.
Most existing DNN-based methods heavily rely on traditional
databases and literature searches for biological interpretation.
For example, DeepSEA was able to utilize trained DNNs to predict
sequence alterations’ effects on protein binding such as TF
binding, histone marker activities and chromatin accessibility.
However, when these effects were further considered to predict
their functional consequence, resources outside the models such
as mutation and genome-wide association databases would be
required for additional prediction and interpretation. The pre-
dicted functional consequences of a specific nucleotide would
need to be subsequently validated based on a literature search.
Therefore, the challenge remains for advanced DNN develop-
ment such that they are capable of incorporating existing knowl-
edge in various types of formats, streamlining their prediction
procedure and directly providing biological interpretations. Such
development will provide essential insight into bioinformatics
research.

Key Points
• DNNs have recently gained popularity in various types

of genomics and epigenomics studies and achieved
high accuracy in predictions and classifications.

• DNN model interpretation is important in bioinfor-
matics to gain insights into phenotypes and their
underlying biological mechanisms.

• DNN model interpretation in bioinformatics studies
can be classified into five major classes.

• The interpretation of DNN models towards under-
standing the biological mechanism is still far from
reach.

Authors’ contributions

X.L. and H.H. conceived the idea. A.T., C.B., X.L. and H.H.
analyzed the studies and wrote this manuscript. All authors
read and approved the final manuscript.

Conflict of Interest

There is no conflict of interest declared.

Funding

This work has been supported by the National Science Foun-
dation [grants 2015838 and 1661414] and the National Insti-
tute of Health [grant R15HGM123407].

References
1. Garcia-Garcia A, Orts-Escolano S, Oprea S, et al. A review on

deep learning techniques applied to semantic segmenta-
tion. arXiv preprint, arXiv:1704.06857, 2017.

2. Xiao Xiang Zhu, Devis Tuia, Lichao Mou, et al. Deep learning
in remote sensing: a comprehensive review and list of
resources. IEEE Geosci Remote Sens Mag 2017; 5(4): 8–36.

3. Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Deep learn-
ing. Nature 2015; 521(7553):436–44.



14 Talukder et al.

4. Voulodimos A, Doulamis N, Doulamis A, et al. Deep learning
for computer vision: a brief review. Comput Intell Neurosci
2018;2018:1–13.

5. Young T, Hazarika D, Poria S, et al. Recent trends in deep
learning based natural language processing. IEEE Comput
Intell Mag 2018;13(3):55–75.

6. Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. Ima-
geNet classification with deep convolutional neural net-
works. Commun ACM 2017;60(6):84–90.

7. Li K, Ma W, Sajid U, et al. Object detection with convolu-
tional neural networks. CoRR,abs/1912.01844, 2019.

8. Wang J, Zhang Z, Xie C, et al. Unsupervised learning
of object semantic parts from internal states of CNNs
by population encoding. arXiv preprint, arXiv:1511.06855,
2015.

9. Zhou B, Khosla A, Lapedriza A, et al. Object detectors
emerge in deep scene cnns. In: International Conference on
Learning Representations, San Diego, CA, USA, 2015.

10. Guangle Yao, Tao Lei, Jiandan Zhong. A review of
convolutional-neural-network-based action recognition.
Pattern Recognit Lett 2019;118:14–22.

11. Tomas Mikolov, Geoffrey Zweig. Context dependent recur-
rent neural network language model. In: 2012 IEEE Spoken
Language Technology Workshop (SLT), Miami, FL, USA, IEEE,
2012.

12. Zhang X, Zhao J, LeCun Y. Character-level convolutional
networks for text classification. In: Advances in Neural Infor-
mation Processing Systems, 2015;649–57.

13. Wanwen Zeng, Yong Wang, Rui Jiang. Integrating distal
and proximal information to predict gene expression via
a densely connected convolutional neural network. Bioin-
formatics 2019;36:496–503.

14. Babak Alipanahi, Andrew Delong, Matthew T Weirauch,
Brendan J Frey. Predicting the sequence specificities of
DNA- and RNA-binding proteins by deep learning. Nat
Biotechnol 2015;33(8):831–8.

15. Lanchantin J, Singh R, Lin Z, et al. Deep motif: visu-
alizing genomic sequence classifications. arXiv preprint,
arXiv:1605.01133, 2016.

16. Lanchantin J, Singh R, Wang B, et al. Deep motif dashboard:
visualizing and understanding genomic sequences using
deep neural networks. In: Pacific Symposium on Biocomputing,
Kohala Coast, Hawaii, USA. World Scientific, 2017, 254–65.

17. Shashank Singh, Yang Yang, Barnabás Póczos, Jian
Ma. Predicting enhancer–promoter interaction from
genomic sequence with deep neural networks. Quant Biol
2019;7(2):122–37.

18. Sean Whalen, Rebecca M Truty, Katherine S Pollard.
Enhancer–promoter interactions are encoded by com-
plex genomic signatures on looping chromatin. Nat Genet
2016;48(5):488–96.

19. Wanwen Zeng, Mengmeng Wu, Rui Jiang. Prediction of
enhancer–promoter interactions via natural language pro-
cessing. BMC Genomics 2018;19(S2):84.

20. Jian Zhou, Olga G Troyanskaya. Predicting effects of non-
coding variants with deep learning-based sequence model.
Nat Methods 2015;12(10):931–4.

21. Doshi-Velez F, Kim B. Towards a rigorous science
of interpretable machine learning. arXiv preprint,
arXiv:1702.08608, 2017.

22. Leilani H, Gilpin DB, Yuan BZ, et al. Explaining explanations:
an overview of interpretability of machine learning. In: 2018
IEEE 5th International Conference on Data Science and Advanced
Analytics (DSAA), Turin, Italy, IEEE, 2018, 80–9.

23. Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller.
Methods for interpreting and understanding deep neural
networks. Digit Signal Process 2018;73:1–15.

24. Gökcen Eraslan, žiga Avsec, Julien Gagneur, Fabian J. Theis.
Deep learning: new computational modelling techniques
for genomics. Nat Rev Genet 2019;20(7):389–403.

25. Zeiler MD, Fergus R. Visualizing and understanding con-
volutional networks. In: European Conference on Computer
Vision, Zurich, Switzerland, Springer, 2014, 818–33.

26. Grün F, Rupprecht C, Navab N, et al. A taxonomy and library
for visualizing learned features in convolutional neural
networks. arXiv preprint arXiv:1606.0775, 2016.

27. Nguyen A, Yosinski J, Clune J. Multifaceted feature visual-
ization: uncovering the different types of features learned
by each neuron in deep neural networks. arXiv preprint,
arXiv:1602.03616, 2016.

28. Julian D Olden, Donald A Jackson. Illuminating the ‘black
box’: a randomization approach for understanding vari-
able contributions in artificial neural networks. Ecol Model
2002;154(1-2):135–50.

29. Simonyan K, Vedaldi A, Zisserman A. Deep inside convo-
lutional networks: visualising image classification models
and saliency maps. The 2nd International Conference on
Learning Representations, Banff, AB, Canada, 2014.

30. Yosinski J, Clune J, Nguyen A, et al. Understanding neu-
ral networks through deep visualization. In: Deep Learning
Workshop, International Conference on Machine Learning (ICML),
Lille Grande Palais, France 2015.

31. Singh R, Lanchantin J, Sekhon A, et al. Attend and pre-
dict: understanding gene regulation by selective attention
on chromatin. In: Advances in Neural Information Processing
Systems (NIPS), Long Beach, CA, 2017;6785–95.

32. Zhang Q-s, Zhu S-C. Visual interpretability for deep learn-
ing: a survey. Front Inf Technol Electron Eng 2018;19(1):27–39.

33. Aravindh Mahendran, Andrea Vedaldi. Visualizing deep
convolutional neural networks using natural pre-images.
Int J Comput Vis 2016;120(3):233–55.

34. Springenberg JT, Dosovitskiy A, Brox T, et al. Striving for
simplicity: the all convolutional net. In: International Confer-
ence on Learning Representations (workshop track), San Diego,
CA, USA, 2015.

35. Dosovitskiy A, Brox T. Inverting visual representations with
convolutional networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA. IEEE Computer Society, 2016, 4829–37.

36. Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recur-
rent models of visual attention. In: Advances in Neural Infor-
mation Processing Systems, Montreal, Quebec,Canada, 2014,
2204–2212.

37. Zintgraf LM, Cohen TS, Adel T, et al. Visualizing deep neu-
ral network decisions: prediction difference analysis. In:
International Conference on Learning Representations, Toulon,
France, 2017.

38. Grégoire Montavon, Sebastian Lapuschkin, Alexander
Binder, Wojciech Samek, Klaus-Robert Müller. Explaining
nonlinear classification decisions with deep Taylor
decomposition. Pattern Recognit 2017;65:211–22.

39. Zhou B, Khosla A, Lapedriza A, et al. Learning deep features
for discriminative localization. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las
Vegas, NV, USA, 2016, 2921–9.

40. Long JL, Zhang N, Darrell T. Do convnets learn correspon-
dence? In: Advances in Neural Information Processing Systems,
Montreal, Quebec, Canada, 2014, 1601–9.



Deep learning in bioinformatics 15

41. Li J, Chen X, Hovy E, et al. Visualizing and understand-
ing neural models in nlp. In North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, San Diego, CA, USA, 2016, 681–91.

42. Yang Z, Yang D, Dyer C, et al. Hierarchical attention net-
works for document classification. In: Proceedings of the 2016
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, San Diego Cali-
fornia, USA, 2016, 1480–9.

43. Wang L, Sha L, Lakin JR, et al. Development and vali-
dation of a deep learning algorithm for mortality pre-
diction in selecting patients with dementia for earlier
palliative care interventions. JAMA Netw Open 2019;2(7):
e196972–2.

44. David R. Kelley, Jasper Snoek, John L. Rinn. Basset: learn-
ing the regulatory code of the accessible genome with
deep convolutional neural networks. Genome Res 2016;26(7):
990–9.

45. Daniel Quang, Xiaohui Xie. DanQ: a hybrid convolu-
tional and recurrent deep neural network for quanti-
fying the function of DNA sequences. Nucleic Acids Res
2016;44(11):e107.

46. Ritambhara Singh, Jack Lanchantin, Gabriel Robins,
Yanjun Qi. DeepChrome: deep-learning for predicting
gene expression from histone modifications. Bioinformatics
2016;32(17):i639–48.

47. David R. Kelley, Yakir A. Reshef, Maxwell Bileschi, et al.
Sequential regulatory activity prediction across chromo-
somes with convolutional neural networks. Genome Res
2018;28(5):739–50.

48. Wenran Li, Wing Hung Wong, Rui Jiang. DeepTACT: predict-
ing 3d chromatin contacts via bootstrapping deep learning.
Nucleic Acids Res 2019;47(10):e60.

49. Qijin Yin, Mengmeng Wu, Qiao Liu, Hairong Lv, Rui Jiang.
DeepHistone: a deep learning approach to predicting his-
tone modifications. BMC Genomics 2019;20(S2):11–23.

50. Pau Farré, Alexandre Heurteau, Olivier Cuvier, Eldon
Emberly. Dense neural networks for predicting chromatin
conformation. BMC Bioinform 2018;19(1):372.

51. Denas O, Taylor J. Deep modeling of gene expression regula-
tion in an erythropoiesis model. In: Representation Learning,
ICML Workshop. New York, USA: ACM, 2013.

52. Edgar Manzanarez-Ozuna, Dora-Luz Flores, Everardo
Gutiérrez-López, David Cervantes, Patricia Juárez. Model
based on GA and DNN for prediction of mRNA-smad7
expression regulated by miRNAs in breast cancer. Theor
Biol Med Model 2018;15(1):24.

53. Das MK, Dai H-K. A survey of DNA motif finding algorithms.
BMC Bioinform 2007;8:S21.

54. Ying Wang, Steve Goodison, Xiaoman Li, Haiyan Hu. Prog-
nostic cancer gene signatures share common regulatory
motifs. Sci Rep 2017;7(1):4750.

55. Avinash Achar, Pål Sætrom. RNA motif discovery: a compu-
tational overview. Biol Direct 2015;10(1):61.

56. Xiaohui Cai, Lin Hou, Naifang Su, et al. Systematic identifi-
cation of conserved motif modules in the human genome.
BMC Genomics 2010;11(1):567.

57. K. B. Cook, H. Kazan, K. Zuberi, Q. Morris, T. R. Hughes.
RBPDB: a database of RNA-binding specificities. Nucleic
Acids Res 2010;39(Database):D301–8.

58. Jun Ding, Vikram Dhillon, Xiaoman Li, Haiyan Hu. System-
atic discovery of cofactor motifs from ChIP-seq data by
SIOMICS. Methods 2015;79-80:47–51.

59. Samuel A. Lambert, Arttu Jolma, Laura F. Campitelli, et al.
The human transcription factors. Cell 2018;172(4):650–65.

60. Pique-Regi R, Degner JF, Pai AA, et al. Accurate inference
of transcription factor binding from DNA sequence and
chromatin accessibility data. Genome Res 2010;21(3):447–55.

61. Eilon Sharon, Yael Kalma, Ayala Sharp, et al. Inferring
gene regulatory logic from high-throughput measurements
of thousands of systematically designed promoters. Nat
Biotechnol 2012;30(6):521–30.

62. Yan Wang, Jing Liu, Bo Huang, et al. Mechanism of alterna-
tive splicing and its regulation. Biomed Rep 2014;3(2):152–8.

63. Jun Ding, Xiaoman Li, Haiyan Hu. Systematic prediction
of cis-regulatory elements in the chlamydomonas rein-
hardtii genome using comparative genomics. Plant Physiol
2012;160(2):613–23.

64. Li X, Kazan H, Lipshitz HD, et al. Finding the target
sites of RNA-binding proteins. Wiley Interdiscip Rev RNA
2013;5(1):111–30.

65. Jing S, Sarah A. Teichmann, Thomas A. Down. Assessing
computational methods of cis-regulatory module predic-
tion. PLoS Comput Biol 2010;6(12):e1001020.

66. Yiyu Zheng, Xiaoman Li, Haiyan Hu. Comprehensive
discovery of DNA motifs in 349 human cells and tis-
sues reveals new features of motifs. Nucleic Acids Res
2014;43(1):74–83.

67. Timothy L. Bailey DREME: motif discovery in transcription
factor ChIP-seq data. Bioinformatics 2011;27(12):1653–9.

68. Meredith L. Howard and Eric H. Davidson. Cis-regulatory
control circuits in development. Dev Biol 2004;271(1):109–18.

69. Khan A, Fornes O, Stigliani A, et al. JASPAR 2018: update
of the open-access database of transcription factor bind-
ing profiles and its web framework. Nucleic Acids Res
2017;46(D1):D260–6.

70. G. E. Crooks. WebLogo: a sequence logo generator. Genome
Res 2004;14(6):1188–90.

71. Corradin O, Saiakhova A, Akhtar-Zaidi B, et al. Combi-
natorial effects of multiple enhancer variants in linkage
disequilibrium dictate levels of gene expression to confer
susceptibility to common traits. Genome Res 2013;24(1):1–13.

72. Peter D. Stenson, Matthew Mort, Edward V. Ball, et al. The
human gene mutation database: building a comprehensive
mutation repository for clinical and molecular genetics,
diagnostic testing and personalized genomic medicine.
Hum Genet 2013;133(1):1–9.

73. De Castro-Orós I, Pampín S, Bolado-Carrancio A, et al. Func-
tional analysis of LDLR promoter and 5’ UTR mutations
in subjects with clinical diagnosis of familial hypercholes-
terolemia. Hum Mutat 2011;32(8):868–72.

74. Gupta S, Stamatoyannopoulos JA, Bailey TL, et al. Quantify-
ing similarity between motifs. Genome Biol 2007;8(2):R24.

75. Lee T, Yoon S. Boosted categorical restricted Boltzmann
machine for computational prediction of splice junctions.
In: International Conference on Machine Learning, Lille, France,
2015, 2483–92.

76. Ty C. Voss, Gordon L. Hager. Dynamic regulation of tran-
scriptional states by chromatin and transcription factors.
Nat Rev Genet 2013;15(2):69–81.

77. Matthew T. Weirauch, Ally Yang, Mihai Albu, et al. Deter-
mination and inference of eukaryotic transcription factor
sequence specificity. Cell 2014;158(6):1431–43.

78. Christof Angermueller, Heather J. Lee, Wolf Reik, Oliver
Stegle. DeepCpG: accurate prediction of single-cell DNA
methylation states using deep learning. Genome Biol
2017;18(1):67.



16 Talukder et al.

79. Robin Andersson, Claudia Gebhard, et al. An atlas of active
enhancers across human cell types and tissues. Nature
2014;507(7493):455–61.

80. Olivia Corradin, Peter C Scacheri. Enhancer variants:
evaluating functions in common disease. Genome Med
2014;6(10):85.

81. B. He, C. Chen, L. Teng, K. Tan. Global view of enhancer-
promoter interactome in human cells. Proc Natl Acad Sci
2014, 111(21):E2191–9.

82. Xin Li, Yiyu Zheng, Haiyan Hu, Xiaoman Li. Integrative
analyses shed new light on human ribosomal protein gene
regulation. Sci Rep 2016;6(1):28619.

83. Len A. Pennacchio, Wendy Bickmore, Ann Dean, Marcelo A.
Nobrega, Gill Bejerano. Enhancers: five essential questions.
Nat Rev Genet 2013;14(4):288–95.

84. Changyong Zhao, Xiaoman Li, Haiyan Hu. PETModule: a
motif module based approach for enhancer target gene
prediction. Sci Rep 2016;6(1):30043.

85. Amlan Talukder, Samaneh Saadat, Xiaoman Li, Haiyan
Hu. EPIP: a novel approach for condition-specific
enhancer–promoter interaction prediction. Bioinformatics
2019;35(20):3877–83.

86. Saidi Wang, Haiyan Hu, Xiaoman Li. Shared distal
regulatory regions may contribute to the coordinated
expression of human ribosomal protein genes. Genomics
2020;112(4):2886–93.

87. Daria Shlyueva, Gerald Stampfel, Alexander Stark. Tran-
scriptional enhancers: from properties to genome-wide
predictions. Nat Rev Genet 2014;15(4):272–86.

88. Jason Ernst, Manolis Kellis. ChromHMM: automating
chromatin-state discovery and characterization. Nat Meth-
ods 2012;9(3):215–6.

89. Tianshun Gao, Bing He, Sheng Liu, et al. EnhancerAtlas:
a resource for enhancer annotation and analysis in 105
human cell/tissue types. Bioinformatics 2016;32(23):3543–51.

90. Michael M Hoffman, Orion J Buske, Jie Wang, et al. Unsu-
pervised pattern discovery in human chromatin struc-
ture through genomic segmentation. Nat Methods 2012;9(5):
473–6.

91. Jing Wang, Xizhen Dai, Lynne D Berry, et al. HACER: an atlas
of human active enhancers to interpret regulatory variants.
Nucleic Acids Res 2018;47(D1):D106–12.

92. Marc S. Halfon. Studying transcriptional enhancers: the
founder fallacy, validation creep, and other biases. Trends
Genet 2019;35(2):93–103.

93. Le Q, Mikolov T. Distributed representations of sentences
and documents. In: International Conference on Machine Learn-
ing, Beijing, China, 2014,1188–96.

94. Mikolov T, Chen K, Corrado G, et al. Efficient estimation
of word representations in vector space. 1st International
Conference on Learning Representations, Scottsdale, AZ, USA,
2013.

95. Gang Ren, Wenfei Jin, Kairong Cui, et al. CTCF-mediated
enhancer–promoter interaction is a critical regulator

of cell-to-cell variation of gene expression. Mol Cell
2017;67(6):1049–58.

96. Abraham S. Weintraub, Charles H. Li, Alicia V. Zamudio, et al.
YY1 is a structural regulator of enhancer-promoter loops.
Cell 2017;171(7):1573–88.

97. Kai Zhang, Nan Li, Richard I. Ainsworth, Wei Wang. Sys-
tematic identification of protein combinations mediating
chromatin looping. Nat Commun 2016;7(1):12249.

98. Ying Wang, Jun Ding, Henry Daniell, Haiyan Hu, Xiaoman
Li. Motif analysis unveils the possible co-regulation of
chloroplast genes and nuclear genes encoding chloroplast
proteins. Plant Mol Biol 2012;80(2):177–87.

99. Ying Wang, Xiaoman Li, Haiyan Hu. H3k4me2 reliably
defines transcription factor binding regions in different
cells. Genomics 2014;103(2-3):222–8.

100. Yiyu Zheng, Xiaoman Li, Haiyan Hu. Discover the semantic
structure of human reference epigenome by differential
latent dirichlet allocation. In: 2017 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM), Kansas City,
MO, USA, IEEE, 2017.

101. Anshul Kundaje, Wouter Meuleman, et al. Integrative
analysis of 111 reference human epigenomes. Nature
2015;518(7539):317–30.

102. Arshdeep Sekhon, Ritambhara Singh, Yanjun Qi. Deep-
Diff: DEEP-learning for predicting DIFFerential gene expres-
sion from histone modifications. Bioinformatics 2018;34(17):
i891–i900.

103. Park S, Min S, Choi H-S, et al. Deep recurrent neural
network-based identification of precursor microRNAs. In:
Advances in Neural Information Processing Systems, Long
Beach, CA, USA, 2017, 2891–900.

104. Olden JD, Joy MK, Death RG. An accurate comparison
of methods for quantifying variable importance in arti-
ficial neural networks using simulated data. Ecol Model
2004;178(3-4):389–97.

105. Steven T Hill, Rachael Kuintzle, Amy Teegarden, et al. A
deep recurrent neural network discovers complex biolog-
ical rules to decipher RNA protein-coding potential. Nucleic
Acids Res 2018;46(16):8105–13.

106. J. Harrow, A. Frankish, J. M. Gonzalez, et al. GENCODE:
the reference human genome annotation for the ENCODE
project. Genome Res 2012;22(9):1760–74.

107. Mairal J. End-to-end kernel learning with supervised
convolutional kernel networks. In: Advances in Neural
Information Processing Systems, Barcelona, Spain, 2016,
1399–407.

108. Wang C, Yang J, Xie L, et al. Kervolutional neural net-
works. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, 2019,
31–40.

109. Zhang L, Edraki M, Qi G-J. Cappronet: deep feature learn-
ing via orthogonal projections onto capsule subspaces. In:
Advances in Neural Information Processing Systems, Montréal,
Canada, 2018, 5814–23.


	Interpretation of deep learning in genomics and epigenomics 
	Introduction
	Current methods for DNN interpretation
	Input modification methods
	Deconvolutional methods
	Input reconstruction methods
	Attention mechanism

	Deep learning model interpretation in bioinformatics
	DNA/RNA sequence alterations and their impacts on protein binding
	Epigenetic effects of DNA sequence alternations
	Chromatin interactions
	Gene expression prediction
	ncRNA identification and regulation

	Discussion
	Key Points

	Authors' contributions
	Conflict of Interest
	Funding


