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Fundamental discoveries have shaped our molecular understanding
of presynaptic processes, such as neurotransmitter release, active
zone organization and mechanisms of synaptic vesicle (SV) recycling.
However, certain regulatory steps still remain incompletely understood.
Protein liquid–liquid phase separation (LLPS) and its role in SV cluster-
ing and active zone regulation now introduce a new perception of how the
presynapse and its different compartments are organized. This article high-
lights the newly emerging concept of LLPS at the synapse, providing a
systematic overview on LLPS tendencies of over 500 presynaptic proteins,
spotlighting individual proteins and discussing recent progress in the field.
Newly discovered LLPS systems like ELKS/liprin-alpha and Eps15/FCho
are put into context, and further LLPS candidate proteins, including epsin1,
dynamin, synaptojanin, complexin and rabphilin-3A, are highlighted.
1. Introduction
When the first study demonstrated that proteins with low-complexity domains
could undergo phase transition forming jelly-like hydrogels, this unveiled a
new paradigm for the formation of subcellular compartments [1]. Nowadays,
vast evidence emphasizes a role of protein phase separation in the formation
of dynamic organelles like RNP transport granules, stress granules and P-
bodies or in the compartmentalization of the nucleus [2,3]. More and more
membrane-less compartments are identified, and the understanding that also
the presynapse is sub-compartmentalized via liquid–liquid phase separation
(LLPS) is emerging. The very first example of LLPS at the presynapse was
synapsin-1 phase separation, shown to regulate synaptic vesicle (SV) clustering
[4]. Furthermore, RIM/RIMBP LLPS has been demonstrated to couple local cal-
cium entry to SV release at the active zone [5].

A protein’s tendency to undergo protein phase separation is conveyed by
amino acid regions that do not adopt a well-defined structure and are therefore
called intrinsically disordered regions. These protein regions, until now, were
more or less neglected for understanding a protein’s function because no
clear role could be assigned. However, it now becomes critical to understand
which proteins or protein regions could participate in various LLPS systems.
In addition, also protein regions with a less complex amino acid composition,
called low-complexity domains, or protein regions with an enrichment of cer-
tain amino acids (i.e. proline, arginine, serine) tend to support weak protein–
protein interactions (PPIs), known to be involved in LLPS.

To date, we have gained an initial understanding of presynaptic LLPS from
recent studies; however, to understand this system in its full complexity we do
need a better overall picture of which processes and proteins could be regulated
and influenced by LLPS. Therefore, this article contains the first systematic
analysis evaluating over 500 synaptic proteins for their intrinsic disorder, low
complexity and enrichment of amino acids. It provides a novel resource and
discusses known and potential presynaptic LLPS systems.
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Table 1. Data resources.

database description application website

UniProtKB The Universal Protein Resource (UniProt) is a comprehensive

resource for protein sequence and annotation data. The

UniProt databases are the UniProt Knowledgebase (UniProtKB),

the UniProt Reference Clusters (UniRef ) and the UniProt

Archive (UniParc).

identification of relevant human

proteins

https://www.uniprot.org/

extraction of basic protein

parameters

IUPred2A IUPred2A is a combined web interface that allows to identify

disordered protein regions using IUPred2 and disordered

binding regions using ANCHOR2.

identification of disordered protein

regions from presynaptic proteins

https://iupred2a.elte.hu/

SMART

EMBL

SMART (a Simple Modular Architecture Research Tool) allows the

identification and annotation of genetically mobile domains

and the analysis of domain architectures.

identification of low complexity

domains from presynaptic

proteins

http://smart.embl-

heidelberg.de/

PaxDB PaxDB is a comprehensive absolute protein abundance database,

which contains whole genome protein abundance information

across organisms and tissues.

extraction of protein abundance https://pax-db.org/

STRING STRING is a database of known and predicted protein–protein

interactions. The interactions include direct (physical) and

indirect (functional) associations.

extraction of protein–protein

interactions between presynaptic

proteins

https://string-db.org/cgi/

network.pl

Gene

Ontology

The Gene Ontology (GO) knowledgebase is the world’s largest

source of information on the functions of genes. Associations

of gene products to GO terms are statements that describe a

molecular function, cellular component or biological process

identification of relevant human

proteins via their biological

process involvement

http://amigo.

geneontology.org/

amigo
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2. Methodology
This study followed a three-step approach. Presynaptic
proteins were identified via UniProtKB and Gene Ontology
[6–9]. IUPred2A, SMART and PAXdb were used to retrieve
information about intrinsic disorder, low complexity
domains, amino acid composition and protein abundance
[10–12]. Protein-protein interaction profiles were obtained
from the STRING database; Cytoscape and ClusterONE
were used to perform PPI network analysis [13–15] (table 1).
3. Results
This study identified 578 presynaptic proteins, for which the
PPI network showed six main protein hotspots (figure 1).
These were assigned to the following biological processes:

Hotspot 1: Active zone cluster.
Hotspot 2: Endocytosis protein cluster.
Hotspot 3: Exocytosis, priming and fusion protein cluster.
Hotspot 4: Proteins involved in proton transmembrane trans-

port/v-type proton ATPase complex.
Hotspot 5: Two protein clusters involved in the negative

regulation of secretion and neurotransmitter reuptake.
Hotspot 6: Rab signal transduction protein cluster.

The prediction data show that Hotspot 1, Hotspot 2 and Hot-
spot 3 are enriched for proteins with a higher tendency to
undergo LLPS. These are interesting hits, since components
of the active zone have currently been highlighted to undergo
LLPS and first studies demonstrate that LLPS could also play
a role in early endocytosis. This article will pick up these
examples and put them in context with the findings of this
study, giving an overview of recent progress in the field
and allowing the systematic view on proteins of the three
respective synapse compartments, the active zone, com-
ponents of clathrin-mediated endocytosis and the hotspot
in SV exocytosis. Data for all 578 synaptic proteins on their
intrinsic disorder, low-complexity domains and proline con-
tent are available as electronic supplementary material,
table S1.
4. Protein hotspot active zone
The active zone defines the region of the presynaptic mem-
brane where SV fusion and neurotransmitter release occurs.
SV clustering at the active zone seems to occur independently
of synapsin-1 [16], and therefore the existence of an
additional SV condensate has been proposed early on [17].
This analysis shows that proteins of the active zone hotspot
are enriched for high intrinsic disorder, where the three
protein groups (i) bassoon/piccolo, (ii) RIM/RIMBP proteins
and (iii) liprin proteins are of particular interest (figure 2;
electronic supplementary material, table S2).

Bassoon and piccolo, two proteins with high sequence
similarity, are the top candidates from the prediction analysis.
Both show the largest average intrinsic disorder value of the
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Figure 1. Protein–protein interaction (PPI) network showing six main protein hotspots in the presynapse. PPI network for 578 presynaptic proteins on the left. And
small inlet on the right showing the main protein hotspots: active zone, endocytosis, exocytosis, vATPase complex, negative regulation of secretion and Rab proteins.
All proteins are represented by their gene names. The node colour (grey to red) represents the average intrinsic disorder of each protein, highlighting high intrinsic
disorder groups in red. Protein abundance is encoded by node size to present proteins with high expression and potential relevance as matrix or scaffold proteins.
The full size PPI network is available as electronic supplementary material, figure S1.
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active zone cluster proteins and also have a high number of
low complexity regions, which together span about 20% of
the respective protein. Bassoon and piccolo are large scaffold-
ing proteins of the active zone cytomatrix and cover a 100 nm
distance from the active zone, as shown by super-resolution
microscopy [18]. Simultaneous knock out of both, bassoon
and piccolo, leads to a decrease in SV numbers [19], therefore,
making them potential candidates for an active zone protein
condensate holding the SVs which are not affected by synapsin
KO. However, while LLPS has been shown for the protein hits
RIM/RIMBP and liprin, no phase separation has been
reported for the high-profile candidates’ bassoon and piccolo.
Therefore, investigation of bassoon/piccolo in relation to their
protein partners, i.e. CAST and RIMBP will be of particular
interest [20].

RIMS1 (regulating synaptic membrane exocytosis protein
1), which has been shown to undergo LLPS recently [5], was
identified as another high intrinsic disorder profile protein. It
has been demonstrated that RIMS1 is able to condensate on
its own, but phase separation is substantially potentiated in
the presence of the RIM-binding protein RIMBP2. All pro-
teins of this class, RIMS1, RIMS2, RIMBP1 and RIMBP2,
display a high intrinsic disorder and a relatively high pro-
portion of low complexity. RIM/RIMBP condensates show
co-condensation with the intracellular C-terminal region of
the voltage-dependent N-type calcium channel subunit
alpha-1B (CACNA1). These condensates are, therefore,
likely to position voltage-gated calcium channels to the site
of SV release [5,21–23]. Upon quadruple knock out of all
RIM/RIMBP proteins, the tight tethering and priming of
SVs to the active zone is disturbed [24]. However, it
seems that overall, the larger pool of SV recruited to the
active zone is not severely affected. Here, bassoon and pic-
colo could come into play, possibly being able to extent
and support the RIM/RIMBP condensate. In addition,
RIM is also known to bind Rab3, Munc13, ELKS and
liprin-alpha proteins [25], which are potential partners
adding further functionality to the RIM/RIMBP LLPS
condensate.

ELKS and liprin proteins have been identified next, show-
ing high intrinsic disorder and also about 9–15% of low
complexity. A very recent paper studying ELKS and SYD-2,
the Caenorhabditi elegans homologue of liprin-alpha, found
that these proteins can undergo LLPS. Different to other
LLPS systems, ELKS and SYD-2 matured into solid like struc-
tures easily, being less dynamic later in life. Therefore, a role
during synapse development is suggested [26]. By contrast,
a more dynamic nature is shown for liprin-alpha3, whose
phase separation can be reversibly regulated by PKC [27].
Interestingly, ELKS and the liprin proteins show no enrich-
ment for proline, while this is the case for many other
synaptic LLPS proteins. For example for synapsin-1,
where the proline rich domain is important for its
interaction with the SH3 domain protein intersectin [4],
and for RIM where proline rich motifs are important
for its interaction with RIMBP [5]. Again, also bassoon
and piccolo are highly proline rich, with 13% and 11%,
respectively.



Figure 2. Overview on active zone proteins (excerpt). Protein characteristics include intrinsic disorder (Av, average, line profile along the full protein sequence), low
complexity (number of low-complexity domains; percentage of protein length) and percentage of proline (Pro), arginine (Arg), serine (Ser) and aromatic amino acid
(AAA) content. This data table is available in full as electronic supplementary material, table S2.
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It was demonstrated recently that synapsin and RIM/
RIMBP form separate phases which do not intermix [28].
This further supports the maintenance of two separate SV
pools, the reserve pool, where synapsin clusters the majority
of SVs, and an SV cluster which is situated in a 100 nm dis-
tance of the active zone, regulated by RIM/RIMBP and
potential additional proteins. Compared to synapsin-1, all
the identified active zone proteins, bassoon/piccolo, RIM/
RIMBP, ELKS and liprins, show low abundance levels (all
less than 50 ppm, electronic supplementary material, table
S1), which speaks for a multicomponent LLPS system,
rather than one protein on its own serving as a matrix.
Lastly, the calcium binding protein 4 (CABP4) should be
highlighted from this study. This protein is involved in
neurotransmission at the photoreceptor and shows very
high intrinsic disorder values. Furthermore, it has been
linked to human rod and cone dysfunction in humans [29].
An overview on all parameters of respective active zone pro-
teins can be found in figure 2 (excerpt) and electronic
supplementary material, table S2.
5. Protein hotspot clathrin-mediated
endocytosis

If the SV cluster and the active zone are regulated and sup-
ported by protein LLPS, we might think of synapse LLPS
as a more universal mechanism, also involved in other
synapse processes. This analysis shows that the endocytosis
hotspot is highly enriched for highly intrinsically disordered
proteins. Indeed, the disordered regions of many endocytosis
proteins have been recognized to regulate membrane curva-
ture via a steric effect [30,31]. A protein region with high
intrinsic disorder not folding into a well-defined structure,
spans a larger volume than a well-folded region. Therefore,
if the protein gets densely packed on the membrane, these
regions get close together, creating steric pressure, which is
able to bend the underlying membrane. However, it has
recently been demonstrated that also protein phase separ-
ation contributes to membrane bending [32]. This analysis
shows that proteins throughout the endocytosis pathway



Figure 3. Overview on proteins involved in clathrin-mediated endocytosis (excerpt). Protein characteristics include intrinsic disorder (Av, average, line profile along
the full protein sequence), low complexity (number of low complexity domains; percentage of protein length) and percentage of proline (Pro), arginine (Arg), serine
(Ser) and aromatic amino acid (AAA) content. This data table is available in full as electronic supplementary material, table S3.
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would have the potential to be involved in LLPS and Eps15/
FCho have been reported as a first example in early endocy-
tosis [33].

5.1. Early factors of clathrin-mediated endocytosis
Proteins involved in early steps of the endocytosis process are
important to recognize cargo proteins, to induce membrane
curvature and to link cargo uptake to the clathrin adaptor
AP-2. The most interesting proteins in this analysis are
(i) epsin proteins, (ii) Eps15 and FCho, and (iii) Stonin2 and
AP180 (figure 3). While many cargo proteins can be recog-
nized by the AP-2 complex directly via conventional
tyrosine- or dileucine-based signals, the proteins above have
particular roles in SV cargo uptake [34] and are found to
support membrane curvature generation.

Epsin-1 is the endocytosis protein with the highest intrin-
sic disorder in the study, closely followed by epsin-3 and
epsin-2. Epsin binds to the lipid membrane via its ENTH
(epsin N-terminal homology) domain, while its intrinsic dis-
ordered region mediates an effect on membrane curvature
[30]. No experimental data on LLPS has been published for
epsin proteins to date. However, epsin is known to mediate
cargo selection of ubiquitinated proteins, thus LLPS in
relation with polyubiquitination might need to be considered
[35–37]. Beside a high intrinsic disorder, epsin-1 also has sev-
eral low complexity regions which together span 30% of the
protein, though for epsin-3 and epsin-2 this proportion is
lower. All epsin proteins show an enrichment for proline,
while epsin-2 and -3 also show a high serine content (12%
compared to an average serine content of 7% in the full
dataset).

Eps15 (epidermal growth factor receptor substrate 15) and
FCho1/2 (F-BAR domain only protein 1/2) are two additional
early endocytosis proteins with high LLPS-tendency. Eps15
and FCho1 have been recently shown to undergo LLPS,
where Eps15 forms highly dynamic droplets, which are
able to enrich FCho [33]. In addition, it has been shown
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that this fluid-like property is critical to coordinate the
initiation of endocytosis in cells. Proline is not overall
enriched in these proteins, but Eps15 is known to have one
local proline-rich motif at its C-terminal end, as well as an
PQ-rich domain. Interestingly, Ede1, which is the yeast homol-
ogue of Eps15, has also been shown to undergo LLPS [38].
Furthermore, it has been demonstrated that other early endo-
cytic proteins lose their punctate localization in the absence
of Ede1 [38], which fits well with the current understanding
that LLPS is able to specifically co-condense protein partners.
As for epsin-1, Eps15 has been shown to modulate membrane
curvature [39] and is also involved in ubiquitin cargo selection.

AP180 and Stonin-2, both accessory proteins involved in
cargo recognition, exhibit protein regions with high intrinsic
disorder. AP180 and the endocytic clathrin adaptor CALM
have been shown to be involved in the endocytosis of
VAMP SNARE proteins, mediated by the ANTH (AP180-
amino-terminal-homology) domain [40,41]. The C-terminal
half of AP180, however, shows high intrinsic disorder and
has been found to contribute a steric effect on membrane
curvature as discussed for epsin-1 [30,42]. AP180 has a
particularly high low complexity content of 35% and
shows a high percentage of proline and serine (both 11%).
Stonin-2 on the other hand is involved in cargo selection
of the calcium sensor synaptotagmin [43,44] showing high
N-terminal intrinsic disorder and a high serine content
(12%). No phase separation has been shown for either,
AP180 or stonin-2, however, for stonin-2 an association
between several SV proteins has been discussed to facilitate
SV protein cargo uptake [45].

The AP2 adaptor complex itself is highly ordered with
only very small disordered regions of the alpha and beta-sub-
units linking its appendage domains. However, the AP2-
interacting clathrin-endocytosis protein (KIAA1107) and AP2-
associated protein kinase 1 (AAK1) show high intrinsic dis-
order (figure 3). Also, clathrin heavy chain 1 and 2, building
the long triskelia of the clathrin cage, are highly ordered pro-
teins. But again, clathrin light chain B and A are highly
disordered with values similar to epsin-2 and -3. They bind
to the clathrin heavy chain via a long central a-helix [46,47],
while the N-terminal regions accumulate high intrinsic dis-
order and have been found to support the interaction with
other proteins, as for example with the Huntingtin-interacting
protein 1-related protein [48–50].

5.2. Maturation and fission of the clathrin coated pit
The current analysis shows that also proteins at later steps of
endocytosis, involved in maturation and fission of the
clathrin coated pit, are enriched for high intrinsic disorder.
For this (i) membrane shaping proteins like amphiphysin,
endophilins and syndapin, but also (ii) dynamin and (iii)
N-WASP, are of particular interest.

Amphiphysin and endophilins are N-BAR domain pro-
teins involved in later stages of endocytosis. Their N-BAR
domain folds as a dimer with a concave face, therewith con-
veying a pressure on the underlying membrane. However, it
has been shown that also the intrinsic disordered region sub-
stantially contributes to their membrane shaping function by
generating steric pressure as found for early membrane shap-
ing proteins [31]. A similar effect could be involved in the
membrane shaping behaviour of the F-BAR domain proteins
syndapin 1 and 2 (PACSIN1/2), featuring a C-terminal high
intrinsic disorder region. Whether protein phase separation
of these proteins contributes to membrane bending is not
known, but is principally possible as demonstrated for FUS
LLPS on lipid vesicles [32].

The functional role of amphiphysin, endophilin and synda-
pin lies at the periactive zone, however, under resting
conditions these proteins localize to the central SV cluster
[51]. Here parallels might be drawn to intersectin, which has
been demonstrated to localize to the SV cluster at rest, under-
going shuttling to the periactive zone upon synaptic activity
[52]. Intriguingly, intersectin is a protein which co-condenses
together with synapsin-1 [4], suggesting that intersectin is loca-
lized to the SV cluster via LLPS. Once the synapsin condensate
disassembles upon synaptic activity, intersectin would be able
to diffuse and re-localize. The interaction between intersectin
and synapsin-1 is mediated via SH3 domains and the proline
rich region of synapsin [4]. Also amphiphysin, endophilins
and syndapin constitute each a single C-terminal SH3
domain, which has been shown to weakly interact with synap-
sin-1 [53]. Thus, a similar mechanism can be imagined for
amphiphysin, endophilin and syndapin. Though, if another
protein condensate is involved at the periactive zone to capture
intersectin and/or other endocytic proteins is speculative.
Nevertheless, the phenomenon of endocytosis proteins localiz-
ing to the SV cluster might demonstrate a dynamic way able to
coordinate the timely delivery of these proteins to the periac-
tive zone upon synaptic stimulation. In addition it has also
been discussed that these proteins might contribute to the
matrix of the SV cluster [54].

Dynamin-1 is a membrane remodelling GTPases impor-
tant for vesicle scission. As this, dynamin is a well-
structured protein, forming helical polymers around the tub-
ular vesicle neck, mediating membrane constriction [55].
However, it also contains a highly disordered region at its
very C-terminal end, which is also enriched in proline (7%,
figure 3). This region mediates an interaction with SH3
domain proteins, including amphiphysin, endophilin, synda-
pin and also intersectin [53,55,56]. Dynamin has not been
reported to undergo LLPS, but is also enriched in the SV clus-
ter under resting conditions [51]. Interesting to note, dynamin
itself does not have any SH3 domain, only the dynamin-binding
protein (DNMBP) contains multiple SH3 domains. Finally, dyna-
min is a highly abundant protein (greater than 1900 ppm;
electronic supplementary material, table S1) and thus might be
a candidate as a matrix protein.

N-WASP, the Neural Wiskott–Aldrich syndrome protein, is
a well-studied LLPS protein, stimulating Arp2/3-dependent
actin nucleation [57,58]. In this analysis N-WASP shows the
highest intrinsic disorder after epsin, and has one of the high-
est proline contents (17.8%). Actin is highly enriched at the
periactive zone [52], and a wide range of synaptic proteins,
including amphiphysin, DNMBP, syndapin and intersectin,
show an interaction with actin or with N-WASP. Furthermore,
it has recently been shown that dynamin is regulating actin
filament bundling, mediated via its C-terminal proline
rich domain [59]. Thus, our understanding of how phase sep-
aration could contribute to actin dynamics at the synapse
could deliver new insights for synapse organization.

5.3. Clathrin coat disassembly
After scission of the clathrin coated vesicle, the clathrin coat
itself and adaptor proteins need to be removed. This analysis



Figure 4. Overview on proteins involved in synaptic vesicle exocytosis (excerpt). Protein characteristics include intrinsic disorder (Av, average, line profile along the
full protein sequence), low complexity (number of low complexity domains; percentage of protein length) and percentage of proline (Pro), arginine (Arg), serine
(Ser) and aromatic amino acid (AAA) content. This data table is available in full as electronic supplementary material, table S4.
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shows that (i) synaptojanin-1 and (ii) auxilin are proteins with
high LLPS tendencies in this pathway.

Synaptojanin-1 is a protein known to couple the fission of
clathrin-coated vesicles to the uncoating process [60,61],
which is regulated via dephosphorylation of membrane
lipids and the release of adaptor proteins [60,62]. Synaptoja-
nin-1 contains a central inositol 5-phosphatase domain and
an N-terminal Sac1-like inositol phosphatase involved in
PI(4,5)P2 regulation, while its C-terminal domain is highly
disordered and enriched in proline. This proline rich region
mediates synaptojanin’s interaction with SH3 domain pro-
teins, including endophilin, amphiphysin, syndapin and
intersectin [63,64]. In this context, endophilin has been
demonstrated to regulate the recruitment of synaptojanin’s
during endocytosis [65,66].

Auxilin (DNAJC6) is involved in the disassembly of
the clathrin coat, recruiting the heat shock cognate
71 kDa protein (Hsc70) and serving as Hsc70 cofactor.
Hsc70 again is responsible for the actual coat disassembly
[67,68]. Auxilin is described to bind very rapidly after
the recruitment of dynamin, just during the process of
vesicle neck constriction and subsequent fission [69]. Aux-
ilin binding has been reported to be mediated via lipid
sensing of its N-terminal PTEN region [69]; however, it
also interacts with dynamin. This interaction is specific
for the GTP-bound conformation of dynamin, but the
GTPase domain nor the GAP domains themselves are suf-
ficient for binding [70], indicating that an additional
binding mechanism is involved which has not been
described yet.
6. Protein hotspot synaptic vesicle
exocytosis

As a third hotspot, SV exocytosis proteins were identified. We
think of SV exocytosis as a process where protein binding
depends on specific protein conformation as for the SNARE
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complex [71]. But once again intrinsic disorder regions have
been discussed to serve a steric function, enabling the pro-
teins to span a higher radius for interaction [72]. Of
particular interest regarding LLPS tendencies are (i) complex-
ins, (ii) Rabphilin-3A as well as (iii) the SNARE complex
proteins themselves.

Complexins are small proteins for which inhibitory as well
as facilitating effects on SV release have been described. Com-
plexin-2 is enriched in excitatory synapses, while complexin-1
is important for inhibitory synapses. All of the complexins
have a high intrinsic disorder and also a high level of low com-
plexity regions (13–31%; figure 4; electronic supplementary
material, table S4). However, they are not enriched in proline.
Complexins have not been shown to undergo LLPS, but inter-
estingly complexin-2 is one of the highly abundant synapse
proteins (greater than 1000 ppm; electronic supplementary
material, table S1) and its regulatory role in SV release has
remained challenging to explain [73–77].

Rabphilin-3A, which is recruited to the SV membrane via
Rab3A also shows a high average intrinsic disorder and is
possibly linked to the RIM/RIMBP LLPS systems via
Rab3A and Munc13 [25]. Rab3A has been shown to be crucial
for the activity-dependent transport of SV to the active zone
[78]; therefore, Rab3A and Rabphilin-3A might demonstrate
interesting candidates to understand the shuttling between
the SV cluster condensate constituted by synapsin-1 and the
active zone condensate regulated by RIM/RIMBP.

The three SNARE complex proteins also display high-
intrinsic-disorder regions. VAMP2, syntaxin-1A and
SNAP25 are well studied for their function in the four helical
SNARE complex mediating SV fusion. However, their high
intrinsic disorder regions have been discussed to confer an
additional role by spanning a higher radius than a folded
region would, thereby increasing the likelihood to recruit
their binding partners [72]. A role via LLPS has not been
shown but could allow the association between SV proteins
before complex formation, or on the other hand facilitate
protein sorting after exocytosis. The v-SNARE VAMP2 shows
the highest low complexity content (33%, N-terminal, electronic
supplementary material, table S1) as well as a high proline con-
tent (7%). By contrast, the t-SNAREs (i.e. syntaxin-1A and
SNAP25) have an extremely low proline content of 3% or
below. This might demonstrate a relevant difference since
these proteins are throughout localized to the plasma mem-
brane where they are reported to form distinctive
nanoclusters [79,80].
7. Discussion
Protein phase separation enables proteins to concentrate in a
protein dense phase and is evolving as a mechanism relevant
for the spatio-temporal organization within cells and the
synapse. The concept of LLPS can harmonize current discre-
pancies, giving a better understanding how proteins are able
to accomplish their function. Thus the LLPS model for SV
clustering via synapsin-1 is able to overcome certain discre-
pancies of the classical synapsin-SV-actin tethering model
[51]. LLPS can be seen as a mechanism for the regulation of
highly dynamic processes and is complementary to the mech-
anisms we already know. Many of our current findings build
upon the fundamental understanding of protein regions and
protein interactions known so far. Proteins not only convey
one role or mechanism of action, but different properties
come together. This we have seen for N-Bar domain proteins
regulating membrane curvature by two complementary
mechanisms, demonstrating that one mechanism is sup-
ported by the other, is serving as a backup or is adding
further functionality. The present study, evaluating data on
intrinsic disorder, low complexity domains and amino acid
composition of synapse proteins, gives an overview of poten-
tial LLPS mechanisms at the synapse. It emphasizes how
synaptic processes are supported by protein LLPS, opening
new question to be asked and stimulating a novel way of
thinking on how proteins organize synaptic compartments.

Next steps are the construction of a prediction tool specific
to the synapse compartment. Several LLPS prediction tools
have been developed over the years including PScore,
PLAAC, PSPer, CatGranule, R + Y and LARKS [81,82]. These
rely on specific protein properties, like pi–pi contacts, simi-
larity to prion-like domains or FUS-like proteins, or low
complexity aromatic-rich segments. Overall these predictions
are of course dependent on proteins we already know to
undergo protein phase separation and therefore, at the
moment, have a high representation of DNA/RNA binding
proteins. A new approach solely relies on a prediction due to
differences in the amino acid content of LLPS proteins [83].
Again, a bias towards DNA/RNA binding proteins is seen;
however, combined with a growing dataset on synapse LLPS
this demonstrates an interesting avenue to develop a predic-
tion tool specific for synapse LLPS proteins. In the future,
novel technologies in data science including artificial intelli-
gence will allow to develop learning algorithms
implementing new data step by step helping us to understand
specific and distinct LLPS compartments at the synapse.
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