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Introduction

Breast carcinoma has the highest mortality rate among 
women.[1,2] Standard treatments differ by the well‑recognized 
subtypes of breast cancer that are characterized by the different 
sets of mutations. Among the five major subtypes in breast 
cancer – luminal A, luminal B, human epidermal growth factor 
receptor 2 (HER2), basal and normal‑type – the HER2 subtype 
was, overall, the most fatal until the last millennium.[3] The HER2 
subtype is characterized by the over‑expression of the HER2 

gene, which is commonly accompanied by the mutations in other 
genes from the HER2 amplicon such as GRB7,[4,5] PGAP3,[4] and 
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to a certain extent TP53, which promotes tumor proliferation.[6] 
The advent of targeted anti‑HER2 therapies (e.g. trastuzumab, 
lapatanib, and pertuzumab) has reduced mortality for HER2 
positive breast cancer, but such therapy is expensive. Furthermore, 
for other subtypes of breast cancer, anti‑HER2 therapies are 
useless, and in some cases, even harmful.[7] Therefore, it is 
important to determine HER2 overexpression in breast cancers. 
HER2 overexpression is sometimes identified using expensive 
but accurate precise fluorescence in situ hybridization (FISH) 
tests, or, more commonly, using inexpensive but less accurate 
HER2neu immunostaining.[6]

Immunohistochemistry (IHC) is the class of techniques used 
for visually tagging parts of tissue with high concentrations of 
specific antigens (proteins) for microscopic examination. IHC 
reagent is a combination of the tagging (dyeing or fluorescence) 
agent and an antibody that binds to the specific target antigen. 
It is widely used to diagnose the malignancy in tumors and 
determine genomic subtypes of cancers for precision therapy. 
By contrast, hematoxylin and eosin (H&E) staining is generic 
because it primarily increases the visual difference between 
the general basophilic nuclei and acidophilic stromal regions 
of the tissue to reveal the spatial structure like the shape of 
nuclei and glands. While costs and availability of various IHC 
panels vary widely depending on the targeted proteins, H&E 
staining is inexpensive and ubiquitous.

Morphological correlates of specific mutations have been 
observed in H&E stained histology images  (e.g.  for KRAS 
mutation in lung cancer[8]). For other mutations, it is possible 
that other specific morphological correlates also exist to allow 
the screening of the mutation using computer vision on H&E 
images, even if these are too subtle to be reliably detected by 
manual inspection. To test this hypothesis, we specifically explore 
the detectability of HER2 overexpression in breast tumors from 
H&E‑stained tissue images. We used a local HER2neu IHC 
response to prepare supervised training data for a computer‑vision 
pipeline. The advantages of doing so include: (1) a reduction in 
the cost of tissue analysis by obviating IHC for screening, (2) 
the potential of predicting the presence of multiple antigens 
exclusively from H&E images by extending the technique 
to other mutations, and  (3) the quantification of intra‑tumor 
heterogeneity of genomic mutations in different regions of an 
individual’s tumor. That is, while a single IHC panel tags only 
a single protein, which is usually a product of a single class of 
genomic mutations, morphological analysis of visual patterns 
revealed by H&E can find spatial foci of different mutation 
classes. To the best of our knowledge, such a study has not been 
done before for a major IHC panel such as HER2 in breast cancer.

Conventionally, image classification pipelines were based 
on hand‑engineered features, which failed to generalize in 
the clinical settings. Deep neural networks that learn their 
own hierarchy of features have produced unprecedented 
image classification accuracy and have obviated the need 
for hand‑engineered features in less than a decade for large 
datasets of labeled training examples.[9‑11] With increasing the 

use of digital scanners, the volume of digitized whole slide 
images  (WSIs) available for computation pathology using 
deep learning has grown multiple folds. This has enabled 
the emergence of computer vision pipelines to supplement 
and complement the pathologists.[12] For example, in the 
CAMELYON16 challenge for lymph node analysis, the trained 
deep‑learning models reported a near human pathologist 
performance.[13] This is complemented by the recent surge in 
publicly available computational pathology datasets released 
in several international competitions.[14‑16]

We have developed a method to classify between HER2 
positive (HER2+) and HER2 negative (HER2–) breast tumors 
from their H&E‑stained sections. We trained a multi‑stage 
image classification pipeline composed of a stain separation 
stage followed by three convolutional neural networks (CNNs) 
in tandem to move toward explainable AI on carefully 
annotated data. The training data came from serial (adjacent) 
sections of tumor tissues, of which one is stained with H&E 
and the other one with HER2neu IHC. We tested the trained 
pipeline on held out cases from the same cohort as well as 
on an independent cohort. We achieved an area under the 
curve  (AUC) of 0.82  (confidence interval  [CI]: 0.65–0.98) 
on the held‑out cases in the Warwick dataset and AUC of 
0.76  (CI: 0.61–0.89) on the TCGA‑BRCA cohort. We also 
visualized the regional correspondence of HER2 probability in 
H&E sections and their serial IHC sections in held‑out cases.

The rest of the paper is organized as follows: background and 
data sources are presented in section 2, the proposed methods 
are described in section 3, and the results are presented in 
section 4. Finally, the concluding remarks appear in section 5.

Subjects and Methods

Estimating human epidermal growth factor receptor 2 
protein overexpression in breast cancers
HER2 is a growth‑promoting protein on the cell membrane. 
Assessment of HER2 IHC is done based on the guidelines 
given by the American Society of Clinical Oncology/College of 
American Pathologists (ASCO/CAP).[17] Pathologists observe 
formalin‑fixed paraffin‑embedded tissue stained using HER2 
IHC under a microscope. Nuclei appear as faint blue due to 
counterstaining using hematoxylin. In HER2âcells, no or 
faint brown pattern of the HER2 IHC stain is seen around the 
cell membrane. In HER2+ cells, a brown boundary appears 
circumscribing the nucleus (chickenwire structure) marking the 
presence of HER2 protein. Pathologists score the IHC stained 
tissue slides by visual inspection under a microscope using 
the ASCO/CAP criteria is shown in Table 1 and illustrated in 
Figure 1. The interpretation of these guidelines by pathologists 
is subjective, especially, near the boundaries of two classes. For 
example, the percent of invasive cells with a particular staining 
pattern is subjectively estimated, and the difference between 
“faint” and “moderate” staining is also subjective as illustrated 
in Figure 1. If HER2 IHC results are equivocal (borderline 2+), 
then an expensive FISH test is ordered for disambiguation.



Figure  1: Examples of HER2neu immunohistochemistry staining that 
shows patches from slides with different HER2 score varying with the 
staining intensity. HER2: Human epidermal growth factor receptor 2 Figure 2: Examples of patches without tumor from the Warwick training set
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Identification of genetic mutations from histopathology images 
is gaining a lot of interest among the researchers. We clarify 
that we are not going to address the easier task of automatic 
scoring of IHC, such as that of HER2neu positivity.[18] Instead, 
we concentrate on detecting mutations in H&E‑stained tissue 
images by estimating the over‑expression of mutation‑specific 
proteins. CNNs have been successfully used for detecting 
STK11, EGFR, FAT1, SETBP1, KRAS, and TP53 mutations 
in lung adenocarcinoma,[19] BRAF and NRAS mutations 
in melanoma,[20] and estrogen‑receptor positivity in breast 
cancer using H&E images.[21‑23] These methods use a single 
deep‑learning stage and have not been used to show strong 
generalization from one to many hospitals. In contrast to 
previous works, our proposed method is able to give nucleus 
level correspondence with IHC‑stained sections in H&E‑stained 
tissue sections. Apart from this, the proposed method was able 
to achieve strong generalization from training data source from 
one hospital to a test data sourced from many hospitals.

Human ep idermal  growth  fac tor  receptor  2 
immunohistochemistry and hematoxylin and eosin data 
sources
To increase the precision and accuracy of HER2 IHC 
assessment, a contest to train and test computational methods 

for HER2 scoring was organized by the Tissue Image 
Analytics (TIA) Lab at the University of Warwick in 2016.[18] 
WSIs of two serial sections of breast carcinoma tissue stained 
with HER2 IHC and H&E, respectively, were released for 
each patient. WSIs were scanned using a HamamatsuR scanner 
at × 40 magnification (with × 10 objective such that each pixel 
covered a square of side 0.25 µm).

We used a subset of the released dataset for our study. There 
were 26 cases in the training dataset whose HER2 scores were 
known, and 26 cases in the testing dataset whose scores were 
estimated by the trained neural network. Of the training cases, 
15 were HER2– (scores 0 or 1+) and 11 were HER2+ (score 3+). 
We did not include slides with ambiguous HER2 IHC (score 2+) 
in training or testing. H&E sections were released to help the 
contestants to assess the percent of complete membrane staining, 
which was the secondary objective of the contest. These data 
gave us an excellent opportunity to study the spatial association 
between HER2 IHC and any corresponding morphological 
pattern in H&E. To test our trained model on an independent 
multi‑hospital dataset, we took H&E‑stained whole‑slide images 
of 45 cases from the TCGA‑BRCA cohort. Out of the 45 cases 
in TCGA‑BRCA cohort, 23 were HER2+ and 22 HER2–. The 
details of both datasets are shown in Table 2.

Methods
Breast cancer WSIs have a lot of heterogeneous regions 
including uninformative  (or nontumorous) ones such as 
background whitespace, adipose tissue (fat), blood vessels, 
nerves, benign epithelium, stroma, inflammation, etc., as 
shown in Figure  2. While deep learning is often applied 
in one go on the entire WSI, such an approach does not 
generalize well outside the training cohort and is also 
computationally inefficient. Therefore, we broke the problem 
of analyzing a WSI using a cascade of steps, including stain 
separation, followed by three neural networks that funnel 
down to the classes of interest. This was accomplished using 
the following steps, which are also illustrated in Figure 3. 
For testing, we start with a patient’s WSI and extract 
patches by rejecting the background regions. All nuclei 
are detected in the extracted patch to further mine smaller 
nuclei‑centric patches. These small patches are passed 
through tumor versus non-tumor classifiers to remove non-
tumorous patches from further processing. The tumorous 
patches from the previous classifier are further tested for 
HER2+  versus HER2–  classification. Finally, we use a 
threshold on the percentage of HER2+ nuclei for ascertaining 
a patient’s HER2 status. This process depended on careful 
data preparation, which we describe first.

Table 1: Human epidermal growth factor receptor 2 
scoring guidelines by the American Society of Clinical 
Oncology/College of American Pathologist

Score Pattern Assessment
0 No observable staining, or membrane 

staining that is incomplete and is faint/barely 
perceptible in <10% of tumor cells

Negative

1+ Incomplete membrane staining that is faint/
barely perceptible in >10% of invasive tumor 
cells

Negative

2+ Circumferential membrane staining that is 
incomplete and/or weak/moderate in >10% 
of invasive tumor cells, or complete and 
circumferential intense membrane staining in 
≤10% of invasive tumor cells

Equivocal

3+ Homogeneous, dark, circumferential (chicken 
wire) pattern in >10% of invasive tumor cells

Positive



Figure  4: A  sample annotation of H&E image  (right) using the serial 
immunohistochemistry image (left) included in the training dataset

Figure 3: Block diagram of the proposed method
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Training data preparation
Given the limited set of cases in the dataset, our training 
and testing methods were guided by the need to avoid the 
contamination by equivocal cases, low quality samples, 
and histology that can be attributed to rare subtypes of 
breast cancer. Thus, we excluded the cases in which H&E 
sections were smudged or covered with slide markers or 
represented a rare morphology. We also excluded the cases 
with inadequate tumor regions. WSIs have inter‑region 
variations in HER2 IHC because of various tissue structures 
as well as intra‑tumor heterogeneity  (e.g.  some regions 
appear 2+ and some 3+ in HER2+ cases). Therefore, using 
the Aperio ImagescopeR, we annotated regions that were 
clearly HER2– or HER2+ on H&E images by identifying 
their corresponding regions in the IHC‑stained serial section. 
A sample annotated image is shown in Figure 4, where the 
region marked in green is noncancerous and regions marked 
in cyan are cancerous. One can notice the care taken to 
exclude any ambiguous areas.

An exact image registration of the IHC and H&E stained 
images was not applicable due to the use of two very 
different stains and different, although serial or adjacent, 
tissue sections. Hence, we first annotated a few clearly 
tumorous and some clearly nontumorous regions in H&E 
WSIs for each case. On an average, there were six matched 
regions‑of‑interest of variable sizes in each slide that were 
annotated for training. The focus of the annotations was 
to cover the majority of the tumor regions with regional 
correspondence in the IHC serial section. We then identified 
the strong HER2+ and HER2– tumor regions within the IHC, 
and annotated the corresponding regions in H&E by visually 
matching gland shapes.

Test data preparation
Similar to the selection of training cases, 26 cases from the 
Warwick dataset were selected for testing, out of which 
eight were HER2+, and the rest were HER2–. To reduce 
computational time required for testing gigapixel WSIs we 

divided these into patches of size 2000 × 2000 and discarded 
those patches that had  <70% tissue area  (with grayscale 
intensity < 220). Thus, we made our method fully automated 
for test images. Similarly, for the TCGA‑BRCA dataset, 
we selected sections of tumorous regions on the WSIs and 
extracted 2000 × 2000 patches from the annotated regions of 
H&E WSIs.

Stain separation and nucleus detection
A lot of confounding classes and intra‑class variability 
encountered by the downstream classification modules can 
be reduced by merely detecting all nuclei with subsequent 
sampling of nucleus‑centric patches for further processing. 
This idea also incorporates the insight that nuclear 
morphology and inter‑nuclear relations are important in 
determining the disease states.[24,25] The first deep learning 
step of our pipeline determines the locations of nuclei in 
WSIs. As detecting nuclei requires examining each pixel 
location  (after discarding obvious noncandidates such 
as background whitespace using a gray‑scale intensity 
threshold), we used a pretrained UNet‑based nucleus 
detector.[26] The UNet was trained on a large dataset of 
annotated nuclei[15] using stain‑separated hematoxylin stain 
from H&E images.[27,28] The trained U‑Net gave satisfactory 
qualitative results on the WSIs from Warwick and TCGA 
datasets, as shown in Figure 5.

Tumor versus nontumor classifier
Once all nuclei are detected, we classify each nucleus into a 
tumor or non-tumor. Most of the non-tumorous nuclei were 
stromal, and hardly any were from the benign epithelium. We 
trained a custom CNN with architecture shown in Table 3, that 
classified fixed sized patches, centered at the locations of the 
detected nuclei, into tumor and nontumor. The training dataset 
for tumor versus nontumor classification was prepared using 
the tumor and nontumor annotations, as shown in Figure 4. The 
tumor regions contained both HER2+ and HER2– regions. This 
classifier was key to our pipeline as it screens all irrelevant 
parts of the tissues.

Human epidermal growth factor receptor 2+  versus 
human epidermal growth factor receptor 2–  classifier 
for tumorous cells
A third neural network classified the patches centered at tumor 
nuclei  (extracted by the previous stage) into HER2+  and 
HER2–. Doing so in a cascade of neural networks helped us 



Figure 6: Receiver operating characteristic curve for held‑out patients 
in the Warwick dataset for HER2 + versus HER2– task. HER2: Human 
epidermal growth factor receptor 2
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experiment with different architectures to accomplish each 
of the sub‑goals  (nucleus detection, tumor classification, 
and HER2 classification) in the cascade and derive visual 
insights into the regions marked by each of the networks. The 
architecture for the HER2+ versus HER2– classifier is shown 
in Table 4. The training dataset for this CNN comprised 28,021 
HER2+ and 29,296 HER2– patches, each of size 100 × 100 
pixels obtained after excluding the nontumorous patches.

Results

We now share the results of the tumor detection and HER2 
classification stages.

For training the tumor‑detection stage, from the training 
images in the Warwick dataset, 25,187 patches of size 
100 × 100 pixels that were centered at the detected nuclei 
were used for training the second CNN, of which 12,549 

were tumorous nuclei. On 5,000 patches in the test set, of 
which 2,500 were tumorous nuclei, the CNN achieved 98% 
classification accuracy.

The training of the third CNN to classify tumorous nuclei into 
HER2+ versus HER2– was done using 28,021 HER2+ and 
29,296 HER2–  patches mined from the Warwick training 
dataset. We tested the entire pipeline on two test datasets – the 
Warwick test dataset comprising 26 held‑out cases and on an 
independent 45 patient TCGA‑BRCA dataset.

Table 2: Composition of training and testing datasets

Dataset Warwick TCGA-BRCA
Training (number of cases)

HER2+ 11 -
HER2- 15
Total 26

Testing (number of cases)
HER2+ 8 23
HER2- 18 22
Total 26 45

TCGA-BRCA: The Cancer Genome Atlas Breast Invasive Carcinoma, 
HER2: Human epidermal growth factor receptor 2

Table 3: Convolutional neural network architecture for 
tumor versus nontumor classification

Layer Filter 
size

Input 
layer

Input size Output size

Input - - 100×100×3 -
Conv1a + BN 1×1 Input 100×100×3 100×100×4
Conv1b + BN 3×3 Input 100×100×3 100×100×4
Concat - Conv1a, 

Conv1b
100×100×4 100×100×8

Conv2 + BN + D 3×3 Concat 100×100×8 50×50×16
Conv3 + BN + D 5×5 Conv2 50×50×16 25×25×32
FC1 + BN 1024 Conv3 20,000 1024
FC2 64 FC1 1024 64
FC3 2 FC2 64 2
Conv: Convolution, BN: Batch normalization, ReLU: Rectified linear 
unit, FC: Fully connected

Figure  5: Sample visual results showing spatial correspondence 
with immunohistochemistry: ∆: HER2+, ∆: HER2–  and ×: 
Noncancerous.  (a and b) HER2+  image and its corresponding H&E 
marked images. (c and d) HER2–  images and its corresponding H&E 
marked images. HER2: Human epidermal growth factor receptor 2

d

c

b

a



Figure 8: Positive predictive value and negative predictive value curves 
for independent testing on the TCGA‑BRCA dataset

Figure 7: Area under the curve‑receiver operating characteristic curve 
for independent testing dataset TCGA‑BRCA
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Human epidermal growth factor receptor 2 overexpression 
estimation on Warwick dataset
We tested the proposed approach on the WSI by applying all three 
stages sequentially, i.e. detect nuclei, identify tumorous nuclei, 
and classify them as HER2+ or HER2–. The total number of 
tumorous nuclei and pecent of HER2+ nuclei detected for each 
patient was calculated. To obtain a patient‑level HER2+ decision, 
merely, a threshold for the proportion of HER2+ nuclei was 
used as there was a large gap between the maximum value for 
HER2– cases and minimum value for the HER2+ test cases. 
We achieved a patient‑level AUC of 0.82 (CI: 0.65–0.98) on the 
Warwick dataset, as shown in Figure 6. We achieve sensitivity 
of 0.75 with specificity of 0.78. We also show the qualitative 
results on the Warwick test dataset, where IHC serial sections 
were available, in Figure 5. The ∆ symbol denotes HER2+ nuclei, 
∆ denotes HER2– and × denotes non-tumorous nuclei. The first 
two rows highlight the efficacy of the algorithm in HER2+ nuclei 
identification. The bottom two rows show the efficacy to highlight 
HER2– nuclei. The subtle green marks in these figures identify 
non-tumorous nuclei in both HER2+ and HER2– cases. Figure 5 
shows a direct correspondence between the predicted HER2 
overexpression and IHC staining.

Testing human epidermal growth factor receptor 2 
overexpression determination on an independent dataset
We tested our trained model on an independent dataset 
to examine whether its generalization performance was 

strong enough to go from a single‑center to a multi‑center 
dataset. There were 45 cases  (23 HER2+ and 22 HER2–) 
in the independent test set obtained from the TCGA‑BRCA 
cohort. We achieved a patient AUC of 0.76 (CI: 0.61–0.89) 
on this dataset, as shown in Figure  7, without using any 
part of it in any way for training. Positive predictive values 
and negative predictive values (NPVs) for this dataset are 
shown in Figure 8. It is evident that the trained model could 
be used as a screening algorithm for HER2 overexpression 
detection, as the NPV holds around 0.90 for a threshold value 
of up to 0.40. The testing achieves sensitivity of 0.87 with 
specificity of 0.60.

Testing estimation of human epidermal growth factor 
receptor 2 overexpression on human epidermal growth 
factor receptor 2+ grade cases
For completeness of the analysis, a total of 25 cases were 
selected at random having an IHC score of 2+ and available 
FISH status from TCGA‑BRCA cohort. Out of the 25 cases, 
11 were FISH positive and 14 were FISH negative. The 
external validation on this dataset achieved an AUC score 
of 0.73 (CI: 0.53–0.93) as shown in Figure 9. The wide CI 
was expected as the model was never trained to predict the 
FISH status.

Table 4: Convolutional neural network architecture for human epidermal growth factor receptor 2+ versus human 
epidermal growth factor receptor 2− classification

Layer Filter size Activation Input layer Input size Output size
Input - - - 100×100×3 -
Conv1a + BN 1×1 ReLU Input 100×100×3 100×100×4
Conv1b + BN 3×3 ReLU Input 100×100×3 100×100×4
Concat - - Conv1a, Conv1b 100×100×4 100×100×8
Conv2 + BN + Dropout 3×3 ReLU Concat 100×100×8 50×50×16
Conv3 + BN + Dropout 5×5 ReLU Conv2 50×50×16 25×25×32
FC 1 + BN 64 ReLU Conv3 20,000 64
FC 2 + BN 64 ReLU FC 1 64 64
FC 3 2 Softmax FC 2 64 2
Conv: Convolution, BN: Batch normalization, ReLU: Rectified linear unit, FC: Fully connected



Figure 9: Area under the curve‑receiver operating characteristic curve 
for testing on human epidermal growth factor receptor 2 2+ cases from 
TCGA‑BRCA cohort
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Discussion and Conclusion

Using judiciously prepared training data from serial IHC and 
H&E sections, and a multi‑stage deep learning pipeline, we 
showed that the estimation of HER2 IHC score is possible 
from H&E images by quantifying the over‑expression of HER2 
protein. The trained model not only gives good performance 
on the held‑out cases from the discovery cohort but also 
works for an independent and multi‑center dataset, which is a 
stronger challenge in the medical community as compared to 
training on a multi‑center dataset and testing on an independent 
dataset from a single center. We attribute these results to the 
multi‑stage pipeline as opposed to training a single neural 
network to implicitly perform all tasks. The evaluation of the 
proposed approach as a potential screening method before 
HER2 IHC testing was also satisfactory, retaining 0.90 NPV. 
In future, we plan to expand the dataset to include more 
representatives of the rare morphologies that were excluded 
in the training and testing datasets used in this article. This is a 
successful pilot study displaying the potential of deep‑learning 
methods to present affordable and quality medical care. We will 
also extend the study to other IHC panels for computational 
multiplexing. Our work suggests that deep‑learning pipelines 
can be trained on H&E morphology using supervised data from 
serial IHC sections or even genomic tests. This opens up the 
possibility of detecting the presence of multiple antigens or 
sub‑clonal populations at different spatial foci to study tumor 
subtypes and intra‑tumor heterogeneity.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1.	 Cancer of the Breast  (Female)  –  Cancer Stat Facts. Available from: 

https://seer.cancer.gov/statfacts/html/breast.html.  [Last accessed on 
2019 Oct 02].

2.	 American Cancer Society. Cancer Facts and Statistics. Available from: 
http://cancerstatisticscent er.cancer.org/. [Last accessed on 2019 Oct 02].

3.	 Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. 
Repeated observation of breast tumor subtypes in independent 

gene expression data sets. Proc Natl Acad Sci United States Am 
2003;100:8418‑23.

4.	 Dai X, Chen A, Bai Z. Integrative investigation on breast cancer in ER, 
PR and HER2‑defined subgroups using mRNA and miRNA expression 
profiling. Sci Rep 2014;4:6566.

5.	 Perou  CM, SÃžrlie T, Eisen  MB, van de Rijn  M, Jeffrey  SS, 
Rees CA, et al. Molecular portraits of human breast tumours. Nature 
2000;406:747‑52.

6.	 Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic 
subtype classification, clinical use and future trends. Am J Cancer Res 
2015;5:2929‑43.

7.	 Romond  EH, Perez  EA, Bryant  J, Suman  VJ, Geyer CE Jr., 
Davidson  NE, et  al. Trastuzumab plus adjuvant chemotherapy for 
operable her2‑positive breast cancer. N Engl J Med 2005;353:1673‑84.

8.	 Finberg KE, Sequist LV, Joshi VA, Muzikansky A, Miller JM, Han M, 
et  al. Mucinous differentiation correlates with absence of EGFR 
mutation and presence of KRAS mutation in lung adenocarcinomas 
with bronchioloalveolar features. J Mol Diagn 2007;9:320‑6.

9.	 He  K, Zhang  X, Ren  S, Sun  J. Deep residual learning for image 
recognition. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition; 2016. p. 770‑8.

10.	 Deng  J, Dong  W, Socher  R, Li  LJ, Li  K, Fei‑Fei  L. Imagenet: 
A  large‑scale hierarchical image database. In: 2009 IEEE Conference 
on Computer Vision and Pattern Recognition. IEEE; 2009. p. 248‑55.

11.	 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going 
deeper with convolutions. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition; 2015. p. 1‑9.

12.	 Campanella G, Hanna MG, Geneslaw L, Miraflor A, Silva WK, Busam V, 
et al. Clinical‑grade computational pathology using weakly supervised 
deep learning on whole slide images. Nature Med 2019;25:1301‑9.

13.	 Wang D, Khosla A, Gargeya R, Irshad H, Beck AH. Deep Learning for 
Identifying Metastatic Breast Cancer. arXiv preprint arXiv: 1606.05718; 
2016.

14.	 Grand Challenge. Available from: https://grand‑challenge.org/.  [Last 
accessed on 2019 Oct 02].

15.	 Kumar  N, Verma  R, Sharma  S, Bhargava  S, Vahadane  A, Sethi  A. 
A  dataset and a technique for generalized nuclear segmentation for 
computational pathology. IEEE Transact Med Imaging 2017;36:1550‑60.

16.	 Kumar N, Verma R, Anand D, Zhou Y, Onder OF, Tsougenis E, et al, A 
Multi-Organ Nucleus Segmentation Challenge.  IEEE Transactions on 
Medical Imaging 2020;39:1380-91.

17.	 Wolff  AC, Hammond  ME, Allison  KH, Harvey  BE, Mangu  PB, 
Bartlett  JM, et  al. Human epidermal growth factor receptor 2 testing 
in breast cancer: American Society of Clinical Oncology/College of 
American Pathologists Clinical practice guideline focused update. 
J Clin Oncol 2018;36:2105‑22.

18.	 Qaiser T, Mukherjee A, Reddy PC, Munugoti SD, Tallam V, Pitkäaho T, 
et al. Her 2 challenge contest: A detailed assessment of automated her 
2 scoring algorithms in whole slide images of breast cancer tissues. 
Histopathology 2018;72:227‑38.

19.	 Coudray  N, Ocampo  PS, Sakellaropoulos  T, Narula  N, Snuderl  M, 
Fenyö D, et al. Classification and mutation prediction from non–small 
cell lung cancer histopathology images using deep learning. Nature Med 
2018;24:1559.

20.	 Kim RH, Nomikou S, Dawood Z, Coudray N, Weber JS, Shapiro RL,  
et al. Using deep learning algorithms on histopathology images for 
the prediction of BRAF and NRAS mutations in invasive melanoma. 
Journal of Clinical Oncology 2018;36e21561-e21561.

21.	 Kim  RH, Nomikou  S, Dawood  Z, Jour  G, Donnelly  D, Moran  U, 
et  al. A  Deep Learning Approach for Rapid Mutational Screening in 
Melanoma. bioRxiv 610311; 2019.

22.	 Andersen  L, Brügmann N, Lelkaitis  A, Nielsen  G, Friis Lippert  S, 
Vyberg  MM. Virtual double staining: A  digital approach to 
immunohistochemical quantification of estrogen receptor protein in 
breast carcinoma specimens. Applied Immunohistochem Mol Morphol 
2018;26:620‑6.

23.	 Rawat RR, Ruderman D, Macklin P, Rimm DL, Agus DB. Correlating 
nuclear morphometric patterns with estrogen receptor status in breast 
cancer pathologic specimens. NPJ Breast Cancer 2018;4:32.



J Pathol Inform 2020, 1:19	 http://www.jpathinformatics.org/content/11/1/19

Journal of Pathology Informatics8

24.	 Verma R, Kumar N, Sethi A, Gann PH. Detecting multiple subtypes of 
breast cancer in a single patient. In: 2016 IEEE International Conference 
on Image Processing (ICIP). IEEE; 2016. p. 2648‑52.

25.	 Kumar  N, Verma  R, Arora  A, Kumar  A, Gupta  S, Sethi  A, et  al. 
Convolutional neural networks for prostate cancer recurrence prediction. 
In: Medical Imaging 2017: Digital Pathology. Vol. 10140. International 
Society for Optics and Photonics; 2017. p. 101400H.

26.	 Ronneberger  O, Fischer  P, Brox  T. U‑net: Convolutional networks 
for biomedical image segmentation. In: International Conference 

on Medical Image Computing and Computer‑Assisted Intervention. 
Springer; 2015. p. 234‑41.

27.	 Vahadane A, Peng T, Sethi A, Albarqouni S, Wang L, Baust M, et al. 
Structure‑preserving color normalization and sparse stain separation for 
histological images. IEEE Transact Med Imaging 2016;35:1962‑71.

28.	 Anand  D, Ramakrishnan  G, Sethi  A. Fast GPU‑enabled color 
normalization for digital pathology. In: 2019 International Conference 
on Systems, Signals and Image Processing  (IWSSIP). IEEE; 2019. 
p. 219‑24.


