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Abstract: Silver nanoparticles (AgNPs) are gaining a great deal of attention in biomedical applications
due to their unique physicochemical properties. In this study, green synthesis of AgNPs was
developed using seaweed polysaccharide fucoidan. The AgNPs were further coated with chitosan
to form an electrolyte complex on the surface. The developed chitosan–fucoidan complex-coated
AgNPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy
(FT-IR), and transmission electron microscopy (TEM). FT-IR results suggested strong polyelectrolyte
complexation between fucoidan and chitosan. The developed chitosan–fucoidan complex-coated
AgNPs significantly inhibited microbial growth. Moreover, the AgNPs showed efficient anticancer
activity in human cervical cancer cells (HeLa). This study demonstrated that chitosan–fucoidan
complex-coated AgNPs hold high potential for food and cosmeceutical applications.
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1. Introduction

Nanotechnology is gaining much attention in several fields, such as energy, medicine,
and environmental areas [1–3]. Engineered metal nanoparticles have attracted widespread
interest in the fields of catalysis, photonics, photography, regenerative medicine, drug delivery,
gene therapy and biosensors due to their unique properties [4–6]. Engineered metal nanoparticles
can be produced in multiple ways, such as chemical synthesis [5] and biosynthesis methods [7].
Chemical synthesis has advantages in controlling the size of metal nanoparticles during the synthetic
procedure [5]. However, some toxic chemicals are often involved during the preparation process [8].
Alternatively, biosynthesis of metal nanoparticles using biocompatible microbes and plants can avoid
toxicity issues [9]. Biosynthesized silver nanoparticles (AgNPs) have been intensively developed in
recent years due to their excellent antimicrobial properties [10–12]. Biosynthesis of AgNPs can be
obtained through reducing silver ions into AgNPs by microbes and plants. Biosynthesis of AgNPs using
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marine-derived polysaccharides has been attempted previously [13]. For example, Leung et al. showed
that AgNPs could be prepared using carboxymethylated-curdlan and fucoidan to reduce silver nitrate
ions [13,14]. Wei et al. and Murugadoss et al. developed AgNPs with chitosan [10]. These polysaccharides
were not only utilized as reducing agents to reduce silver ions to AgNPs, but also as stabilizing agents.

Fucoidan is an anionic polysaccharide commonly isolated from brown seaweeds. Fucoidan has
several biological activities, including anticancer, anticoagulant, antioxidant, and anti-inflammatory
activities [15–23]. Chitosan is a cationic polysaccharide derived from chitin. Chitin is considered the second
most abundant polysaccharide next to the cellulose [24,25]. Chitosan has been extensively studied
for various biomedical applications, including wound healing, tissue engineering, and drug delivery,
due to its biocompatibility and biodegradability [26–30]. Chitosan and fucoidan are oppositely charged
polysaccharides, thus enabling the formation of polyelectrolyte complexes via self-assembly [31–33].
Several studies have suggested that chitosan–fucoidan polyelectrolyte/nanoparticles have great
advantages in drug delivery [31–39] and tissue engineering [40–42] due to their efficient drug
encapsulation and cellular uptake.

In this study, chitosan–fucoidan complex-coated AgNPs were synthesized and utilized for
antimicrobial and anticancer activities. The chitosan–fucoidan-coated AgNPs were characterized by
Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and transmission electron
microscopy (TEM) analysis. Antibacterial and anticancer activities of chitosan–fucoidan complex-coated
AgNPs were also studied.

2. Results and Discussion

2.1. Preparation of Chitosan–Fucoidan Complex-Coated AgNPs

Figure 1 shows the schematic for the fabrication of chitosan–fucoidan-coated AgNPs. First, fucoidan
was mixed with silver nitrate (AgNO3) solution to form AgNPs. Fucoidan was used as capping
agents as well as reducing agents for the formation of stable AgNPs [43]. Then, chitosan was added
to the fucoidan-coated AgNPs to form stable AgNPs coated with chitosan–fucoidan polyelectrolyte
complexes. Centrifugation was used to remove the residual AgNO3, free chitosan, and fucoidan from
the chitosan–fucoidan complex-coated AgNPs. The final product was obtained by lyophilization.
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AgNPs. Fucoidan from Fucus vesiculosus has been utilized for anticancer therapy [45]. UV-Vis 
spectroscopy of fucoidan-coated nanoparticles was obtained at different time intervals. Figure 2 
shows the UV-Vis spectrum of biosynthesized AgNPs at different time intervals. As shown in  
Figure 2, during the first hour, AgNPs were not formed. However, surface plasmon resonance (SPR) 
peak of AgNPs at 418 nm was observed after 2 h of reaction, and the intensity increased with time. 
The maximum intensity of the SPR peak was observed after 24 h of interaction of fucoidan with  
silver ions.  

Figure 1. Schematic representation for the preparation of chitosan–fucoidan complex-coated silver
nanoparticles (AgNPs).
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2.2. UV-Visible (UV-Vis) Spectroscopy

In a previous study, AgNPs were prepared by using fucan of Spatoglossum schröederi brown
seaweed [44]. According to that study, fucan reduces the silver ions to form the stable fucan-coated
AgNPs [44]. In this study, Fucus vesiculosus brown seaweed-derived fucoidan was utilized to prepare
AgNPs. Fucoidan from Fucus vesiculosus has been utilized for anticancer therapy [45]. UV-Vis spectroscopy
of fucoidan-coated nanoparticles was obtained at different time intervals. Figure 2 shows the UV-Vis
spectrum of biosynthesized AgNPs at different time intervals. As shown in Figure 2, during the first hour,
AgNPs were not formed. However, surface plasmon resonance (SPR) peak of AgNPs at 418 nm was
observed after 2 h of reaction, and the intensity increased with time. The maximum intensity of the SPR
peak was observed after 24 h of interaction of fucoidan with silver ions.Molecules 2018, 23, x FOR PEER REVIEW  4 of 13 
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Figure 2. UV-visible (UV-Vis) spectrum of AgNPs synthesized with fucoidan at different reaction time.

The SPR peak of AgNPs at 418 nm was consistent with the results reported by other groups [37].
They developed biosynthesized AgNPs with water extracts of Sargassum muticum [46].

2.3. Particle Size Analysis Using DLS

The size of fucoidan-coated AgNPs and chitosan–fucoidan complex-coated AgNPs were measured
by DLS (Figure 3A,B). The size and polydispersity index (PDI) of the fucoidan-capped AgNPs and
chitosan–fucoidan complex-coated AgNPs were found to be 53.19 ± 2.23 nm (PDI: 0.39 ± 0.04)
and 73.09 ± 9.54 nm (PDI: 0.47 ± 0.05), respectively. DLS results shown in Figure 3A,B indicate
that the average size of chitosan–fucoidan complex-coated AgNPs (73.1 nm) is larger than that
of fucoidan-coated AgNPs (53.1 nm). This result implies that cationic chitosan is electrostatically
bound to the surface of anionic fucoidan-coated AgNPs, resulting in increased particle size.
Importantly, there was no severe aggregation of particles when the fucoidan-coated AgNPs were
complexed with chitosan, indicating their high colloidal stability.
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Leung et al. reported the size of fucoidan-coated AgNPs as approximately 40–80 nm [13]. This result
is in good agreement with our data. In another study, Amorim et al. reported the size of fucan-coated
AgNPs as 210.44 ± 29.13 nm [44]. It has clearly been found that the size of AgNPs mainly depends on
the molecular weights of fucoidan. The zeta potentials of fucoidan-coated AgNPs and chitosan–fucoidan
complex-coated AgNPs were −36.9 ± 0.91 mV and −32.1 ± 0.95 mV, respectively. The negative
charge of the AgNPs indicated the presence of sulfate groups on the surface of the AgNPs. There are
several reports suggesting that negative charged polysaccharides usually produce AgNPs with negative
surface charges [47,48]. The increased zeta-potential of chitosan–fucoidan complex-coated AgNPs can be
attributed to the presence of positively charged chitosan on the AgNPs.

2.4. Fourier Transform Infrared (FT-IR) Spectroscopy

Figure 4 shows the FT-IR spectrum of (A) chitosan, (B) fucoidan, and (C) chitosan–fucoidan
complex-coated AgNPs. The characteristic peaks of chitosan were observed in Figure 4A, which
are 892 cm−1, 1023 cm−1, 1150 cm−1, 1420 cm−1, 1587 cm−1, and 3121 cm−1. The peak at 892 cm−1

indicates the C–O–C bridge as well as glycosidic linkage. The peak at 1023 cm−1 shows the presence
of skeletal vibration involving C–O–C [49].

Molecules 2018, 23, x FOR PEER REVIEW  5 of 13 

 

Leung et al. reported the size of fucoidan-coated AgNPs as approximately 40–80 nm [13]. This 
result is in good agreement with our data. In another study, Amorim et al. reported the size of fucan-
coated AgNPs as 210.44 ± 29.13 nm [44]. It has clearly been found that the size of AgNPs mainly 
depends on the molecular weights of fucoidan. The zeta potentials of fucoidan-coated AgNPs and 
chitosan–fucoidan complex-coated AgNPs were −36.9 ± 0.91 mV and −32.1 ± 0.95 mV, respectively. 
The negative charge of the AgNPs indicated the presence of sulfate groups on the surface of the 
AgNPs. There are several reports suggesting that negative charged polysaccharides usually produce 
AgNPs with negative surface charges [47,48]. The increased zeta-potential of chitosan–fucoidan 
complex-coated AgNPs can be attributed to the presence of positively charged chitosan on the AgNPs.  

2.4. Fourier Transform Infrared (FT-IR) Spectroscopy 

Figure 4 shows the FT-IR spectrum of (A) chitosan, (B) fucoidan, and (C) chitosan–fucoidan 
complex-coated AgNPs. The characteristic peaks of chitosan were observed in Figure 4A, which are 
892 cm−1, 1023 cm−1, 1150 cm−1, 1420 cm−1, 1587 cm−1, and 3121 cm−1. The peak at 892 cm−1 indicates the 
C–O–C bridge as well as glycosidic linkage. The peak at 1023 cm−1 shows the presence of skeletal 
vibration involving C–O–C [49]. 

 
Figure 4. Fourier transform infrared spectroscopy (FT-IR) spectrum of (A) chitosan, (B) fucoidan, and 
(C) fucoidan-coated AgNPs with chitosan. 

Figure 4B shows the characteristic peaks of fucoidan at 834 cm−1, 1011 cm−1, 1223 cm−1, 1388 cm−1, 
1625 cm−1, 1731 cm−1, and 3426 cm−1. The peaks at 1011 cm−1, 1223 cm−1, and 834 cm−1 correspond to the 
S=O and C–O–S stretching of the sulfate groups in fucoidan [35]. Figure 4C represents the FT-IR 
spectrum of chitosan–fucoidan complex-coated AgNPs. The characteristic peaks are 830 cm-1, 1019 cm−1, 
1216 cm−1, 1382 cm−1, 1617 cm−1, and 3406 cm−1. The peaks at 830 indicate the presence of the sulfate 
groups of fucoidan, whereas the peaks at 1019 cm−1 and 1216 cm−1 correspond to the chitosan moieties. 
The FT-IR spectra clearly confirm the formation of chitosan–fucoidan polyelectrolyte complexation. 
There are no detectable peaks for AgNPs due to the trace amount of AgNPs.  
  

Figure 4. Fourier transform infrared spectroscopy (FT-IR) spectrum of (A) chitosan, (B) fucoidan, and
(C) fucoidan-coated AgNPs with chitosan.
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Figure 4B shows the characteristic peaks of fucoidan at 834 cm−1, 1011 cm−1, 1223 cm−1,
1388 cm−1, 1625 cm−1, 1731 cm−1, and 3426 cm−1. The peaks at 1011 cm−1, 1223 cm−1, and 834 cm−1

correspond to the S=O and C–O–S stretching of the sulfate groups in fucoidan [35]. Figure 4C represents
the FT-IR spectrum of chitosan–fucoidan complex-coated AgNPs. The characteristic peaks are 830 cm-1,
1019 cm−1, 1216 cm−1, 1382 cm−1, 1617 cm−1, and 3406 cm−1. The peaks at 830 indicate the presence
of the sulfate groups of fucoidan, whereas the peaks at 1019 cm−1 and 1216 cm−1 correspond to
the chitosan moieties. The FT-IR spectra clearly confirm the formation of chitosan–fucoidan polyelectrolyte
complexation. There are no detectable peaks for AgNPs due to the trace amount of AgNPs.

2.5. Morphology of AgNPs

Figure 5A–D shows the size and morphology of AgNPs coated with chitosan and fucoidan at
different magnifications. The TEM results indicate that AgNPs show spherical shapes, but not in uniform
size. The average size of the chitosan–fucoidan complex-coated AgNPs was around 50 nm. The size
of the chitosan–fucoidan complex-coated AgNPs determined by TEM was slightly smaller than that
of the chitosan–fucoidan complex-coated AgNPs determined by DLS (Figure 3A,B). The DLS results
provide hydrodynamic diameters of the chitosan–fucoidan complex-coated AgNPs dispersed in water,
while TEM results provide the actual size of the dried AgNPs. Therefore, the size of the chitosan–fucoidan
complex-coated AgNPs determined by DLS should be smaller than that of the AgNPs determined by TEM.
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Figure 5. Transmission electron microscopy (TEM) images of chitosan–fucoidan complex-coated
AgNPs at different magnifications (A) 0.2 µm, (B,C) 100 nm, and (D) 50 nm.

2.6. Antibacterial Activity of AgNPs

The antimicrobial activities of chitosan–fucoidan complex-coated AgNPs were evaluated against
Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) using an agar
well diffusion method. After both bacteria were incubated with the AgNPs, clear zones were observed
against all the tested organisms and were recorded in circle size. The chitosan–fucoidan complex-coated
AgNPs showed inhibition of growth in both E. coli (Figure 6A) and S. aureus (Figure 6B). Furthermore,
as expected, no inhibition was detected when using the negative control media. As shown in
Figure 6A,B, chitosan–fucoidan complex-coated AgNPs revealed concentration-dependent antibacterial
activity. The highest growth inhibition in E. coli (3 ± 0.3 mm) was observed when incubated at 100 µg/mL
of chitosan–fucoidan complex-coated AgNPs. Likewise, S. aureus colonies treated with 100 µg/mL of
chitosan–fucoidan complex-coated AgNPs exhibited the highest growth inhibition (2 ± 0.2 mm).
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Figure 6. Antimicrobial activity of chitosan–fucoidan complex-coated AgNPs at different concentrations
(10 µg, 50 µg, and 100 µg). (A) E. coli colonies. (B) S. aureus colonies. (C) Viability of E. coli and S. aureus
after treated with chitosan–fucoidan complex-coated AgNPs.

In addition, the antimicrobial activities of chitosan–fucoidan complex-coated AgNPs were
evaluated against E. coli and S. aureus using an MTT assay (Figure 6C). The IC50 values of
the chitosan–fucoidan complex-coated AgNPs on the tested microorganisms were 61.3 µg/mL against
E. coli and 70 µg/mL against S. aureus. E. coli was more sensitive than S. aureus in the same concentration.
This study indicates that chitosan–fucoidan complex-coated AgNPs have excellent biocidal effects,
showing potential in reducing bacterial growth in practical applications.

2.7. Anticancer Activity of Chitosan–Fucoidan Complex-Coated AgNPs

The cytotoxicity of chitosan–fucoidan complex-coated AgNPs was assessed against human
cervical cancer cells (HeLa). The cells were treated with different concentrations of AgNPs (10, 50, 100,
and 250 µg/mL) for 24 h. Significant cytotoxicity was observed at the 50 µg/mL of concentration, and
the IC50 value was found to be around 35 µg/mL (Figure 7A). Jang et al. reported that biosynthesized
AgNPs have efficient anticancer activity by upregulation of p53 gene expression [50]. The cytotoxicity in
cancer cells is associated with changes in morphology and loss of adherence and rounding, which was
clearly shown in Figure 7B [49].
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Figure 7. (A) Cytotoxicity effects of chitosan–fucoidan complex-coated AgNPs in human cervical
cancer cells (HeLa) at different concentrations. (B) Optical microscopy images of HeLa cells treated
with (a) Blank and (b) 250 µg/mL of chitosan–fucoidan complex-coated AgNPs.

2.8. Flow Cytometry Analysis

Figure 8 shows the flow cytometry analysis of untreated HeLa cells and HeLa cells treated
with chitosan–fucoidan complex-coated AgNPs (250 µg/mL). As shown in Figure 8A, 6.03% of cells
were located in the lower right quadrant indicating early apoptosis of cells. As shown in Figure 8B,
the cell population in the lower left quadrant was 16.28%, indicating the increased apoptosis by
chitosan–fucoidan complex-coated AgNPs.
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Figure 8. Flow cytometry analysis of (A) untreated HeLa cells and (B) HeLa cells treated with
chitosan–fucoidan complex-coated AgNPs at 250 µg/mL.

3. Materials and Methods

Fucoidan, chitosan, and AgNO3 were purchased form Sigma Aldrich (St. Louis, MO, USA).
HeLa cells were purchased from American Type Culture Collection (ATCC) (Manassas, VA, USA).
Dulbecco’s modified eagle medium (DMEM) and fetal bovine serum (FBS) were obtained from Lonza
Chemicals (Walkersville, MD, USA). [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]
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(MTT) was purchased from Sigma Aldrich (St. Louis, MO, USA). Apoptosis kit (FITC Annexin V
Apoptosis Detection Kit) was purchased from Biosciences (Heidelberg, Germany).

3.1. Preparation of Fucoidan-Coated AgNPs

First, fucoidan (1 mg/mL) was dissolved in water and taken in a closed container. Then, 0.01 mM
AgNO3 was added into the fucoidan solution and heated on a hot plate at 90 ◦C. Further, the solution
was continuously stirred with a magnetic stirrer for 24 h to form AgNPs. After that, 2 mL of chitosan
(1 mg/mL, pH: 5.5) was added to 8 mL of fucoidan-coated AgNPs solution to form chitosan–fucoidan
complex-coated AgNPs. The AgNPs were separated from the solution by centrifugation at 13,000 rpm
for 20 min. The supernatant was discarded, and the pellet was dispersed in water and centrifuged again.
The AgNPs were dispersed in water and freezed at −24 ◦C overnight, followed by lyophilization.

3.2. UV-Visible Spectroscopy

Reduction of silver ions by fucoidan was monitored using UV-visible spectroscopy (GeneQuant 1300,
GE Healthcare, Piscataway, NJ, USA). An aliquot of the reaction mixture was collected periodically and
scanned using a spectrophotometer at wavelengths between 200 and 800 nm with a resolution of 1 nm.

3.3. DLS Analysis

Size distribution of the AgNPs was characterized by dynamic light scattering using a Malvern
Zetasizer Nano ZS (Worcestershire, UK).

3.4. Fourier Transform Infrared Spectroscopy

FT-IR analysis (Scientific Instruments LLC, Madison, WI, USA) was performed to determine
the chemical interaction between chitosan and fucoidan. A Nicolet iS10 Thermo Electron Spectrometer
was used in this study. The ATR method was used in this study.

3.5. Transmission Electron Microscopy Analysis

Surface morphologies and nanoparticle size of AgNPs were obtained using a transmission electron
microscope (H7500, Hitachi Ltd., Tokyo, Japan) at 120 kV.

3.6. Antimicrobial Activity Test of AgNPs

Two different bacteria (E. coli and S. aureus) were used in this study. All strains were maintained
in Luria Broth (LB) agar (10 g/L sodium chloride, 5 g/L yeast extract, 10 g/L trypton, 15 g/L agar)
as stock cultures at 4 ◦C, as reported in a previous study by Kalimuthu et al. [51]. The antimicrobial
activities of chitosan–fucoidan complex-coated AgNPs were determined by an agar plate well diffusion
method [52]. Bacteria were cultured in LB broth; 200 µL of an initial inoculum (0.2 × 108 CFU) of each
strain in the LB agar media was applied and uniformly spread in the well. Subsequently, 100 µL of
chitosan–fucoidan complex-coated AgNPs solutions at 10, 50, and 100 µg/mL concentrations were
added into 5 mm diameter wells and incubated for 24 h at 37 ◦C. LB broth (100 µL) was used as
a negative control. After incubation, the zones of inhibition were measured as per the previously
reported method [53].

3.7. Cytotoxicity Assay

MTT assay was used to estimate the antibacterial activity of chitosan–fucoidan complex-coated
AgNPs. The different concentrations (10, 50, and 100 µg/mL) of the nanoparticles were added to
the well containing 500 µL of diluted bacterial culture (1 × 106 CFU/mL) and kept in a shaking
incubator at 37 ◦C for 24 h. MTT assay was performed according to the previous study [54]. IC50 value
was measured by plotting the viability with concentration.



Molecules 2018, 23, 1429 9 of 12

3.8. Cytotoxicity Effects of Nanoparticles in Cancer Cells

Cytotoxicity effects of the developed chitosan-fucoidan complex-coated AgNPs were checked
with HeLa cells according to our previous study [11]. In this study, different concentrations (10, 50, 100
and 250 µg/mL) of nanoparticles were used.

3.9. Optical Microscopy Analysis

HeLa cells were cultured in 24-well plates at a density of 1 × 104 cells per well. After 24 h of
incubation, cells were treated with chitosan–fucoidan complex-coated AgNPs. After incubation for 24 h,
morphologies of the cells were observed using an optical microscope (CTR 6000, Leica, Wetzlar, Germany).

3.10. Apoptosis Analysis

Apoptotic cell death of HeLa cells induced by chitosan–fucoidan complex-coated AgNPs was
measured by flow cytometry analysis after Annexin V and PI staining. The flow cytometry analysis was
performed according to our previous study [11]. HeLa cells were placed in 6-well culture plate for 24 h at
37 ◦C, and cells were treated with 250 µg/mL of chitosan–fucoidan complex-coated AgNPs. Further, cells
were incubated for 6 h, washed with PBS, trypsinized, and collected. Then, the cells were resuspended
in Annexin V binding buffer solution. The cells were stained according to the manufacturer’s protocol
(BD Biosciences). Fluorescent intensities of Annexin V and PI were measured using a flow cytometer
(FACS Calibur, BD Biosciences, Heidelberg, Germany).

3.11. Statistical Analysis

All the experiments were performed in triplicate. Data were analyzed using Student’s t-test at
a significance level of p < 0.01 and presented as mean ± standard deviation.

4. Conclusions

Biosynthesis of AgNPs was achieved by using fucoidan as reducing and capping agents.
The formation of AgNPs was confirmed by UV-Vis spectroscopy. The AgNPs were further coated with
chitosan to form chitosan–fucoidan complex-coated AgNPs. The particle size and polydispersity index
of the fucoidan-coated AgNPs and chitosan–fucoidan complex-coated AgNPs were 53.19 ± 2.23 nm
and 73.09 ± 9.54 nm, respectively. Electrostatic interaction was observed between the chitosan and
fucoidan, which was confirmed by FT-IR spectroscopy. The developed chitosan–fucoidan complex-coated
AgNPs significantly inhibited the growth of E. coli and S. aureus. The anticancer activity of the AgNPs
was also investigated with HeLa cells. The IC50 value of the AgNPs was 35 µg/mL. This study
suggests that chitosan–fucoidan complex-coated AgNPs are promising candidates for food and
cosmeceutical applications.
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