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High-throughput sequencing technologies have identified millions of genetic mutations
in multiple human diseases. However, the interpretation of the pathogenesis of these
mutations and the discovery of driver genes that dominate disease progression is still
a major challenge. Combining functional features such as protein post-translational
modification (PTM) with genetic mutations is an effective way to predict such alterations.
Here, we present PTMsnp, a web server that implements a Bayesian hierarchical
model to identify driver genetic mutations targeting PTM sites. PTMsnp accepts genetic
mutations in a standard variant call format or tabular format as input and outputs several
interactive charts of PTM-related mutations that potentially affect PTMs. Additional
functional annotations are performed to evaluate the impact of PTM-related mutations
on protein structure and function, as well as to classify variants relevant to Mendelian
disease. A total of 4,11,574 modification sites from 33 different types of PTMs and
1,776,848 somatic mutations from TCGA across 33 different cancer types are integrated
into the web server, enabling identification of candidate cancer driver genes based on
PTM. Applications of PTMsnp to the cancer cohorts and a GWAS dataset of type 2
diabetes identified a set of potential drivers together with several known disease-related
genes, indicating its reliability in distinguishing disease-related mutations and providing
potential molecular targets for new therapeutic strategies. PTMsnp is freely available at:
http://ptmsnp.renlab.org.

Keywords: protein post-translational modification, genetic mutations, Bayesian hierarchical model, driver genes,
disease

INTRODUCTION

Large-scale genome sequencing has uncovered a complex landscape of genetic mutations in
multiple patient populations. A major goal of these sequencing projects is to characterize a
few disease-related mutations from the majority of neutral passenger mutations. Currently,
the most commonly used strategy to prioritize mutations is the frequency-based approach,
such as MutSigCV (Lawrence et al., 2013), MuSiC (Dees et al., 2012), and other methods
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(Youn and Simon, 2011). These tools can reveal a number of
potential driver genes that carry recurrent mutations in a given
disease cohort. However, the known driver genes identified from
those frequency-based strategies are not sufficient to explain the
diverse mechanisms of disease progression. Therefore, several
approaches that not only consider recurrent mutations but
also combine other functional features, such as evolutionary
conservation (Reva et al., 2011), known pathway annotation
(Wendl et al., 2011) and protein-protein interaction networks
(Vandin et al., 2011; Ciriello et al., 2012), have been proposed.

Among those functional features, one of the most critical
factors that can be used in driver gene identification is protein
post-translational modifications (PTMs). As key mechanisms
to increase proteomic diversity, PTMs can regulate almost all
physiological and biochemical processes in mammalian cells.
Thus, genetic mutations that occur specifically around the PTM
sites (also known as PTM-related mutations) may potentially
alter protein functions and disturb regulatory pathways in vivo,
leading to the development of certain serious diseases, such
as cancers. A previous study has reported that mutation of
SUMO-conjugated sites in androgen receptor (AR) may result in
an increase of AR transcriptional activity, and hence promoting
cell proliferation and hypoxia-induced angiogenesis in Prostate
cancer (Lin et al., 2004). Meanwhile, experiments have also
shown that oncogenic variants altering S768 phosphorylation of
EGFR increase its catalytic activity, and S768I mutation can drive
tumorigenesis by disrupting EGFR autophosphorylation and
rewiring downstream signaling pathways (Huang L. C. et al.,
2018). In addition to cancer, Martin et al. have reported that the
G553E mutation on huntingtin (HTT) protein can abrogate its
post-translational myristoylation and induce cellular toxicity of
the protein in cellulo, consequently causing Huntington disease
(Martin et al., 2018).

In light of the significant impact of PTM-related mutations on
human diseases, several databases have been developed to curate
mutations that may potentially affect PTMs. For example, dbPTM
collected a subset of PTM-disease associations based on disease-
associated non-synonymous SNPs from dbSNP in its 2019
updated version (Huang et al., 2019). Similarly, PhosphpSitePlus
provided PTMVar dataset to characterize PTMs that overlap
with disease-associated genetic variants and polymorphisms
(Hornbeck et al., 2015). Using a similar strategy, other databases
such as iPTMnet (Huang H. et al., 2018), PRISMOID (Li et al.,
2020), and PTM-SNPs (Kim et al., 2015) were also reported in
recent publications. In considering the false positive errors that
introduced by the direct mapping of disease-related mutations
to PTM sites when deriving disease-related PTM mutations,
several studies using predictive tools to extract PTM-related
mutations were proposed. For instance, ActiveDriver revealed
a set of candidate cancer driver genes harboring mutation
hotspots proximal to known phosphorylation, acetylation and
ubiquitination sites that may cause the dysfunction of PTM-
related mechanisms (Reimand and Bader, 2013; Reimand et al.,
2013; Narayan et al., 2016). Besides, MIMP is a machine learning
method to predict whether single-nucleotide variants (SNVs)
can disrupt existing phosphorylation sites or create new sites
(Wagih et al., 2015). Using the MIMP method, ActiveDriverDB

is established for collecting human disease mutations and
genetic variants that may potentially alter four types of PTMs
(Krassowski et al., 2018). In addition, AWESOME utilized 20
PTM prediction tools to predict whether a SNP could change the
PTMs level of six common PTM types in a specific protein (Yang
et al., 2019). Besides, Simpson et al. developed DeltaScansite
to assess the impact of mutations in the flanking regions of
phosphosites (Simpson et al., 2019).

Although these reported methods have provided abundant
resources of PTM-related mutations, limitations are still existing.
First of all, the current methods carried out mutation analysis
for one or a few common PTM types, and most other
PTM types cannot be covered, thus losing a large amount of
PTM-related mutation information. Secondly, most of methods
(except ActiveDriver) only consider the impact of mutations on
PTM sites alone, and are not associated with specific disease
phenotypes, which may preserve a lot of passenger mutations
that play a neutral role in disease development. Meanwhile,
ActiveDriver only focused on cancer somatic mutations affecting
PTMs, but did not extend to other serious diseases. Finally,
previous studies mainly developed a database to curate PTM-
related mutations obtained by their computational methods for
user search, there is still no web-based tool available to annotate
rare mutations in new disease research by PTM function.
Therefore, existing computational tools are insufficient to assist
PTM-mediated disease driver identification, an efficient and easy-
to-use mutation analysis tool to discover disease driver mutations
that affect a variety of PTM types are in great need to investigate
the pathogenesis and development of multiple serious diseases.

In this paper, we introduce PTMsnp, a web server that
implements a Bayesian hierarchical model to detect driver
proteins with significant PTM-related mutations. PTMsnp has
integrated 4,11,574 modification sites from 33 different types
of PTMs and 1,776,848 somatic mutations of 33 cancer
types. From PTMsnp, one can easily identify significantly
PTM-mutated proteins (also known as driver genes) across
different cohorts from TCGA. In addition, users can upload
their own mutation resources, e.g., cohorts from genome-
wide association studies (GWASs), to obtain significantly PTM-
mutated proteins as well as potential disease-related mutations
that significantly affect PTM status. In order to further evaluate
the functional importance of PTM-related mutations, we also
integrated multiple computational predictive programs for
variant interpretation and clinical classification. To illustrate the
functionality of PTMsnp, we applied it to TCGA cancer cohorts
and a GWAS dataset of type 2 diabetes cohorts. Several known
disease-related genes were successfully identified by PTMsnp,
demonstrating that it is practicable to discover putative disease-
related genes and hypothesize how they biochemically function
in disease development.

MATERIALS AND METHODS

PTMsnp Algorithm
To identify proteins with a significantly high number of
PTM-related mutations, we first converted the coordinates of
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genetic mutations from the genomic level to the protein level
using ANNOVAR (Wang et al., 2010). For analysis, only non-
synonymous SNVs that did not create a premature stop codon
or remove the existing stop codon were retained. According
to previously published literatures (Reimand and Bader, 2013;
Reimand et al., 2013; Narayan et al., 2016; Chen et al., 2018),
the protein sequence flanking the central PTM site within seven
residues was taken as the PTM motif region. The same type of
PTM motif regions in the same protein were then merged to
create a modification region. Correspondingly, the remaining
sequences were merged separately and denoted as background
regions. The frequency of each non-synonymous SNV located
in the modification region and the background region were
separately calculated.

We assumed that, in the patient group, mutations located in
the PTM motif regions would probably damage the modification
process, thereby influencing protein functions via PTM-related
pathways. If such mutations are highly correlated with a
given disease lesion, they will probably undergo strong positive
selection; therefore, unexpectedly high mutation rates will
be observed in these regions. According to this assumption,
we developed the following Bayesian hierarchical model to
compare the mutation rate between modification regions and
background regions.

First, for a given protein, let Y1, Y2, . . ., Yk represent the count
of mutations at each position in the modification region, and
let Yk+1, Yk+2, . . ., Yn be the same count in the background
region. We then modeled the observed counts Y by a Poisson
distribution as shown in Equations 1 and 2, where λ1 and λ2 are
the mutation rates of the modification region and the background
region, respectively.

Yi ∼ Possion(λ1) i = 1, 2..., k (1)

Yi ∼ Possion(λ2) i = k+ 1, k+ 2, ..., n (2)

Since the mutation rate may vary markedly in different
positions, a prior distribution was applied to λ1 and λ2 to
capture such fluctuation. As stated in the theory of probability,
a gamma distribution is the conjugate prior to the Poisson
distribution. Therefore, two gamma distributions with different
shape parameters α and scale parameters β were used to describe
the distribution of λ1 and λ2 in Eqs 3 and 4.

λ1 ∼ Gamma(α1, β1) (3)

λ2 ∼ Gamma(α2, β2) (4)

To test the difference between the mutation rates of the
background and those of the modification regions, a variable of
interest might be the relative mutation rate, which is defined
as R = λ1/λ2. Given that, a statistical hypothesis was raised as
shown below.

H0 : R ≤ 1 (5)

H1 : R>1 (6)

The p-value under the null hypothesis can therefore be
calculated from the marginal distribution of R given the observed
data Y. A Markov chain Monte Carlo (MCMC) method was
applied to infer such distribution. To control false positives,
the Benjamini-Hochberg procedure is applied to each p-value.
If the corrected p-value for a given protein is lower than the
significance level, i.e., 0.05, we identify it as a potential disease
driver (Supplementary Methods).

Database for PTM Sites and Mutations
PTM sites of human proteins were retrieved from the dbPTM
(2019 update), iPTMnet (November 2019) database and
manually collected from published literatures in PubMed. To
unify the heterogeneity of data collected from different sources
and ensure site accuracy, we mapped the reported modification
sites to UniProtKB protein entries and used sequence
comparison to correct the original data information and
retain protein isoforms. Each mapped PTM site is attributed with
a corresponding literature (PubMed ID) and source.

Somatic mutations were downloaded from the data portals
of TCGA (18 July 2019)1. To construct an intact set of somatic
mutations, mutations generated by four different variant calling
workflows were merged and duplicated sites were removed. The
ANNOVAR program was applied to annotate the functional
consequence of all mutation sites. Only non-synonymous SNVs
that did not create a premature stop codon or remove the existing
stop codon were retained in our database.

The Processing of WTCCC T2D Dataset
The Wellcome Trust Case Control Consortium (WTCCC) Type
2 Diabetes (T2D) datasets consisted of individual–level genotypes
called by BRLMM and Chiamo (The Wellcome Trust Case
Control Consortium, 2007) were collected in this study. All
SNPs were mapped to GRCh38 (hg38) genomic coordinates
according to their RSIDs to facilitate the annotation of SNPs and
proteins. Unmapped RSIDs was discarded. For genotypes called
by BRLMM, calls with score< 0.5 were retained. For the Chiamo
data, the recommended probability threshold for inclusion
is > 0.9. After excluding low-quality samples or calls, the valid
calls derived from two calling methods are intersected to obtain
the reliable genotypes of all samples in T2D. Finally, all genotypes
are processed into VCF files and used as input for PTMsnp.

RESULTS

Data Statistics of PTM Sites and
Mutations
To assist the functional studies of cancer mutations, PTMsnp
provides a database of known PTM sites and somatic mutations.
PTM sites of human proteins are mainly derived from dbPTM
(2019 update), a database that manually curated PTM peptides
from the published literatures and integrated experimentally
verified PTM sites from 30 available PTM-related resources
such as PhosphoSitePlus (Hornbeck et al., 2015), dbPAF

1https://portal.gdc.cancer.gov/
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(Ullah et al., 2016), UniProtKB (Boutet et al., 2007), PLMD
(Xu et al., 2017), and Phospho.ELM (Dinkel et al., 2011)
etc. We also collected additional PTM modification sites
in iPTMnet, as well as manually curated from published
literatures in PubMed. After strict data correction and filtering,
a total of 4,11,574 PTM sites, covering Phosphorylation,
Ubiquitination, Acetylation, Methylation, Sumoylation,
Malonylation, O(N/C/S)-linked Glycosylation, S-nitrosylation,
Glutathionylation, Succinylation, Nitration, Palmitoylation,
Myristoylation, Hydroxylation, Crotonylation, Sulfation,
Farnesylation, Geranylgeranylation, Gamma-carboxyglutamic
acid, Pyrrolidone carboxylic acid, Citrullination, Glutarylation,
Amidation, Carbamidation, Oxidation, GPI-anchor, Lipoylation,
Neddylation, Carboxylation, and Pyruvate, were curated in our
web server. On the other hand, somatic mutations downloaded
from the data portals of TCGA were processed to retain non-
synonymous SNVs, and finally, 1,776,848 non-synonymous
SNVs across 33 cancer types (UCEC, SKCM, COAD, LUAD,
STAD, LUSC, BLCA, BRCA, HNSC, GBM, CESC, OV, READ,
LIHC, LGG, ESCA, PAAD, PRAD, KIRC, SARC, KIRP,
ACC, LAML, UCS, THCA, DLBC, CHOL, THYM, MESO,
TGCT, KICH, PCPG, and UVM) were collected in PTMsnp
(Supplementary Table S1).

Web Server Description
To start PTMsnp, genetic mutations in standard VCF or TAB
format need to be inputted in the text area or uploaded via the
file selection box (Figure 1A). An intact set of somatic mutations
from the cancer cohort of TCGA is integrated into the database,
and users can also select a cancer type of interest to start analysis.
Before calculation, several options, including PTM type, genome
assembly version, iteration and burn-in times for the MCMC
process, and q-value threshold should be set for the PTMsnp
program (Figure 1B). Besides, users can enter email address
to receive email notifications after the calculation is completed.
After the submission of an analysis task, a new record will be
added to the task monitoring bar at the bottom of the submit
page (Figure 1C). When a task status is displayed as “complete,”
the user can click the “view” button to open the result page.

The result page consists of five interactive tables and graphs.
The significantly PTM-mutated proteins that may drive the
progression of diseases are outputted as a summary table
(Figure 1D), supporting interactive operations such as filtering
and sorting by cancer type, UniProt accession number, protein
name and modification type. Each protein is directly linked to the
UniProt database according to its accession number for details.
The PTM-related mutations located in these proteins can be
expanded or collapsed by click each protein record. Original
information of PTM-related mutations such as base changes
and genotypes are retained, as well as allele frequency obtained
from ExAC database. Meanwhile, we scored the pathogenic level
of each PTM-related mutation from 0 to 7 by counting the
deleterious results of seven functional predictors [SIFT (Kumar
et al., 2009), LRT (Chun and Fay, 2009), MutationTaster (Schwarz
et al., 2010), MutationAssessor (Reva et al., 2011), FATHMM
(Shihab et al., 2013), MetaSVM, and MetaLR (Dong et al., 2015)]
curated in the dbNSFP database (Liu et al., 2016). Besides,

InterVar (Li and Wang, 2017), and Clinvar (Landrum et al.,
2018) are also integrated for clinical interpretation of PTM-
related mutations by the ACMG/AMP 2015 guideline (Richards
et al., 2015) and known disease association, respectively.
For visualization, the distribution of significant PTM-related
mutations and mutated PTM types in identified proteins are
plotted in a bar graph and a pie chart (Figure 1E). In addition,
for each identified protein, the mutation sites and known PTM
sites together with their functional domains are presented in a
schematic biological sequence diagram, where users can freely
add or remove PTM tracks (Figure 1F). Moreover, to gain
further insights into the protein function, we performed Gene
Ontology (GO) and pathway enrichment analysis using the
clusterProfiler package in R (Yu et al., 2012). The analysis
results were illustrated in bar graphs (Figure 1G) and bubble
plots (Figure 1H). All visualization diagrams are available in
publication quality for download.

PTMsnp Identifies Known Cancer Genes
With Significantly PTM-Related
Mutations
To demonstrate how PTMsnp can be used for cancer driver
genes detection, we first applied PTMsnp to analyze the somatic
mutations from TCGA cohorts across 33 different cancer
types. We selected five PTM types, including phosphorylation,
acetylation, ubiquitination, methylation and sumoylation, with
the largest number of modification sites to analyze the significant
PTM-related mutations in cancer patients. PTMsnp identified
9,359 genes with significantly unexpected numbers of PTM-
related mutations (P = 0.01, Figure 2A and Supplementary
Tables S2, S3). Known cancer genes collected from the Cancer
Gene Census (CGC) (Sondka et al., 2018), Network of Cancer
Genes (NCG 6.0) (Repana et al., 2019), ONGene (Liu et al., 2017)
as well as TSGene 2.0 (Zhao et al., 2016) database are significantly
enriched (n = 2,064, P = 1.455 × 10-8, Fisher’s exact test,
Supplementary Table S4) in our result. Approximately, one–
fourth of the identified genes (n = 2,256) contained significant
PTM-related mutations in multiple cancer types. Of which, 660
genes were well-known cancer genes, such as CTNNB1, IDH1
(Figure 3). These results showed that the significantly PTM-
mutated genes identified by PTMsnp may have a broad and
important functional impact in the cancer driving mechanism.

Moreover, we found that PTMsnp identified the largest
number of significantly PTM-mutated genes in Skin Cutaneous
Melanoma (SKCM, Figure 2A). The BRAF gene ranked first
by the number of PTM-related mutations in SKCM and
harbored multiple significant PTM mutations in several cancer
types (Figure 3). BRAF, also known as serine/threonine-protein
kinase B-Raf, can phosphorylate MAP2K1 and thereby activates
the MAP kinase signal transduction pathway in living cells.
Mutations that activate BRAF functions are present in over 60%
of all melanomas (Davies et al., 2002). Studies have shown that
BRAF mutations are clustered within the P-loop and activation
segment of the kinase domain (Pratilas et al., 2012; Figure 2B).
These mutations destabilize the interaction between P-loop and
the activation segment, which normally locks the kinase in
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FIGURE 1 | A schematic workflow of the PTMsnp web server. (A) Data input section. (B) Six options set for the PTMsnp program. (C) Task records to monitor the
running task and view the results. The result page consists of five parts, including (D) A summary table of significantly PTM-mutated proteins. (E) The statistical
graphs of significant PTM-related mutations and mutated PTM types in identified proteins. (F) The mutation sites on the protein sequence and its known functional
domains. (G) GO annotation of identified proteins. (H) KEGG pathway enrichment of identified proteins.

its inactive state until the activation loop is phosphorylated.
Consistently, our method has identified a hotspot mutation at
V600 of BRAF can significantly altered the modification level of
three phosphorylation sites, namely Thr599, Ser602, and Ser605.
One of these phosphorylation sites, Thr599, is located in the
activation loop and believed to be functional in regulating the
activation of BRAF (Lavoie and Therrien, 2015; Kiel et al., 2016).
Three other mutations, including D594N, L597Q, and K601E, are
also observed to potentially affect the phosphorylation at Thr599
(Figure 2B). Existing studies have confirmed that these mutations
activate the MAPK pathway in melanoma and are associated with

sensitivity to MEK inhibitor drug therapy (Dahlman et al., 2012;
Wu et al., 2017). In view of these evidences, we hypothesized that
the proto-oncogene BRAF is activated by mutations promoting
the phosphorylation of its activation loop, implying the feasibility
of applying PTMsnp to analyze cancer mutations from the
perspective of affecting PTM modification.

Furthermore, we performed pathway analysis on the identified
driver genes using MSigDB C2 Canonical pathways (Liberzon
et al., 2015) to explore the biological system driven by
PTM-related mutations in SKCM (Figure 2C). The top 20
enriched pathways were known to regulate cell proliferation,
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FIGURE 2 | Significantly mutated proteins identified in TCGA cancer cohorts regarding 5 PTM types. (A) Number of significantly PTM-mutated genes across five
PTM types identified in different cancers. (B) Schematic diagram of mutations and protein phosphorylation modification regions within BRAF gene in five cancer
types. Upper panel shows the number of mutated samples per position. The blue and yellow dashed boxes represent the P-loop and activation loop on the BRAF
protein, respectively. The lower panel shows the mutation and phosphorylation within 594–606 region of the BRAF protein in SKCM. Positions 596–600 are the
activation segment. Above the position coordinates is the amino acid sequence. The phosphorylated amino acids are marked with a yellow solid circle. Altered
amino acid after mutation is above the original sequence. V600 has three different mutation forms, marked with different colors. (C) The enriched pathways of
PTM-mutated proteins in SKCM. (D) The enriched GO terms obtained from the identified PTM-mutated proteins in SKCM.

migration, differentiation, apoptosis, and cell motility, therefore
highlighted altered PTM level may be an important hallmark
of cancers (Hanahan and Weinberg, 2011). Similar results
were also observed in GO enrichment analysis (Figure 2D).
These driver genes are enriched in cellular processes such
as autophagy whose dysregulation has been linked to many
human pathophysiologies including cancer (Chen and Klionsky,
2011; Jiang and Mizushima, 2014). All the above results
demonstrated the functional importance of PTM functions in
cancer development. Taken together, we suggested that PTMsnp
can provide new perspectives on cancer studies, and subsequent
experimental validation may help to discover novel mechanisms
in cancerogenesis.

PTMsnp Identifies Potential Disease
Drivers in GWAS Dataset
In addition, to show the practicability of applying PTMsnp
in other disease-related studies, we further performed an

analysis on a GWAS dataset of type 2 diabetes (T2D) samples
from 1,916 tested individuals. Using PTMsnp, a total of 257
genes (Supplementary Table S5) with significant mutations
across 12 different PTM types were identified (FDR P =0.05,
Figure 4A). More than 70% PTM-related mutations are
located in phosphorylation regions (Figure 4B), which is
reasonable when considering the broadness of phosphorylation
sites. SLC16A1 has the most frequent PTM-related mutations
affecting three types of modifications including phosphorylation,
methylation, and ubiquitination (Figure 4C). The solute
carrier family 16 member 1 (SLC16A1) gene, which encodes
the monocarboxylate transporter 1 (MCT1) protein, is a
proton-coupled monocarboxylate transporter catalyzing the
transportation of many monocarboxylates, such as lactate and
pyruvate, across cell membranes. Many studies have revealed
that mutations on SLC16A1 are associated with abnormal
insulin secretion (Pullen et al., 2012; Al-Khawaga et al.,
2019). Moreover, Nikooie et al. (2013) have reported that
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FIGURE 3 | The top 30 PTM-mutated genes identified in more than 7 cancer types, among which the known cancer genes are indicated in red.

the expression of MCT1 is dramatically reduced in diabetes,
which may lead to increased insulin resistance. Besides, Zhao
et al. (2001) have also found that the overexpression of MCT
protein throughout the islet could involve in deranged insulin
secretion in some type 2 diabetes. These studies suggested
that the abnormal expression of MCT1 may be one of the
pathogenic mechanisms of T2D. On the other hand, it has been
reported that cAMP can cause the dephosphorylation of MCT1
and thereby reduce its surface expression (Smith et al., 2012).

This evidence implies a positive synergy mechanism between
MCT1 phosphorylation and its expression. Based on the
existing literatures and our results, we speculated that our
identified mutations on SLC16A1 can potentially affect its
phosphorylation state, and may further lead to abnormal
glucose sensing and even insulin resistance in T2D by changing
the expression level of MCT1. Therefore, we can reasonably
believe that SLC16A1 can serve as a novel PTM-mediated
T2D driver genes.
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FIGURE 4 | Significantly PTM-mutated proteins identified from a GWAS dataset of Type 2 Diabetes (T2D) samples with 1,916 individuals. (A) The top 30 genes
ranked by the number of significant PTM-related mutations. Bar height shows the number of samples harboring mutations in each PTM type, respectively. The red
and white gradient bar below represents the FDR q-value. (B) The proportion of PTM-related mutations of each modification type in identified proteins. (C) SLC16A1
has the most frequent PTM-related mutations affecting three types of modifications. Upper panel shows the number of mutated samples per position. Protein
domain of SLC16A1 are shown in green region along the sequence. The modified regions of three PTM types on SLC16A1 protein are shown below. The modified
position where the mutation has occurred is indicated by a red arrow. (D) Mutation M1808I were identified to significantly alter phosphorylation status of WNK1.
Protein domain of WNK1 are shown in blue and orange (PK, Protein kinase domain; OSR1-C, Oxidative-stress-responsive kinase 1 C-terminal domain). The
modified position where the mutation has occurred is indicated by a red arrow.

Furthermore, 23 well-known T2D-related genes were
found to carry significant PTM-related mutations in our
analysis (Supplementary Table S6). Of these genes, With-
no-lysine 1 (WNK1) kinase is taken here as an illustrative
example (Figure 4D). WNK1 is serine-threonine kinase
and highly expressed in skeletal muscles. An existing study
has shown that insulin can phosphorylate WNK1, thereby
activating glucose transporter 4 (GLUT4) translocation and
stimulating glucose uptake through the PI3K/Akt signaling
cascade. Decreased WNK1 phosphorylation were observed
in T2D skeletal muscle, providing a new perspective on
WNK1 function in T2D (Kim et al., 2018). Interestingly,
we observed that the M1808I mutation on WNK1 was
significantly enriched around the phrosphorylation site
Thr1810 in T2D patients, implying a pathogenic role of

WNK1 in T2D via its aberrant dephosphorylation. Given
this observation, it is worthy to perform further experiments
to verify the functional role of such mutation regarding to
phrosphorylation process.

SUMMARY AND PERSPECTIVES

Genetic mutations in human genomes include both driver
mutations that provide selective advantages to disease
progression and neutral passenger mutations present due
to genome instability. A key challenge facing the biological
community is to distinguish only a few driver mutations from the
majority of passenger mutations. Previous studies have proven
that combining mutations with other important functional
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features may provide extra guidance for driver event detection
compared to traditional frequency-based methods. PTMs have
been successfully used to predict driver mutations in diseases
owing to their extensive functions in biological processes.
However, the lack of an integrated resource of PTM sites as well as
a user-friendly web interface greatly hindered the exploration of
PTM-mediated disease progression. The PTMsnp web server was
elaborately designed and dedicated for addressing such issues.
With the collected PTM dataset, the vast majority of genetic
mutations can be further annotated, and potential disease-driven
genes can be inferred from the perspective of aberrant PTM
status. As applications, we have successfully applied PTMsnp to
the detection of cancer driver genes and disease-related genes
from type 2 diabetes cohorts. This analysis revealed the prospect
of using PTMsnp to explore the underlying pathogenesis of
known disease-related mutations and to discover novel cancer
drivers for further clinical research.

PTMsnp can be further enhanced in several aspects in
the future. First, more genetic mutations such as population
mutation datasets can be supported in future updates of PTMsnp.
Different PTM processes can be orchestrated by different
enzymatic systems, forming a dynamic regulatory cycle in
normal cells. The perturbation of such a dynamic regulatory
cycle may also lead to certain abnormalities. Therefore, the
current algorithm can be further extended to consider mutations
in PTM enzymes. In addition, the protein-protein interaction
network may also be considered to interpret the impact of
genetic mutations on PTM enzyme-substrate interactions, for
example, kinase-substrate interactions in phosphorylation. With
the ongoing database update and algorithm extensions, we expect
PTMsnp to become a useful web server for the biomedical
research community and to provide more valuable insights into
disease biology and therapy development.
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