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Abstract: In the paper, we present a novel approach to the optimum design of wearable antenna
arrays intended for off-body links of wireless body area networks. Specifically, we investigate a
four-element array that has a switchable radiation pattern able to direct its higher gain towards a
signal source and a lower gain towards an interference. The aim is to increase the signal to interference
ratio. We apply a genetic algorithm to optimize both the spatial placement and the feed phasing of
the elementary on-body antennas. We propose a simplified, computationally efficient model for the
simulation of the array radiation pattern. The model is based on full-wave simulations obtained
with a simplified cylindrical model of the human body. We also propose, implement, and evaluate
four objective functions based on signal to interference ratio, i.e., min-max, nadir point distance
maximization, utopia point distance minimization, and full Pareto-like. Our optimized design
obtained with this approach exhibits a significant performance improvement in comparison to the
initial heuristic design.

Keywords: genetic algorithms; FDTD; finite-difference time-domain; wireless body area network;
WBAN; signal-to-interference ratio; SIR; interference rejection; human body model; evolutionary
computing; optimization; radiation pattern synthesis; switchable antenna

1. Introduction

Wireless sensor networks consist of small measurement devices that can transmit data using
integrated wireless modules. Such arrangements can utilize wireless sensors that are located directly
on the human body or are embedded in the clothes. This makes it possible to remotely monitor
physiological parameters or vital signs of people as well as their motion, body posture, location, etc.
Networks of such wearable wireless sensors can find numerous applications in healthcare, sports,
or public safety because they unobtrusively gather data [1,2].

The critical feature of a wearable wireless sensor network is the size of the node that should be
small enough not to limit the comfort of use. This requires small batteries that suffer from limited
energy resources, which, as a consequence, reduces the maximum transmit power of the wearable
nodes. For this reason, the power budget of the wireless link is very tight, and the separation of signal
from interference is relatively small.

Wireless sensor that works in the proximity of the human body utilizes an antenna that operates in
the complex environment consisting of open space, human tissues, and clothes. The antenna radiation
pattern that presents the angular distribution of gain is influenced by the body and is also sensitive to
the placement of antenna [3]. In general, the antenna that is located close to the body (it is a so-called
wearable antenna) has the radiation pattern with a wide main lobe, and its minima are directed towards
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the body. In such a case, for a wide range of angles, the antenna has almost constant gain. Wireless
sensor networks that operate in the off-body mode transmit a signal between the remote transceiver
that is located far from the body and the wearable sensor. When the wearable antenna radiation pattern
has a wide main lobe, the useful signal, as well as the interference, can be received from different
directions with a similar antenna gain and with similar power levels. Then, the signal-to-interference
ratio (SIR) is low, which is unfavorable (see Figure 1a).
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Figure 1. The principle of adaptive array operation for interference rejection: (a) single antenna realizes
broad radiation pattern; (b) antenna array can direct the beam towards the signal.

Several approaches to the improvement of SIR are known [4–8], mainly relying on optimum
antenna design or simple switchable/reconfigurable antennas. However, to our best knowledge,
on-body phased arrays have not been used to achieve this goal yet. A phased array antenna consists of
a set of elementary antennas organized in a particular geometrical arrangement: linear, planar, circular,
cylindrical, etc. The signal from the transceiver is connected through the combiner and feedlines to each
elementary antenna. The radiation pattern of the array for a given number of elementary antennas and
their spatial arrangement depends on the phase relationship at the antenna feed points, which follows
from the phase shift in each elementary antenna feeding path. Signal-to-interference ratio (SIR) can be
improved by forming the radiation pattern to direct the maximum gain of the array towards the signal
and the minimum towards the interference [6,9] (see Figure 1b)—with constraints on the radiation
pattern following from the array design. Phase switching can be automatically performed during
system operation to improve the quality of transmission.

There have been numerous studies into the problem of circular antenna array optimization,
e.g., [10–16]. In the case of uniform arrays [10,13,14], beamforming is controlled by the adjustment of
amplitudes and phases in the feeding network of elementary antennas. Additionally, for non-uniform
arrays [11,12,15,16] angular positions of the antennas can be adjusted, which provides even more
degrees of freedom to the optimization algorithm and yields greater flexibility of the directivity pattern
shaping. Among many algorithms successfully applied for antenna array optimization, particle swarm
optimization [10,12,13] and genetic algorithms [11,14] are often used.

The goal of the optimization process is usually a single-objective improvement of array performance
in terms of radiation pattern parameters (e.g., the side lobe level and the directivity). In [15] a
single-objective design problem was reformulated as a multi-objective problem. It was possible
to accomplish a set of non-dominated solutions and then indicate the best-compromise solution.
Additionally, in [11] a multi-objective approach was presented to optimize the amplitude and phase
of the excitation and the separation between the array elements. In our research, we also considered
the optimization problem as initially single-objective and then bi-objective, showing that the latter
approach is very effective in identifying a satisfactory solution.
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In the literature, circular arrays that were the subject to the optimization process consist of
elementary antennas that have omnidirectional radiation (in [10] an array of dipoles is used). In our
study, we investigate the optimization of the array that consists of wearable antennas, which, to our best
knowledge, is our original concept and was neither investigated nor published by other researchers.

In this paper, we consider the utilization of phased array antennas to improve the performance
of the Narrow Band Internet of Things (NB-IoT) system that, due to the low power of transmitters,
can be sensitive to interferences. In this case, the wearable phased antenna array is investigated that
could be applied for the wireless system that monitors physiological parameters of people (Figure 1b).
For simplicity, we assumed that this array consists of vertically oriented half-wave dipole antennas
designed to operate in free space at 700 MHz frequency band which is allocated in Poland for the fifth
generation of wireless communication systems that include NB-IoT. To simplify the feeding network of
the wearable array, we assume that the phase shift of signal connected to the l-th antenna can take
on one of two possible values α(l) ∈ {0, αconst}. In the prior studies, a wearable antenna array that
was fed with no phasing was used to obtain the bi-directional radiation pattern [17]. It was shown
that the radiation pattern of the array depends strongly on the placement of each antenna element.
In the antenna array optimization process the position of individual radiators on the body is identified
together with the value of phase shift αconst to improve the antenna SIR.

The paper is organized in the following way: after the Introduction, models of direct and inverse
problems are formulated in Section 2, where the optimization approach is also presented; eventually,
optimization results are presented and discussed in Sections 3 and 4, respectively.

2. Models and Methods

2.1. Direct Problem Formulation

The direct problem can be formulated in the following way: “given antenna placement and phase
shift values calculate the antenna radiation pattern.” For this purpose, we started our investigation
with numerical models of wearable antenna array radiation patterns. We applied the Remcom XFdtd®

program that utilizes the finite-difference time-domain method (FDTD) [18]. It was used as the reference
to elaborate the simplified analytical model of antenna array radiation pattern that was needed in the
iterative optimization procedure.

The typical approach to computer simulation of wearable antenna radiation pattern uses numerical,
heterogeneous models of the human body. In the Remcom XFdtd® program, the heterogeneous model
of the human body is available with different voxel sizes, from 1 to 10 mm. It represents the entire body,
with its internal structure (see Figure 2a). We used this model with 5 mm voxel size for preliminary
research on wearable an antenna array [17] and as a reference to the simplified models.

In this research, we aimed at optimizing the wearable antenna array by finding the optimum
placement of elementary antennas on the body. This requires carrying out numerous simulations of
array radiation pattern for different positions of the elementary antennas with respect to the body,
preserving the constant distance of antennas to the body surface. In the case of anthropomorphic
models, where the body shape is complex, maintaining a fixed distance between the antenna and
body is difficult. For this reason, we utilized in Remocm XFDTD software the cylindrical body model
presented in Figure 2b to investigate how the radiation pattern of the wearable antenna array depends
on its geometry and phasing. This model consists of six cylinders that are made of tissue simulant
material, and its usability for wireless body area network simulations was successfully verified in
our previous research [19,20]. The radiation patterns of the wearable antennas obtained with the
cylindrical model were in good agreement with the one obtained with the heterogeneous model [21].
The cylindrical model is convenient for application to WBAN optimization when the antenna position
is variable, but its distance to the body surface is fixed [22,23]. In this case, the position of the antenna
can be controlled easily with two coordinates ra, ψa in a cylindrical coordinate system presented in
Figure 2b.
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Figure 2. Antenna array on a human body model: (a) heterogeneous anthropomorphic model;
(b) cylindrical model of the human body: ra, ψa—coordinates of a single antenna.

For an iterative optimization, the numerical burden of simulation with body model and Remcom®

XFdtd program is relatively high because the antenna radiation pattern for each combination of phasing
is obtained with simulations which take a few minutes each. We propose a simplified, analytical model
of a wearable antenna array to overcome this limitation. This approach assumes that the considered
wearable antenna array is a planar circular i.e., each antenna is located on a surface of a cylindrical
model of the trunk, and its z coordinate is equal to 1.3 m above the feet. The simplified geometry of the
antenna array is presented in Figure 3. This planar circular array is formed by vertical dipoles placed
in a fixed distance from the body (ra = 167 mm), and each dipole position is defined by ψa angle Ga(ϕ).
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The radiation pattern of a single wearable antenna depends on the antenna position towards the
body. The maximum value of antenna gain is directed in the direction that is opposite to the trunk.
To model this feature, we proposed an analytical formula to calculate the gain Ga(ϕ) in the horizontal
x-y plane of the wearable dipole, which simultaneously depends on antenna position angle ψa defined
in Figure 2b. The directivity pattern of the elementary antenna is modeled by Equation (1), which is a
heuristic approximation proposed by the authors.

Ga(ϕ,ψa) = G0·cos4
(
ϕ−ψa

2

)
(1)

where ϕ ∈ [0, 2π) is the coordinate in the cylindrical system and G0 is a scaling parameter.
The G0 can be used to scale the maximum value of the dipole gain obtained from Equation (1).

The proximity of the human body deteriorates the gain of a simple dipole antenna that was used in
our research. In this case, the distance of the dipoles to the body model was equal to 10 mm, and the
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maximum value of dipole gain in the linear scale was reduced to 0.38. To obtain the best matching of
gain calculated with Equation (1) and values obtained from finite difference time domain based (FDTD)
simulations with cylindrical model the value of G0 = 0.35 was applied. In Figure 4, the radiation
pattern of a single dipole antenna located on body that was obtained with the simplified model given
in Equation (1) is compared with results of simulations with FDTD method and cylindrical model of
the body for two values of antenna position angle ψa equal to 0◦ and 30◦. The results obtained with the
use of one and the other model are similar. The angular distribution of antenna gain is similar in both
cases. Additionally, the effect of changing the direction of maximum radiation (angle for the maximum
value of gain) depending on antenna position ψa is preserved in the simplified analytical model.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 18 

 

radiation pattern of a single dipole antenna located on body that was obtained with the simplified 
model given in Equation (1) is compared with results of simulations with FDTD method and 
cylindrical model of the body for two values of antenna position angle ψa equal to 0° and 30°. The 
results obtained with the use of one and the other model are similar. The angular distribution of 
antenna gain is similar in both cases. Additionally, the effect of changing the direction of maximum 
radiation (angle for the maximum value of gain) depending on antenna position ψa is preserved in 
the simplified analytical model. 

 
Figure 4. The radiation pattern of a single wearable antenna obtained with the simplified model given 
in Equation (1) compared to the results of simulations with the FDTD method and cylindrical model 
of the body. 

Having the formula that approximates radiation of the single antenna ܩ௔(߮, ߰௔) we calculated 
the gain of the four-element circular array ܩ(߮, ߰௔) given by Equation (2) [24]: 

,߮)ܩ ߰௔) = ෍ ௔(߮,௔(l))݁௝௞௥ೌܩ ୡ୭ୱ (ఝିೌ(୪)ା(௟))ସ
௟ୀଵ  (2)

where: ߮ ∈ [0,  k—wave number, l—radiator number, ra = 167 mm—array radius, (݈)—feeding ,(ߨ2
phase shift of the l-th antenna, ψa(l) angular position of the l-th antenna. 

The radiation pattern of antenna array obtained with Equation (2) was compared with the results 
of simulations with the cylindrical model of the wearable array in FDTD. In Figure 5 the radiation 
pattern of the four-element antenna array obtained with simulations in the XFdtd program and 
cylindrical body model are compared to the results obtained with the simplified method. The angular 
positions of the antennas ψa are: −20°, 20°, 160°, 200°. The simplified model (Equation (2)) was 
examined with different values of G0 parameter. The best results were obtained for G0 = 0.16. The 
angular distributions of antenna gain obtained with FDTD and Equation (2) are similar, but the 
simulation time was significantly shorter in the case of the simplified model given by Equations (1) 
and (2). 

 
Figure 5. The radiation pattern of the wearable antenna array obtained with FDTD based simulations 
and the cylindrical model of the body compared to results obtained with the simplified model given 
by Equation (2) for various values of G0. 

Figure 4. The radiation pattern of a single wearable antenna obtained with the simplified model given
in Equation (1) compared to the results of simulations with the FDTD method and cylindrical model of
the body.

Having the formula that approximates radiation of the single antenna Ga(ϕ,ψa) we calculated the
gain of the four-element circular array G(ϕ,ψa) given by Equation (2) [24]:

G(ϕ,ψa) =
4∑

l=1

Ga(ϕ,ψa(l))e jkra cos (ϕ−ψa(l)+α(l)) (2)

where:
ϕ ∈ [0, 2π), k—wave number, l—radiator number, ra = 167 mm—array radius, α(l)—feeding

phase shift of the l-th antenna, ψa(l) angular position of the l-th antenna.
The radiation pattern of antenna array obtained with Equation (2) was compared with the results of

simulations with the cylindrical model of the wearable array in FDTD. In Figure 5 the radiation pattern
of the four-element antenna array obtained with simulations in the XFdtd program and cylindrical
body model are compared to the results obtained with the simplified method. The angular positions
of the antennas ψa are: −20◦, 20◦, 160◦, 200◦. The simplified model (Equation (2)) was examined
with different values of G0 parameter. The best results were obtained for G0 = 0.16. The angular
distributions of antenna gain obtained with FDTD and Equation (2) are similar, but the simulation
time was significantly shorter in the case of the simplified model given by Equations (1) and (2).

Having the simplified model given in Equation (2), we examined the ability of the proposed
four-element wearable array to form its radiation pattern for interference rejection. In this experiment,
we assumed the angular positions of the antennas ψa are: −20◦, 20◦, 160◦, 200◦ and the signal comes
from direction ϕs = 90◦ while the interference is located at ϕi = 0◦. For such a case, presented in
Figure 6, the array with phasing vector α = [0◦,0◦,0◦,0◦] direct the main beam with the greatest value of
gain towards interference and the minimum value of gain towards the signal. The radiation pattern of
this array with phasing vector α = [0◦, π, π, 0◦] has the radiation pattern presented in Figure 7. Here,
the greatest value of gain is directed towards signal and the gain minimum towards interferences.
This illustrates the ability of our wearable antenna array to increase the signal to interference ratio.
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The results presented in Figures 6 and 7 show that both simplified model and FDTD simulations
with the cylindrical model result in the same angular positions of gain minima and maxima. This
suggests the possibility of using the analytical model (Equations (1) and (2)) in the optimization process.

2.2. Inverse Problem Formulation

We formulate the inverse problem in the following way: “Find the position of array elements and
phase shift values such that the highest value of radiation pattern is directed towards signal while the
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lowest value towards interferences, for all the considered positions of signal and interference.” To this
end, an optimization problem is set up, the degrees of freedom of which are the angular position
vector ψ(1), ψ(2), ψ(3), ψ(4) of the antennas composing the four-element circular array and the value of
non-zero phase shift αconst that can be applied in the feeding network; so, a five-dimensional design
space is considered. Accordingly, a possible objective function f to be maximized should express the
SIR which is the ratio of the array gain towards the signal Gs to the array gain towards the interference
Gi that could be obtained against all possible combinations of n-th antenna feeding phases, n = [1.4],
given the positions of signal and interference. For this reason, the radiation pattern of the array has to
be calculated for P combinations of antenna phasing vector, to obtain the objective function components
Gs and Gi, namely

P =
(
24
− 1

)
= 15

This computation has to be performed for each signal position ϕs and interference position ϕi.
We consider S combinations of signal and interference angles separated by 45◦ in a 360◦ angle, namely

S =
(
2

360
45 − 8

)
= 248

The number of calls to the radiation pattern computations at each iteration of an optimization
algorithm is a reasonable estimate of the cost per iteration C that can be calculated as:

C = S ∗ P = 3720

In other words, the total number of radiation pattern computations depends on the number
of optimization algorithm iterations—3720 in every single iteration. For this reason, the use of a
cost-effective analytical model of array radiation pattern like, e.g., Equation (2) is mandatory because
performing 3720 simulations based on FDTD in each optimization step would be impractical due to
the computational time. The conceptual flow-chart presenting the algorithm for the calculation of
objective function components is shown in Figure 8.
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In the following sections, we present four diverse versions of the objective function, which we
proposed and examined. This approach follows from our experience that for complex problems in
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electromagnetics, the capability of stochastic optimization methods for an effective exploration and
exploitation of the objective space strongly depends on the objective function formulation. We intended
to identify a problem-specific function that offers the fastest convergence.

2.2.1. Min-Max Approach

The first approach to solve the inverse problem formulated in Section 2.2 was based on a
single-objective evolutionary algorithm of the lowest order—EStra, originally proposed in [25].
The objective function fm defined by Equation (3), to be maximized, expresses the min-max norm of the
ratio of the array gain towards the signal to the array gain towards the interference (SIR) that could be
obtained with all possible combinations of n-th antenna phases α(n) n = [1.4] for the ψa vector dictated
by the optimization algorithm, namely

fm(ψa, α(n)) = min
ϕsϕi

∣∣∣∣∣∣max
α(n)

Gs(ψa,ϕs, α(n))
Gi(ψa,ϕi, α(n))

∣∣∣∣∣∣;
ϕs = 0◦, 45◦, . . . 315◦; ϕi = 0◦, 45◦, . . . 315◦; ϕs , ϕi;

α(n) = 0, αconst (3)

Therefore, maximizing Equation (3) gives rise to a single-objective optimization. Nevertheless,
the following remark can be put forward. After a few numerical experiments, it is straightforward to
realize that the objective function components Gs and Gi defined in Equation (3) are competing objectives.
In fact, if Gs and Gi are independently considered, it comes out that the values of antenna positions ψa

and phase angle α which maximize Gs function alone are not the same which minimize Gi function
alone. This puts the ground for the multi-objective approach developed in the subsequent sections.

2.2.2. Nadir Point Distance Maximization

As an alternative to the min-max approach, in this subsection and in the next one we propose
two other single-objective formulations amenable to a concept of multi-objective optimization theory.
In fact, objective function components Gs and Gi define a 2D objective space where the Pareto front, i.e.,
the set of solutions exhibiting the best trade-off between competing objectives Gs and Gi, takes place.
In particular, two reference points can always be found in a straightforward way in a 2D objective space:

- utopia U, i.e., the point the coordinates of which are the best values of each objective (in our
case, Us is the maximum of Gs function, independently considered and subject to the problem
constraints; a similar explanation holds for Ui);

- nadir R, i.e., the point the coordinates of which are the worst values of each objective.

According to a geometric interpretation, utopia and nadir are located at the independent vertices
of a rectangle which incorporates the Pareto front (Figure 9). Put simply, “good” solution points are
those located within the rectangle, far from nadir point and close to utopia point.

Moving from this background, we decided to implement a single-objective optimization inspired
by the utopia-nadir concept, with the final aim of approximating a solution located along the front
of best compromises. Accordingly, the second proposed approach utilizes the concept of distance of
individual solution point to nadir point, which is defined in the objective space as shown in Figure 9.
As the first step, we approximated the values of utopia coordinates and nadir coordinates; then,
we defined the objective function fr defined by Equation (4), to be maximized, which expresses the dR
distance from nadir point in objective function components space. Therefore, fR is a scalar preference
function conceived in a bi-objective context. The coordinates of nadir point are (Rs,Ri) = (0.1,0.25).

fr(ψa, α(n)) = min
ϕs,ϕi

∣∣∣∣∣∣max
α(n)

dr

∣∣∣∣∣∣;
dr =

√
(Gs −Rs)

2 + (Gi −Ri)
2
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ϕs = 0◦, 45◦, . . . 315◦; ϕi = 0◦, 45◦, . . . 315◦; ϕs , ϕi;

α(n) = 0, αconst (4)

Sensors 2020, 20, x FOR PEER REVIEW 8 of 18 

 

2.2.1. Min-Max Approach 

The first approach to solve the inverse problem formulated in Section 2.2 was based on a single-
objective evolutionary algorithm of the lowest order—EStra, originally proposed in [25]. The 
objective function fm defined by Equation (3), to be maximized, expresses the min-max norm of the 
ratio of the array gain towards the signal to the array gain towards the interference (SIR) that could 
be obtained with all possible combinations of n-th antenna phases (݊) n = [1.4] for the ௔ vector 
dictated by the optimization algorithm, namely 

௠݂(߰௔,(݊)) = minఝೞఝ೔ ฬmax
(௡) ீೞ(ೌ,ఝೞ,(௡))ீ೔(ೌ,ఝ೔,(௡))ฬ;  

ϕs=0°, 45°, … 315°; ϕi = 0°, 45°, … 315°; ϕs ≠ ϕi;  

(݊) = 0°, ௖௢௡௦௧ (3) 

Therefore, maximizing Equation (3) gives rise to a single-objective optimization. Nevertheless, 
the following remark can be put forward. After a few numerical experiments, it is straightforward to 
realize that the objective function components Gs and Gi defined in Equation (3) are competing 
objectives. In fact, if Gs and Gi are independently considered, it comes out that the values of antenna 
positions ψa and phase angle α which maximize Gs function alone are not the same which minimize 
Gi function alone. This puts the ground for the multi-objective approach developed in the subsequent 
sections. 

2.2.2. Nadir Point Distance Maximization 

As an alternative to the min-max approach, in this subsection and in the next one we propose 
two other single-objective formulations amenable to a concept of multi-objective optimization theory. 
In fact, objective function components Gs and Gi define a 2D objective space where the Pareto front, 
i.e., the set of solutions exhibiting the best trade-off between competing objectives Gs and Gi, takes 
place. In particular, two reference points can always be found in a straightforward way in a 2D 
objective space: 

- utopia U, i.e., the point the coordinates of which are the best values of each objective (in our case, 
Us is the maximum of Gs function, independently considered and subject to the problem 
constraints; a similar explanation holds for Ui); 

- nadir R, i.e., the point the coordinates of which are the worst values of each objective. 

According to a geometric interpretation, utopia and nadir are located at the independent vertices 
of a rectangle which incorporates the Pareto front (Figure 9). Put simply, “good” solution points are 
those located within the rectangle, far from nadir point and close to utopia point. 

 
Figure 9. The definition of dR and dU in the objective function components space. 

Moving from this background, we decided to implement a single-objective optimization 
inspired by the utopia-nadir concept, with the final aim of approximating a solution located along 
the front of best compromises. Accordingly, the second proposed approach utilizes the concept of 

Figure 9. The definition of dR and dU in the objective function components space.

2.2.3. Utopia Point Distance Minimization

The third proposed approach utilizes the concept of distance of individual solution point to utopia
point, which is defined in the objective space as shown in Figure 9. To this end we defined the objective
function fu by means of Equation (4), to be minimized, which expresses the dU distance from nadir
point in objective function components space. The coordinates of nadir point are (Us,Ui) = (0.25,0.15).

fu(ψa, α(n)) = max
ϕs,ϕi

∣∣∣∣∣∣min
α(n)

du

∣∣∣∣∣∣;
du =

√
(Gs −Us)

2 + (Gi −Ui)
2

ϕs = 0◦, 45◦, . . . 315◦; ϕi = 0◦, 45◦, . . . 315◦; ϕs , ϕi;

α(n) = 0, αconst (5)

2.2.4. Full Pareto-Like Optimization: P-EStra

Eventually, a full multi-objective approach in terms of (Gs, Gi) space was considered, without
resorting to a scalar preference function like in previous Sections 2.2.2 and 2.2.3.

To this end, an algorithm based on a multiobjective (1+1)-evolution strategy (P-EStra) inspired by
Pareto optimality theory is used [25,26]. The algorithm is implemented in such a way that a new design
vector x = m + du (offspring) is accepted if and only if x dominates the current design vector m (parent)
according to Pareto definition for m ≥ 2 objective functions, subject to problem constraints. This means
that the offspring is accepted only if it simultaneously improves all the objectives. In turn, d is the
standard-deviation vector associated to m, while u ∈ [0, 1] is a normally distributed perturbation.
Vector d is initialized as do, and the value of its elements is proportional to the feasible range of
the corresponding design variable. Vector d, which drives the search, is updated according to the
prescribed rate of success in improving the objective functions; that is where the self-adaptation of the
strategy parameter comes in: d itself undergoes a modification, which is ruled by a randomized process.
In fact, given the correction rate q ∈ (0, 1), considering the k-th iteration, dk+1 = q−1

·dk (or dk+1 = q·dk)
is set to force a larger (or smaller) standard deviation of Gaussian distribution associated with x in
the next iteration. In other words, the solution vector x and the standard-deviation vector d are both
subject to random mutation. In a basic (1+1) implementation, the operator of Paretian selection allows
for the best individual, out of parent m and offspring x, to survive to the next generation. In other
words, an offspring individual is selected to survive if and only if it is better, or at least non-worse,
than the parent individual against all the m objective functions. This way, given an initial point, there
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is a non-zero probability that the optimization trajectory eventually leads to a point belonging to the
Pareto optimal front. The algorithm converges when the ratio of the largest value of d vector elements
to the corresponding element of the initial standard-deviation vector do is smaller than the prescribed
search tolerance.

The basic computational cost c of P-EStra algorithm can be estimated as

c ≈ c0·ni·np·n f

where c0 is the hardware-dependent time necessary to run a single solution of the direct problem
associated to the optimization problem (in our case, the computation of directivity pattern of antenna
array), ni is the number of convergence iterations for a prescribed search accuracy, np is the number of
evolving solutions (in our case, np = 1), and nf is the number of objectives.

In principle, there is no limitation to the number of objectives the algorithm can process, and this is a
potential advantage for a high-dimensionality problem. Summing up, the evolutionary algorithm starts
from a guess solution, which can be either user-supplied or randomly generated, iteratively originates
a search trajectory driven by the concept of non-dominated solution, and eventually converges to a
Pareto-optimal solution.

3. Results

The optimization process was performed subject to constraints on the possible positions of the
four elementary antennas following from the user’s clothes design. The azimuthal coordinates of the
antennas ψa were limited to the range from −60◦ to −10◦ for antenna 1, 10◦ to 60◦ for antenna 2, 120◦ to
160◦ for antenna 3, and 200◦ to 240◦ for antenna 4. The initial positions of antennas were ψa = [−20◦,
20◦, 158◦, 202◦]. The allowable value of phase-shift αconst was within the range from 45◦ to 270◦ and its
initial value was 90◦. In this case, the initial value of objective function f was equal to 0.84.

Prior to the optimization, we made a brute-force exploration of the design space. The simplified
numerical model that we applied in our research (Equation (2)) is very effective in terms of numerical
burden required for the simulation. Therefore, it was possible to explore the entire design space
of five parameters with 5◦ steps that gave c.a. 450,000 points within a few hours. The results of
this exploration, once mapped in the objective space, are presented in Figures 10–14 in grey color.
Although the exploration points have been randomly generated according to uniform probability
density, it can be noted that the corresponding distribution in the objective space is not really uniform,
being characterized by a few peninsula-shaped branches. This is because functions Gs and Gi are
nonlinear functions of the design variables, and nonlinearity determines a non-uniform distribution
of points.

The min-max approach presented in Section 2.2.1 resulted in 109 iterations, and the value of the
objective function was increased to 1.96. The final positions of the antennas are ϕa = [−44.9◦, 45.7◦,
134.8◦, 225.4◦], and the phase shift value was αconst = 117.2◦. The optimization process required 7 min
of computation time on a PC computer equipped with Intel i7 processor. Figure 10 presents the history
of optimization in the objective function components space as well as the results of a brute-force
exploration of the design space.

The nadir point distance maximization presented in Section 2.2.2 resulted in 145 iterations, and
the value of the objective function was increased to 1.87. The optimization process required 10 min of
computation time on a PC computer equipped with Intel i7 processor. Figure 11 presents the history
of optimization in the objective function component space. The results of a brute-force search of the
design space are also presented.
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The utopia point distance minimization presented in Section 2.2.3 resulted in 71 iterations, and the
value of the objective function was increased to 1.62. The optimization process required 5 min of
computation time on a PC computer equipped with Intel i7 processor. Figure 12 presents the history of
optimization in the space of objective function components. The results of a brute-force search of the
design space are also presented.

The Pareto-optimization presented in Section 2.2.4 resulted in 56 iterations, and the value of the
objective function was increased to 1.76. The optimization process required 3 min of computation time
on a PC computer equipped with Intel i7 processor. Figure 13 presents the history of optimization in the
space of objective function components. The results of a brute-force search of the design space are also
presented. The results of the comparison of optimization algorithm variants in terms of performance
are presented in Table 1.

Recognizing the fact that we achieved the best solution using the single-objective min-max
approach, we tested some other representative optimization strategies, namely Nelder–Mead [27,28],
“interior-point” [29–31], and Powell [32]. Comparison of convergence and objective function value for
these algorithms using the single-objective min-max formulation is presented in Table 2. Solutions
in the space of objective function components are shown in Figure 14. The single objective EStra
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algorithm needed 109 iterations, and the value of the objective function was increased from 0.84 to
1.96. The “interior-point” algorithm implemented in Matlab function fmincon identified the solution
with the objective function value of 1.7 with 628 iterations. The Nelder–Mead algorithm implemented
in Matlab fminsearch function found the value of the objective function equal to 1.47 in 445 iterations.
The value of the objective function equal to 1.66 was found by the Powell algorithm with 415 iterations.

Table 1. Comparison of optimization algorithm variants in terms of performance.

Variant of the Optimization Algorithm Objective Function Value Number of Iterations

Min-max fm = 1.96 109

Nadir point distance maximization fr = 1.87 145

Utopia point distance minimization fu = 1.62 71

Pareto-like optimization fp = 1.76 56

Table 2. Comparison of convergence and objective function value for several optimization algorithms.

Algorithm Number of Iterations Objective Function Value

EStra 109 1.96

Nelder–Mead simplex (Matlab function fminsearch) 445 1.47

Interior-point (Matlab function fmincon) 628 1.70

Powell 415 1.66

4. Discussion

In our investigation, we used four optimization approaches (min-max, nadir point distance
maximization, utopia point distance minimization, and full Pareto-like) to the antenna array
performance optimization, as described in Section 2.2. Out of the four approaches, we obtained
the best results using the min-max version of the optimization algorithm. In Figure 15 we show the
result of the elementary-antenna placement optimization. The initial and optimized (final) positions
are presented for comparison. It can be observed that the initial and final positions differ significantly,
but the bilateral symmetry of placement is maintained. It is worth noting that the symmetry, although
intuitively correct, was not a-priori forced by the algorithm. Under the circumstances, the fact that our
stochastic optimization converged to the symmetry can be regarded as a manifestation of its proper
operation. The resultant optimized array has switchable directivity with 15 possible patterns following
from all possible combinations of phase shift values (0 or αconst = 117.2) fed to the elementary antennas.
All 15 possible patterns are illustrated in Figure 16. It can be concluded that even for such a small
four-element array, the variability of the null and lobe positions of the patterns offer a possibility to
improve the signal-to-interference ratio significantly, provided that the source of the interference and
the signal are angularly spaced by 45◦ or in most cases even only ca 30◦ (see Figure 16).
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Example radiation patterns of the antenna array before and after the optimization process with
min-max version of the algorithm are presented in Figure 17. For the initial antenna configuration,
the worst case was with the useful signal located at ϕs = 90◦ and the interference located at ϕi = 0◦.
The phasing vector [90◦ 0◦ 0◦ 90◦] provided the SIR value equal to 0.84. For the optimized array,
the worst case was for the signal located at ϕs = 90◦ and interference located at ϕi = 315◦. In this case
the phasing vector [117.2◦ 117.2◦ 117.2◦ 0◦] yields the value of SIR = 1.96.

Figure 18 presents the radiation patterns of the optimized antenna array for the worst combination
of signal and interference angles after optimization, obtained with the simplified model, cylindrical
model, and heterogeneous model. The angular distributions of antenna gain obtained with the FDTD
and simplified model used in the optimization process are similar, but the values of gain are different.

In the case of min-max optimization, the algorithm required 109 iterations to find the final solution,
and the number of calls to the radiation pattern computations was equal to 405,480. Thanks to the
computationally efficient simplified model of the wearable antenna array radiation pattern used here,
the final solution was found in 7 min. The time that would be needed for the optimization with
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the FDTD simulations of radiation pattern (which takes one minute each) would be approximately
280 days, which can be considered prohibitive.
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5. Conclusions

In our study, we considered a wearable four-antenna phased array synthesizing a switchable
directivity pattern intended to improve the signal to interference ratio in off-body links. We applied an
evolutionary algorithm to optimize the spatial placement and feed phasing of the elementary on-body
antennas. To simplify the future implementations, we assumed only two possible values of phase (0 or
αconst) in the antenna feeding network. At this stage of our research, for simplicity, we considered an
array consisting of half-wave dipoles with vertical orientation on the body. Consequently, we optimized
five variables: four angular positions of the elementary antennas on the body and a single value of the
phase shiftαconst. In each iteration of the optimization loop, we calculated the signal-to-interference ratio
for 3720 combinations of signal and interference angles of arrival and feed phasing vectors. This number
of full-wave electromagnetic simulations would be prohibitive. Therefore, to keep the computation time
realistic, we applied a considerably simplified model of the wearable antenna array. We proposed and
tested four diverse versions of the objective function, i.e., min-max, nadir point distance maximization,
utopia point distance minimization, and full Pareto-like. Our experience justifies the assumption
that for complex problems in electromagnetics, the capability of stochastic optimization methods for
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an effective exploration and exploitation of the objective space depends strongly on the objective
function formulation. The common denominator linking the diverse formulations was the same
computational method, i.e., an algorithm of evolutionary computing in either its single-objective
version (min-max, nadir point, utopia point formulations) or multi-objective version (full Pareto-like
formulation). Out of the four versions, we obtained the best results using the min-max objective
function with a single-objective evolutionary algorithm of the lowest order—EStra. The single-objective
optimization performed with three other algorithms: Nelder–Mead, Powell and “interior-point” not
only identified inferior solutions but also with significantly greater number of iterations; moreover,
the solutions independently identified by EStra and Powell are mutually non-dominated, but EStra
solution was found in a substantially shorter runtime. In fact, the fastest convergence was observed
with Pareto-like optimization that required approximately half of the number of calls to the objective
function compared to min-max algorithm, giving a solution that was similarly good. Our investigation
indicates that evolutionary optimization algorithms can be successfully applied to significantly improve
the design of wearable antenna arrays in wireless body area networks. The other way around, i.e.,
comparing various optimization algorithms belonging to either the deterministic class or the stochastic
one, against a specific formulation of the inverse problem, would be surely meaningful. Nevertheless,
the approach would imply a substantial number of experiments: in the basic case of only two algorithms
against four formulations, 24 optimization runs would be in order; for the time being, this was out of
the scope of our research.

In our follow-up research, we will investigate simplified but more accurate analytical models of
wearable antenna array radiation patterns taking into account the interaction with human arms as well
as coupling between the antennas. We will also investigate modeling arrays consisting of antennas
that are designed to operate in proximity of the human body using our experience gathered with
half-wave dipoles.
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