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Abstract

Both the subjective response to d-amphetamine and the risk for amphetamine addiction are known to be heritable traits.
Because subjective responses to drugs may predict drug addiction, identifying alleles that influence acute response may
also provide insight into the genetic risk factors for drug abuse. We performed a Genome Wide Association Study (GWAS)
for the subjective responses to amphetamine in 381 non-drug abusing healthy volunteers. Responses to amphetamine were
measured using a double-blind, placebo-controlled, within-subjects design. We used sparse factor analysis to reduce the
dimensionality of the data to ten factors. We identified several putative associations; the strongest was between a positive
subjective drug-response factor and a SNP (rs3784943) in the 8th intron of cadherin 13 (CDH13; P = 4.5861028), a gene
previously associated with a number of psychiatric traits including methamphetamine dependence. Additionally, we
observed a putative association between a factor representing the degree of positive affect at baseline and a SNP (rs472402)
in the 1st intron of steroid-5-alpha-reductase-a-polypeptide-1 (SRD5A1; P = 2.5361027), a gene whose protein product
catalyzes the rate-limiting step in synthesis of the neurosteroid allopregnanolone. This SNP belongs to an LD-block that has
been previously associated with the expression of SRD5A1 and differences in SRD5A1 enzymatic activity. The purpose of this
study was to begin to explore the genetic basis of subjective responses to stimulant drugs using a GWAS approach in a
modestly sized sample. Our approach provides a case study for analysis of high-dimensional intermediate
pharmacogenomic phenotypes, which may be more tractable than clinical diagnoses.
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Introduction

The subjective responses to amphetamine and the risk for

amphetamine dependence are heritable traits [1,2,3]. It is

hypothesized that the genetic variation underlying subjective drug

responses may contribute to the risk of developing drug

dependence [4,5,6,7,8,9]. Previous genetic association studies of

the response to amphetamine suggest a role for genetic sources of

variability in acute drug effects, but have focused on candidate

genes [1,10,11,12,13,14,15,16,17,18,19,20]. Candidate gene stud-

ies are inherently limited in their ability to generate novel

hypotheses compared with genome-wide association studies

(GWAS). Here we report the results of the first GWAS for

subjective response to acute administration of a drug of abuse in

humans, using a laboratory-based, double-blind, placebo-con-

trolled, within-subjects design to quantify subjective response to d-

amphetamine in 381 healthy non-drug abusing participants, and

testing for associations with 5.4 million (typed and imputed) single

nucleotide polymorphisms (SNPs) across the genome.

Our study differs from most published GWAS in its use of

complex multi-dimensional phenotypes rather than a binary

diagnosis such as drug dependence or abuse. We obtained

responses on three questionnaires, administered over six time

points, in three sessions, after placebo or one of two doses of drug.

Such multi-dimensional ‘‘intermediate phenotypes’’ have many

advantages over binary diagnoses. Drug abuse is a heterogeneous

phenotype that consists of a series of stages, each influenced by a

variety of environmental and genetic factors [21]. In contrast,

intermediate phenotypes can be measured under carefully

controlled conditions, e.g., laboratory conditions, and may be

directly linked to genetic variants and resulting from specific

biological processes. For this reason, intermediate phenotypes are

hypothesized to show stronger genetic associations than binary

diagnoses, potentially allowing for smaller sample sizes [22]. For

example, a GWAS of electroencephalogram (EEG), which is an

PLOS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e42646



intermediate phenotype for brain-related clinical endpoints,

reported genome-wide significant associations using just 322

participants [23]. Furthermore, acute responses to pharmacolog-

ical perturbations often yield alleles of relatively large effects [24].

Association studies of the response to cisplatin [25], warfarin [26],

nortriptyline [27], radiation therapy [28], pegylated interferon and

ribavirin [29], and interferon-b [30] have all identified genome-

wide significant associations using small samples sizes.

Despite the potential advantages noted above, high-dimensional

intermediate phenotypes pose considerable analytic challenges.

Here we describe the results of an innovative strategy for analyzing

these data, which includes methods to normalize phenotypes and

application of sparse factor analysis (SFA) [31,32] to provide

interpretable summary phenotypes. Our approach provides a

model for the analysis of other high-dimensional intermediate

phenotypes in the context of genetic association studies.

Materials and Methods

Participants
Healthy young adults (N = 381 final sample; 200 male, 181

female) aged 18–35 years old were recruited and screened through

a physical examination, electrocardiogram, modified Structured

Clinical Interview for DSM-IV, psychiatric symptom checklist

(SCL90) and self-reported health and drug use history. Exclusion

criteria were: past year Axis I Disorder, history of mania or

psychosis, less than a high-school education, smoking more than

ten cigarettes per week, drinking more than three cups of coffee

per day, lack of English fluency, or medical contraindication to

amphetamine administration. Participants were inexperienced

stimulant users: only 24% reported any previous use of stimulants

and less than 2% reported 50 or more lifetime uses. Participants

were asked to abstain from drugs and alcohol for 24 hours,

nicotine for 12 hours and to fast for 12 hours prior to each session.

At the start of each session, participants provided urine (ToxCup,

Branan Medical Corporation, Irvine, CA, USA) and breath

samples (Alcosensor III, Intoximeters Inc., St. Louis, MO, USA;

piCO+ Smokerlyzer, Bedfont, Rochester, UK) to confirm drug,

alcohol and nicotine abstinence, and female participants were

tested for pregnancy.

Phenotyping
Participants completed three randomized 4-hour study sessions,

separated by at least 72 hours, during which they received placebo

or d-amphetamine (10 or 20 mg) under double-blind conditions.

They completed questionnaires measuring subjective effects before

and 30, 60, 90, 150 and 180 minutes after ingesting the capsule;

heart rate and blood pressure were also measured at these times;

these procedures have been described previously [1] (also see

Supporting Information S1). Subjective responses were measured

using the Profile of Mood States (POMS) [33], the Drug Effects

Questionnaire (DEQ) [34], and the Addiction Research Center

Inventory (ARCI) [35,36]. Thus, 22 phenotypes were obtained in

four categories: 1) physiological: systolic and diastolic blood

pressure, heart rate, 2) POMS scales: Friendliness, Anxiety,

Depression, Fatigue, Anger, Elation, Confusion, Vigor, 3) DEQ

scales: Feel Drug, Feel High, Want More, Like Drug, Dislike

Drug, and 4) ARCI scales: Amphetamine, Benzedrine Group

(BG), Marijuana, Lysergic Acid (LSD), Morphine-Benzedrine

Group (MBG) and Pentobarbitol-Chlorpromazine-Alcohol Group

(PCAG). Each of these 22 phenotypes was measured at six time

points during three sessions (placebo, 10 and 20 mg), totaling 396

phenotypic values for each participant. This study was approved

by the Institutional Review Board of The University of Chicago

and was carried out in accordance with the Helsinki Declaration of

1975. Written informed consent was obtained from all partici-

pants.

Data summarization and dimension reduction
First we imputed missing phenotype values using probabilistic

principal components analysis [37,38] with five principal compo-

nents, using the R [39] package ppca [40]. This approach exploits

correlations among phenotypes to impute missing values. In the

final dataset 98.74% of phenotype values were observed and

1.26% were imputed.

In addition to the primary outcome phenotypes, several

demographic measures were collected (Table S1). We examined

the correlations between these demographic measures and the

outcome phenotypes. We observed strong correlations between

age, gender, and BMI and multiple response measures (Figure S1).

Notably, we did not see strong correlations between current or

past drug use and any of the response measurements in this sample

of light drug users. For each outcome phenotype we derived a

corrected phenotype by taking the residuals of a linear regression

model, using age, sex and BMI as covariates.

Amphetamine treatment significantly affected most of the

phenotypes (Table S2). Exploratory data analyses of each

phenotype using both individual data and the mean values

showed the expected drug effects across the entire sample

(Figure 1A), but we observed substantial variability at individual

data points (Figure 1B). Average phenotypic values obtained at

baseline, before the drug was administered (0 min), were similar

across the three sessions. Average phenotypic values obtained at

the second time point (30 min) typically showed minor drug

effects, whereas phenotypic values at each of the remaining time

points changed in a dose-dependent manner. Although the mean

values at the last four time points were generally consistent with

the expected time course (increasing to a peak, and then slowly

decreasing) these time-points were highly correlated (Figure 1C)

and the differences among these means were generally small

compared with the difference from the mean at the 0 time point,

particularly in the non-placebo sessions. Therefore, we summa-

rized the six measurements for each phenotype in each session, for

each individual, using two numbers: (i) the first time point (0 min),

which we refer to as the baseline measure; and (ii) the mean of the

last four time points (60, 90, 150, 180 min) controlling for the first

time point (0 min), which we refer to as the response measure. Note

that, by construction, these two summary values are uncorrelated.

An alternative that we considered but rejected was to combine

the first two time points to form the baseline measure. Factor

loadings were quite similar using this approach; however, we

observed some evidence of early drug effects for some measures in

a subset of participants at the 30 minute time point, and thus we

chose to omit the 30 minute time point to avoid controlling for

drug response.

The above process yielded a baseline and response measure for

each of the 22 phenotypes in each session (placebo, 10 mg, and

20 mg). Next we sought to combine information across sessions

and phenotypes to yield a small number of phenotypes that

efficiently captured the primary patterns in the whole data; this

process is commonly referred to as dimension reduction. Combining

data across correlated measurements reduces environmental noise

and measurement error. We chose to perform dimension

reduction using sparse factor analysis (SFA) [31], which is a

variant of factor analysis that attempts to improve interpretability

of factors (summary measures) by encouraging each factor to be a

summary of a small subset of all data points. Because SFA is based

on a normal model, we transformed each baseline and response

GWAS of d-Amphetamine Response
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measure to follow the standard normal distribution (using a

quantile-quantile transformation) and applied SFA to these

transformed data. After experimenting with different numbers of

factors we chose eleven factors as providing the most reproducible

and interpretable results, yielding an 11 by 381 matrix of

measurements. Of the 11 factors identified, one was strongly

correlated with age, and so we disregarded that factor for all

subsequent analysis. Each of the remaining factors (F1–F10,

Figure S2) captured distinct, and generally interpretable, features

of the data. For example, F1 almost exclusively consists of

measurements of response from the 10 mg session, and so we refer

to this factor as ‘‘10 mg response’’. Factor F2 is primarily a

function of baseline measures of positive affect from all three

sessions (e.g., positive loadings on Friendliness, Elation, and Vigor;

negative loadings on Anxiety and Confusion), and we refer to this

factor as ‘‘positive affect at baseline’’ (Table S3). Although some

factors might be considered better candidates for being influenced

by genetic factors than others, we conducted association mapping

on all 10 factors since a non-genetic factor should produce null

results. The interpretability of factors obtained using SFA

compared favorably to alternative dimension reduction techniques

such as PCA (see Supporting Information S1 for further

discussion).

Genotyping and quality control
DNA was extracted from blood at the General Clinical

Research Center at the University of Chicago. Genotyping was

performed using the Affymetrix 6.0 array at the Functional

Genomics Core Facility (Vanderbilt University, Memphis, TN,

USA). The arrays were passed through the Affymetrix apt-geno-qc

package, and DM call rate, contrast QC metric, and genotypic

gender were computed. Genotypes were called with the Birdseed

[41] and CRLMM [42] algorithms. We imputed missing and non-

genotyped SNPs with the IMPUTE2 software package [43], using

the 1000 Genomes [44] and HapMap 3 [45] genotypes as

reference panels. Imputation brought the total number of SNPs to

7,573,542 SNPs per individual. We removed SNPs that had a

MAF,0.05 in our sample because they had low power to identify

associations; this left each individual with 5,476,100 SNPs. The

SNPs presented in the Results section were re-genotyped using an

Applied Biosystems TaqManH SNP Genotyping Assay (Table S4).

Association mapping
We performed association mapping separately for each of the

ten factors in 381 individuals. First, to reduce potential problems

due to non-normality, each factor was quantile-quantile trans-

formed to a standard normal distribution (quantile normalized). We

then corrected for potential population stratification by controlling

each factor for the first two principal components computed by

applying SmartPCA [46] to the genotype data (Figure S3). Finally,

these residuals were again quantile normalized to form the final 10

factors that were used for association testing.

We tested for association of each factor with each SNP by linear

regression of the factor against SNP genotype. For imputed SNPs

and missing genotypes we used the posterior mean genotype [47].

For each SNP and factor we performed both frequentist and

Bayesian tests of association: we obtained P-values using SNPTest

[48] with the parameters: [-frequentist 1 -method expected -

use_raw_phenotypes] and Bayes Factors (BF) using BIMBAM

[47,49] using the default parameters that average over four

different prior probabilities on effect size.

Post hoc analyses were carried out to determine the effect of the

two most significant SNPs on individual phenotypes; 36366

repeated measures ANOVAs (SPSS 17.0) were conducted with

genotype as the grouping factor and dose and time as the two

within-subjects factors; age, sex, BMI, and the first two principal

components from SmartPCA were included as covariates.

Because 325 of the 381 participants were Caucasians (based on

both self-report and clustering with SmartPCA), we also

performed association mapping on this Caucasian-only subset

for those SNPs highlighted in the Results section without

controlling for population stratification (see Supporting Informa-

tion S1 for additional details).

Results

We performed a GWAS on 381 participants for ten phenotypes

at 5,476,100 SNPs; results are shown in Table S4. Across the 10

factors we identified associations whose significance approached or

Figure 1. Elation (POMS) example phenotype. Panel A shows the mean (SEM) scores on the POMS Elation scale at each time point before and
after administration of placebo or d-amphetamine (10 and 20 mg). The box identifies the values shown in greater detail in Panel B. Panel B shows a
boxplot of the Elation phenotype at 90 minutes after placebo, 10 or 20 mg d-amphetamine sessions. Panel C shows the Pearson correlation
coefficient for the Elation phenotypes at all six time points for the 20 mg session: darker blue indicates high correlation and white indicates low
correlation.
doi:10.1371/journal.pone.0042646.g001
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exceeded 561028, which is often used as the threshold for

genome-wide significance. No single test produced a P-value low

enough for us to consider it incontrovertible. Nonetheless, the two

most significant associations (one with a baseline factor, and one

with a response factor) involved genes that, on the basis of prior

biological evidence, are good candidates for being associated with

these phenotypes. We view these results as generating credible

hypotheses that can be evaluated in future studies.

We identified a potential association between rs3784943 and

factor F1, which we labeled ‘‘10 mg response’’ (P = 4.5861028;

log10BF = 5.26). The frequency of this SNP did not show marked

differences among populations in 1000 Genomes, and an analysis

of the Caucasian-only subset yielded consistent results

(P = 6.2261027; log10BF = 3.53). The factor loadings show that

this factor consists primarily of responses in participants in the

10 mg session. Friendliness, Elation, Vigor, Feel, High, More,

Like, Amphetamine, Benzedrine, Marijuana and MBG have

positive loadings on this factor, while Depression, Fatigue,

Confusion and PCAG have negative loadings (Figure 2A).

Examination of the mean values of the raw phenotypic data for

individuals in the upper and lower deciles of this factor show that,

although the 20 mg session values did not contribute to the factor

through the loadings, there is substantial correlation with a positive

response to 20 mg (Figure 2B). Rs3784943 falls within the 8th

intron of the gene cadherin 13 (CDH13) which codes for a cell

adhesion molecule that is highly expressed in the brain [50]. The

minor allele frequency of this SNP in our sample was 22%; the

HWE P-value was 0.231. The genome-wide P-values for this factor

are shown in Figure 2C, and their distribution compared with its

expectation under the null (obtained via permutations) is shown in

Figure 2D. Differences in factor F1 for the three genotypes are

shown in Figure 2E. We also examined the unprocessed

phenotypic data stratified by genotype at this SNP and ran

repeated measures ANOVAs to determine which individual

phenotypes were associated with rs3784943 (Figure 2F). When

performing dimension reduction on a complex dataset, it is critical

to examine the impact of the SNP on the high-dimensional

phenotypes rather than only the effect size on the one-dimensional

factor.

We also identified a potential association between rs472402 and

factor F2, which we labeled ‘‘positive affect at baseline’’

(P = 2.5361027; log10BF = 4.33). Similar to the previous example,

this SNP did not show marked differences among populations in

1000 Genomes, and an analysis of the Caucasian-only subset

yielded consistent results (P = 4.6261025; log10BF = 2.47). Several

other SNPs in strong linkage disequilibrium (LD) with rs472402

(r2 = 0.77–0.98) were also associated with the baseline positive

affect factor (see Table S5). Friendliness, Elation, and Vigor

baseline values for all three sessions have substantial positive

loadings on this factor, while Anxiety and Confusion baseline

values have substantial negative loadings (Figure 3A). Examination

of the mean values of the raw phenotypic data for individuals in

the upper and lower deciles of this factor show that Friendliness,

Elation, and Vigor were markedly different across sessions and

time points (Figure 3B). Rs472402 falls within the first intron of the

gene SRD5A1, which codes for an enzyme that converts

progesterone to allopregnanolone, among other functions [51].

The minor allele frequency of this SNP in our sample was 48.6%;

the HWE P-value was 0.305. The genome-wide P-values for this

factor are shown in Figure 3C, and their distribution compared

with the P-values under the null (obtained via permutations) is

shown in Figure 3D. Differences in the factor values for the three

genotypes are shown in Figure 3E. The unprocessed phenotypic

data stratified by genotype at this SNP is shown in Figure 3F.

Repeated measures ANOVAs were run to determine which

individual phenotypes were associated with rs472402.

Discussion

We performed a GWAS for subjective response to d-amphet-

amine in a small sample of healthy, non-drug abusing participants

who were phenotyped using a laboratory-based, double-blind,

placebo-controlled, within-subjects design, using 5.4 million

genotyped or imputed SNPs. Phenotypic data were summarized

using SFA, which yielded ten generally interpretable factors that

represented both drug-independent and drug response pheno-

types. We identified a SNP in the CDH13 gene (Figure 2) that was

associated with the degree of positive response to amphetamine.

We also identified a SNP in the SRD5A1 gene (Figure 3) that was

potentially associated with the degree of positive affect of the

participants, independent of dose.

Our strongest genetic association with a drug response factor

was between rs3784943 and factor F1 (Figure 2). This SNP is in

the 8th intron of CDH13, which is highly expressed in multiple

brain regions [50]. CDH13 has been implicated in drug-abuse

related phenotypes by multiple studies from the same group that

aggregate evidence at the gene level; specifically, methamphet-

amine dependence [52], alcohol dependence [53,54], nicotine

dependence [55,56], successful smoking cessation [57], polysub-

stance dependence [58], addiction vulnerability [59], and comor-

bid depression and alcohol dependence [60]. In addition, a meta-

analysis of cigarettes smoked per day also identified multiple SNPs

in CDH13 [61]. CDH13 has also been implicated in attention

deficit hyperactivity disorder (ADHD) at multiple SNPs [62],

including rs11646411 [63] and rs6565113 [64]. A meta-analysis of

several GWAS for ADHD identified rs8045006 [65]. Finally, a

meta-analysis of linkage scans for ADHD identified a genomic

region containing CDH13 (16q21–16q24) [66]. Based on these

results, a candidate gene study of CDH13 and ADHD was

performed that found a gene-wide significant association at one

SNP (rs11150556) [67]. In addition, CDH13 has also been

implicated by GWAS in depression (rs10514585) [68], extraver-

sion (rs4783307, rs8056579) [69], agreeableness (rs9940706) [69]

and response to antipsychotic therapy (rs17216786) [70], as well as

in a meta-analysis for extraversion (rs8057458) [71]. Variants in

CDH13 have also been significantly associated with adiponectin

levels in two GWAS [72,73]. None of the SNPs implicated by the

above studies were strongly associated with our factors, nor were

any of the above-mentioned SNPs in strong LD with rs3784943.

Thus, while this gene has attracted significant attention, particu-

larly in the psychiatric genetics literature, these studies have not

converged on a single genetic regulator or putative mechanism of

regulation for this gene for possibly corresponding phenotypic

effects. Intriguingly, it has recently been reported that CDH13

knockout mice show decreases in conditioned place preference to

cocaine (J. Drgonova, SFN abstract #871.11/D64), which is

highly consistent with a difference in the subjective response to

amphetamine that we observed.

The association between CDH13 and sensitivity to the subjective

effects of amphetamine may provide insight into the mechanism

by which an allele influences the risk for drug dependence. Drug

dependence develops through many stages, including initial

experimentation with drugs, continued use, dependence, with-

drawal and relapse [74]. Genetic variants might influence risk by

impacting one or more of these stages [75]. Whereas a genetic

association with the diagnosis of drug dependence provides little

insight into which stage is under genetic control, our intermediate

phenotype approach suggests that rs3784943 affects magnitude of
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the initial subjective response to the drug. This would be expected

to influence an early stage in the addiction process in which early

experimentation with drugs progresses to more frequent drug use.

Further studies are needed to assess whether this SNP might also

influence the subjective response to other drugs of abuse.

Our strongest association with a baseline factor was between

rs472402 and factor F2 (Figure 3). This SNP is in the first intron of

SRD5A1, which is expressed in the brain [76]. The protein product

of this gene catalyzes the rate-limiting step in the production of the

neurosteroid allopregnanolone [77], which is a GABAA agonist.

Allopregnanolone has been shown to have anxiolytic effects in

animals [78] and progesterone administration, perhaps because it

is converted into allopregnanolone, has been shown to elicit mild

sedative effects in humans [79,80,81]; these are broadly similar to

the phenotypes that are associated with this SNP (Figure 2F).

Another SNP (rs248797; Table S5) that is in strong LD with

rs472402 (r2 = 0.73) has been identified as a cis-eQTL for the

SRD5A1 gene in human monocytes [82] (P = 6610219) and is also

in moderate LD (r2 = 0.3–0.7) with several SNPs that have been

identified as cis-eQTLs for SRD5A1 in post-mortem samples from

cerebellum and parietal cortex [83]. Rs472402 is also in strong LD

with rs248793 (r2 = 0.89), which has been associated with

differences in SRD5A1 activity [84] and with risk for alcohol

dependence [85]. Finally, SRD5A1 has also been suggested as a

positional candidate gene based on a linkage study for cocaine

dependence and major depressive episode [86]. Taken together

these results suggest that SNPs in SRD5A1 could influence

subjective positive affect by modulating both expression and

enzymatic activity of SRD5A1 and thereby altering allopregnano-

lone levels in the brain.

While techniques that aggregate information using dimension

reduction are attractive, the results must be both interpretable and

biologically meaningful. Our results here illustrate how SFA can

yield more interpretable data summaries than other methods, such

as PCA, facilitating the systematic aggregation of a large collection

of phenotypic information without sacrificing interpretability.

Regardless of the dimension reduction technique used to identify

putative associations, it is important to examine the raw

phenotypes to determine how a given SNP correlates with the

underlying phenotypic data (Figure 2F and Figure 3F). In both of

the potential associations presented in this study, the phenotypes

that loaded onto the factor overlapped well with, but were not

identical to, the phenotypes that were influenced by the identified

SNPs (Figure 2A and Figure 3A).

This study has several strengths and limitations. One limitation

is that we used a relatively small number of participants to test a

large number of putative predictors (genotypes). Despite the small

sample, there is credible evidence that intermediate pharmacoge-

nomic phenotypes might be more likely to have larger effect alleles

[24]. Another potential limitation of this study was the use of

participants that were not heavy drug abusers and thus might not

have been at the highest genetic risk for developing drug abuse.

Although our study was based on the idea that genetic variability

in a population of healthy young adults is representative of the

larger population, it is possible that our ascertainment procedures

excluded relevant genetic variants. Similarly, we chose modest

doses that were administered orally, whereas drug users typically

ingest higher doses with faster routes of administration (intranasal,

intravenous, or inhalation). Lastly, differences in drug metabolism

may constitute an uncontrolled source of variability. Reducing the

complex phenotype data to a small number of baseline and

response factors is a strength of our study because baseline

differences might otherwise confound our measurement of drug

response. We chose to compute associations for factors represent-

ing both drug-independent and drug-dependent phenotypes

because we believed that genetic associations with either baseline

or response measurements are potentially interesting, although of

course our primary motivation for the study was to study drug

response.

While intermediate phenotypes have many advantages, a major

limitation is that replication samples are seldom available. We

were unable to identify any suitable replication dataset for the

association between the SNP (rs3784943) in CDH13 and positive

subjective response. Replication of this result was challenging

because a suitable study would have included administration of a

stimulant drug, under similar conditions and corresponding

dosage, and would have had to collect the same or related

measurements of subjective response. In addition, the associated

SNP had a fairly low minor allele frequency and only a moderate

effect on the phenotype, so a relatively large dataset would be

needed to have sufficient power for replication. Alternatively, our

results can be viewed as replicating prior associations with CDH13,

however the lack of convergence on a single SNP or haplotype

across studies is a cause for concern. Because of these limitations,

the results from Cdh13 knockout mice and other biologically based

studies of CDH13 function may be the best route for further

investigation and replication of our results.

Replication of the association between the SNP (rs472402) in

SRD5A1 and baseline positive affect appeared to be a more

tractable problem because multiple GWAS datasets that include

measurements of personality traits are available. Although our

questionnaires were designed to detect differences in mood state,

the effect persisted regardless of session or time point, which is

consistent with a difference in trait independent of drug or session

effects. We examined SNPs in strong LD with rs472402 in subjects

from the National Institutes of Health/National Institute of

Mental Health (NIH/NIMH) bipolar genetics studies with

personality trait data consisting of the ZKPQ (n = 1007) and

TCI (n = 944) subscales [87]; none of our analyses provided

evidence of replication. However, the differences in the pheno-

types and the study design were substantial between these studies

and our own; this may indicate a poor fit for replication. We also

considered the baseline sessions from smaller datasets collected in

our lab using similar methodology but testing different drugs,

however none of these datasets showed convincing evidence for

Figure 2. Potential association of rs3784943 (CDH13) with an amphetamine response factor. Panel A shows the factor loadings for factor
F1; abbreviations of outcome measures are defined in the text. Panel B shows the raw phenotype scores as a function of dose (denoted by color
coded vertically stacked panels) and time (x-axis within each panel) for individuals in the upper and lower deciles of this factor. Panel C shows the
association between factor F1 and each SNP (expressed as 2log10P), the most significant association was on chromosome 16 at rs3784943
(P = 4.5861028). The red horizontal line indicates 561028, which is often used as a threshold for significance. The blue horizontal line indicates
161025, which could be considered a threshold for suggestive evidence. Panel D shows a Q-Q plot of observed 2log10P versus the average 2log10P
from ten random permutations. Panel E shows a boxplot of the values for factor F1 stratified by genotype. The width of each box corresponds to
number of observations at the corresponding genotype. Panel F shows the raw phenotype scores stratified by genotypes as a function of dose and
time. Asterisks indicate a significant Drug6time6genotype interaction in a 36366 repeated measures ANOVA using age, sex, BMI, and the first two
principal components as covariates. * P#0.05; ** P#0.01; *** P#0.0001; **** P#1024.
doi:10.1371/journal.pone.0042646.g002

GWAS of d-Amphetamine Response

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e42646



GWAS of d-Amphetamine Response

PLOS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e42646



replication. Taken together these results do not support the

association between rs472402 and baseline positive affect.

In conclusion we have performed the first GWAS of the

subjective response to a drug of abuse and identified two

interesting associations. CDH13 has previously been associated

with a number of substance abuse and other psychiatric

phenotypes and is also supported by data from knock-out mice.

Replication in independent datasets will be important to establish

the role of CDH13 in drug addiction, and to determine the extent

to which initial drug responses are related to the etiology of

addiction. SRD5A1 is similarly supported by prior evidence

including corroborating genetic studies, gene expression and

enzymatic activity data, but the lack of replication of this result

is a cause for concern. We were motivated to perform this study

using a relatively modest sample size because we believed that

intermediate pharmacogenomic phenotypes might be influenced

by alleles that contribute a larger fraction of the genetic variance.

This study reflects both the utility and challenges of such

phenotypes for discovery and enrichment of our understanding

of complex psychiatric constructs such as drug abuse.

Supporting Information

Figure S1 Correlation between putative demographic
and other covariates and raw phenotype data. The

putative covariates are on the x-axis; the raw data for each

subscale for each time point and session are on the y-axis.

Abbreviations on the x-axis are as follows: body mass index (BMI),

alcoholic drinks per week (AlcWeek), cigarettes smoked per week

(CigWeek), cups of caffeinated beverages per week (CaffWeek),

times smoking marijuana per month (MarijMonth), ever used

sedatives (SedEver), ever used stimulants (StimEver), ever used

opiates (OpiatEver), ever used hallucinogens (HallEver), ever used

inhalants (InhalEver), ever used marijuana (MarijEver). Abbrevi-

ations on the y-axis are defined in the text with the following

exceptions: Physiological phenotypes (Phys), heart rate (HR),

diastolic blood pressure (DiastolicBP), systolic blood pressure

(SystolicBP). The Pearson correlation coefficient is indicated

according to the scale bar on the right. Based on these data,

Age, Gender and BMI were regressed from the phenotypic data.

(PDF)

Figure S2 Factor loadings and GWAS results for all 10
factors. Panel A shows the factor loadings; abbreviations of

outcome measures are defined in the text. Percentage of variance

explained (PVE), or the contribution to the variance in the survey

data by each factor, is shown in the top left hand corner. Note that

the PVE does not sum, because there is correlation among the

factors. Panel B shows the raw phenotype scores as a function of

dose (denoted by color coded vertically stacked panels) and time

(x-axis within each panel) for individuals in the upper and lower

deciles of this factor. Panel C shows the Manhattan plot of

observed 2log10P for each chromosome; the red horizontal line

indicates 561028, which is often used as a threshold for

significance. The blue horizontal line indicates 161025, which

could be considered a threshold for suggestive evidence. Panel D

shows a Q-Q plot of observed 2log10P versus the average 2log10P

from then random permutations. Factor descriptions are as follows

(defined by Panels A and B): F1) responses during the 10 mg and

20 mg sessions, with highest scores on the 10 mg session; F2)

positive affect at baseline for all three sessions; F3) responses

during the 10 mg and 20 mg sessions, with highest scores on the

20 mg session; F4) responses during the 10 mg and 20 mg

sessions; F5) negative affect at baseline for all three sessions; F6)

blood pressure baseline measurements for all sessions; F7)

responses primarily during the placebo session; F8) baseline

measurements for the placebo session; F9) baseline measurements

for the 10 mg session; F10) baseline measurements for the 20 mg

session.

(PDF)

Figure S3 Summary of genotyping quality control
results. Panel A shows observed HWE P-values plotted against

expected P-values as computed by PLINK in the Caucasian-only

sample. A cutoff of 1024 was used and 149 SNPs were removed.

Panel B shows the first two genetic principal components

computed with SmartPCA on the full sample of 381 individuals.

Individuals are color coded according to self-reported ancestry.

(PDF)

Table S1 Demographic characteristics of the partici-
pant sample. Mean values are expressed as mean 6 SEM.

(DOC)

Table S2 Amphetamine effects on individual scales.
POMS is Profile of Mood States questionnaire; DEQ is Drug

Effect Questionnaire; ARCI is Addiction Research Center

Inventory questionnaire. LSD is Lysergic acid; MBG is Mor-

phine-Benzedrine Group; PCAG is Pentobarbitol-Chlorproma-

zine-Alcohol Group.

(DOC)

Table S3 Description of factors obtained from Sparse
Factor Analysis. Interpretations based on factor loading plots

(Figure S2A) and decile plots (Figure S2B) are given. PVE refers to

percentage of variance explained by each individual factor.

(DOC)

Table S4 Association results for all SNPs with
P,161025. Factor designations are given in column 1: F1)

responses during the 10 mg and 20 mg sessions, with highest

scores on the 10 mg session; F2) positive affect at baseline for all

three sessions; F3) responses during the 10 mg and 20 mg sessions,

with highest scores on the 20 mg session; F4) responses during the

10 mg and 20 mg sessions; F5) negative affect at baseline for all

three sessions; F6) blood pressure baseline measurements for all

sessions; F7) responses primarily during the placebo session; F8)

baseline measurements for the placebo session; F9) baseline

measurements for the 10 mg session; F10) baseline measurements

Figure 3. Potential association of rs472402 (SRD5A1) with the positive affect baseline factor. Panel A shows the factor loadings for factor
F2; abbreviations of outcome measures are defined in the text. Panel B shows the raw phenotype scores as a function of dose (denoted by color
coded vertically stacked panels) and time (x-axis within each panel) for individuals in the upper and lower deciles of this factor. Panel C shows the
association between factor F1 and each SNP (expressed as 2log10P), the most significant association was on chromosome 5 at rs472402
(P = 2.5361027). The red horizontal line indicates 561028, which is often used as a threshold for significance. The blue horizontal line indicates
161025, which could be considered a threshold for suggestive evidence. Panel D shows a Q-Q plot of observed 2log10P versus the average 2log10P
from ten random permutations. Panel E shows a boxplot of the values for factor F1 stratified by genotype. The width of each box corresponds to
number of observations at the corresponding genotype. Panel F shows the raw phenotype scores stratified by genotypes as a function of dose and
time. Asterisks indicate a significant main effect of genotype in a 36366 repeated measures ANOVA using age, sex, BMI, and the first two principal
components as covariates. * P#0.05; **** P#1024.
doi:10.1371/journal.pone.0042646.g003
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for the 20 mg session. P-values and log10BF are shown for SNPs

highlighted in the Results section.

(XLS)

Table S5 Association of a linkage disequilibrium block
within SRD5A1 and F2, the positive affect at baseline
factor. The post-re-genotyping association P-value, log10BF, and

HWE P-value are given. SNPs with direct eQTL evidence in the

eqtl.uchicago.edu database are noted.

(XLS)

Supporting Information S1 Combined Supporting Mate-
rials and Methods and Supporting Results file. Additional

details of the methods are provided in the Supporting Materials

and Methods section. Alternative dimensionality methods are

detailed in the Supporting Materials and Methods and Results

sections.

(DOC)
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38. Verbeek J, Vlassis N, Kröse B (2002) Procrustes analysis to coordinate mixtures

of probabilistic principal component analyzers. IAS-UVA 2.

39. R Core Development Team (2009) R: A language and environment for

statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

40. Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) pcaMethods–a

bioconductor package providing PCA methods for incomplete data. Bioinfor-

matics 23: 1164–1167.

GWAS of d-Amphetamine Response

PLOS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e42646



41. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, et al. (2008)

Integrated genotype calling and association analysis of SNPs, common copy
number polymorphisms and rare CNVs. Nature genetics 40: 1253–1260.

42. Carvalho B, Bengtsson H, Speed TP, Irizarry RA (2007) Exploration,

normalization, and genotype calls of high-density oligonucleotide SNP array
data. Biostatistics 8: 485.

43. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype
imputation method for the next generation of genome-wide association studies.

PLoS Genet 5: e1000529.

44. Durbin RM, Altshuler DL, Abecasis GR, Bentley DR, Chakravarti A, et al.
(2010) A map of human genome variation from population-scale sequencing.

Nature 467: 1061–1073.
45. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. (2007) A second

generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–
861.

46. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis.

PLoS Genet 2: e190.
47. Guan Y, Stephens M (2008) Practical issues in imputation-based association

mapping. PLoS Genetics 4: e1000279.
48. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint

method for genome-wide association studies by imputation of genotypes. Nature

genetics 39: 906–913.
49. Servin B, Stephens M (2007) Imputation-based analysis of association studies:

candidate regions and quantitative traits. PLoS Genet 3: e114.
50. Takeuchi T, Misaki A, Liang SB, Tachibana A, Hayashi N, et al. (2000)

Expression of T-cadherin (CDH13, H-Cadherin) in human brain and its
characteristics as a negative growth regulator of epidermal growth factor in

neuroblastoma cells. J Neurochem 74: 1489–1497.

51. Agı́s-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, et al. (2006)
Characterization of brain neurons that express enzymes mediating neurosteroid

biosynthesis. Proc Natl Acad Sci USA 103: 14602–14607.
52. Uhl GR, Drgon T, Liu Q-R, Johnson C, Walther D, et al. (2008) Genome-wide

association for methamphetamine dependence: convergent results from 2

samples. Archives of General Psychiatry 65: 345–355.
53. Johnson C, Drgon T, Liu QR, Walther D, Edenberg H, et al. (2006) Pooled

association genome scanning for alcohol dependence using 104,268 SNPs:
validation and use to identify alcoholism vulnerability loci in unrelated

individuals from the collaborative study on the genetics of alcoholism. American
Journal of Medical Genetics Part B: Neuropsychiatric Genetics 141: 844–853.

54. Treutlein J, Cichon S, Ridinger M, Wodarz N, Soyka M, et al. (2009) Genome-

wide association study of alcohol dependence. Archives of General Psychiatry
66: 773–784.

55. Drgon T, Montoya I, Johnson C, Liu Q-R, Walther D, et al. (2009) Genome-
wide association for nicotine dependence and smoking cessation success in NIH

research volunteers. Mol Med 15: 21–27.

56. Uhl GR, Liu Q-R, Drgon T, Johnson C, Walther D, et al. (2007) Molecular
genetics of nicotine dependence and abstinence: whole genome association using

520,000 SNPs. BMC Genet 8: 10.
57. Uhl GR, Drgon T, Johnson C, Walther D, David SP, et al. (2010) Genome-wide

association for smoking cessation success: participants in the Patch in Practice
trial of nicotine replacement. Pharmacogenomics 11: 357–367.

58. Liu QR, Drgon T, Johnson C, Walther D, Hess J, et al. (2006) Addiction

molecular genetics: 639,401 SNP whole genome association identifies many ‘‘cell
adhesion’’ genes. American Journal of Medical Genetics Part B: Neuropsychi-

atric Genetics 141: 918–925.
59. Johnson C, Drgon T, Walther D, Uhl GR (2011) Genomic Regions Identified by

Overlapping Clusters of Nominally-Positive SNPs from Genome-Wide Studies

of Alcohol and Illegal Substance Dependence. PLoS One 6: e19210.
60. Edwards AC, Aliev F, Bierut LJ, Bucholz KK, Edenberg H, et al. (2012)

Genome-wide association study of comorbid depressive syndrome and alcohol
dependence. Psychiatric Genetics 22: 31–41.

61. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, et al. (2010)

Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking
behavior. Nature genetics 42: 448–453.

62. Rivero O, Sich S, Popp S, Schmitt A, Franke B, et al. (2012) Impact of the
ADHD-susceptibility gene CDH13 on development and function of brain

networks. European neuropsychopharmacology: the journal of the European
College of Neuropsychopharmacology.

63. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Röser C, et al. (2008)
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