
Tong et al. BMC Medicine           (2022) 20:74  
https://doi.org/10.1186/s12916-022-02258-8

RESEARCH ARTICLE

Deep learning radiomics based on contrast-
enhanced ultrasound images for assisted 
diagnosis of pancreatic ductal adenocarcinoma 
and chronic pancreatitis
Tong Tong1,2†, Jionghui Gu1,3†, Dong Xu4, Ling Song5, Qiyu Zhao3, Fang Cheng4, Zhiqiang Yuan5, 
Shuyuan Tian6, Xin Yang1,2, Jie Tian1,2,7*, Kun Wang1,2* and Tian’an Jiang3,8* 

Abstract 

Background:  Accurate and non-invasive diagnosis of pancreatic ductal adenocarcinoma (PDAC) and chronic pancre-
atitis (CP) can avoid unnecessary puncture and surgery. This study aimed to develop a deep learning radiomics (DLR) 
model based on contrast-enhanced ultrasound (CEUS) images to assist radiologists in identifying PDAC and CP.

Methods:  Patients with PDAC or CP were retrospectively enrolled from three hospitals. Detailed clinicopathological 
data were collected for each patient. Diagnoses were confirmed pathologically using biopsy or surgery in all patients. 
We developed an end-to-end DLR model for diagnosing PDAC and CP using CEUS images. To verify the clinical appli-
cation value of the DLR model, two rounds of reader studies were performed.

Results:  A total of 558 patients with pancreatic lesions were enrolled and were split into the training cohort (n=351), 
internal validation cohort (n=109), and external validation cohorts 1 (n=50) and 2 (n=48). The DLR model achieved 
an area under curve (AUC) of 0.986 (95% CI 0.975–0.994), 0.978 (95% CI 0.950–0.996), 0.967 (95% CI 0.917–1.000), and 
0.953 (95% CI 0.877–1.000) in the training, internal validation, and external validation cohorts 1 and 2, respectively. The 
sensitivity and specificity of the DLR model were higher than or comparable to the diagnoses of the five radiologists 
in the three validation cohorts. With the aid of the DLR model, the diagnostic sensitivity of all radiologists was further 
improved at the expense of a small or no decrease in specificity in the three validation cohorts.

Conclusions:  The findings of this study suggest that our DLR model can be used as an effective tool to assist radiolo-
gists in the diagnosis of PDAC and CP.

Keywords:  Deep learning, Artificial intelligence, Pancreatic ductal adenocarcinoma, Contrast-enhanced ultrasound, 
Chronic pancreatitis
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Background
According to Global Cancer Statistics 2020, pancreatic 
cancer is the seventh leading cause of cancer-related 
death, with a five-year survival rate of less than 10% [1, 
2]. Approximately 85–95% of pancreatic cancer patients 
have pancreatic ductal adenocarcinoma (PDAC) [3, 
4]. Previous studies have shown that pancreatic can-
cer occurs more frequently in European and North 
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American countries. The etiology is mainly attributed 
to genetic and environmental factors, especially diet and 
lifestyle, as well as a combination of factors such as obe-
sity combined with smoking and alcohol [5, 6]. The poor 
prognosis in pancreatic cancer is due to a late diagnosis 
or misdiagnosis resulting from an overlap of symptoms 
with other conditions, such as chronic pancreatitis (CP) 
[7–10].

Imaging methods used in PDAC diagnosis include 
ultrasound (US), multidetector computed tomogra-
phy (MDCT), magnetic resonance imaging (MRI), and 
positron emission tomography-computed tomography 
(PET-CT). Among them, contrast-enhanced ultrasound 
(CEUS) is convenient, poses no risk of radiation, and pro-
vides excellent spatial and temporal resolution to display 
microcirculatory perfusion of the pancreatic mass with 
parenchyma [11–16]. Moreover, studies have shown that 
PDAC can be distinguished from CP by comparing the 
enhancement intensity of the lesion to the pancreatic 
parenchyma during the venous phase [17–19]. However, 
the diagnostic performance of CEUS is largely dependent 
on the experience of radiologists. Furthermore, subjective 
imaging features and persistent inter- and intra-observer 
variability remain challenging factors in the interpreta-
tion of CEUS images [20, 21]. At present, there are few 
human experts who can consistently diagnose pancreatic 
disorders based on CEUS.

Radiomics is a method that extracts high-throughput 
quantitative features from medical images, which pri-
marily use two analytical strategies in artificial intelli-
gence (AI), machine learning, and deep learning [22–27]. 
The feasibility of radiomics in the diagnosis of PDAC has 
been demonstrated using MRI, computed tomography 
(CT), and endoscopic ultrasonography (EUS) images. 
Deng et  al. [28] proposed a multi-parameter MRI radi-
omics model based on 119 patients with the best area 
under the curve (AUC) of 0.902 in the validation cohort 
to distinguish PDAC from CP. Ren et al. [29] verified the 
ability of texture analysis on unenhanced CT to distin-
guish PDAC from CP with best accuracy of 0.821. Tono-
zuka et  al. [30] analyzed EUS images of 139 patients to 
distinguish among PADC, CP, and normal pancreas; the 
proposed deep learning radiomics (DLR) model achieved 
AUC of 0.924 and 0.940 in the validation and test cohorts. 
Although these studies show that the radiomics model 
can achieve good performance in the identification of 
PDAC and CP, several common limitations remain unad-
dressed. First, machine learning-based radiomics studies 
require labor-intensive and time-consuming lesion delin-
eation, which inevitably is influenced by inter-and intra-
operator reproducibility, especially in US images with 
unclear boundary definition [23]. Second, these studies 
did not investigate the actual benefits of using radiomics 

in real diagnostic scenarios for radiologists. Third, the 
feasibility of radiomics using CEUS imaging in diagnos-
ing PDAC remains unverified.

This study was designed considering these limitations 
and aimed to (1) develop a DLR model for the automatic 
and accurate diagnosis of PDAC and CP using CEUS 
images and (2) validate the applicability of the DLR 
model as an effective tool to assist radiologists in the 
diagnosis of PDAC and CP. Additionally, the effect of this 
DLR model in assisting radiologists in decision-making is 
measured to assess its real clinical benefits. A two-round 
reader study with five radiologists was conducted to com-
pare the diagnostic performance between the model and 
radiologists. More importantly, the ability of the model in 
assisting different radiologists identify PDAC and CP was 
investigated, which demonstrated its potential usefulness 
in real clinical practices.

Methods
Patients
This retrospective multicenter study was conducted using 
data from three hospitals in China (Hospital 1: First Affil-
iated Hospital, Zhejiang University School of Medicine; 
Hospital 2: Cancer Hospital of the University of Chinese 
Academy of Sciences; Hospital 3: West China Hospi-
tal, Sichuan University). It was conducted in accordance 
with the Declaration of Helsinki and approved by the 
ethics committee of each participating hospital. The 
requirement for informed consent was waived owing 
to the retrospective study design. This study followed 
the Standards for Reporting of Diagnostic Accuracy 
(STARD) guidelines for diagnostic studies.

The inclusion criteria were (I) patients with pathologi-
cally confirmed CP (followed up for at least 6 months 
without progression to pancreatic cancer) or PDAC with-
out distant metastasis, (II) patients whose CEUS exami-
nation was performed within three days before biopsy 
and surgery, and (III) availability of CEUS video or CEUS 
images. The exclusion criteria were (I) multiple lesions in 
the pancreas, (II) with a history of pancreatic surgery or 
chemotherapy, and (III) inadequate CEUS image quality. 
All histopathological findings were confirmed by pathol-
ogists with more than 10 years of experience in pancre-
atic pathology.

Data derived from Hospital 1 with the largest number 
of enrolled patients were used as the primary cohort to 
reduce overfitting or bias in the analysis. In this study, 
patients of Hospital 1 were enrolled between January 
2020 to April 2021. We selected the patients admitted in 
2021 as the internal validation cohort and the patients 
admitted in 2020 as the training cohort. Data from Hos-
pitals 2 and 3 were used as independent external valida-
tion cohorts. The detailed research process is illustrated 
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in Fig. 1. Baseline characteristics including age, sex, lesion 
location and size, histological type, and carbohydrate 
antigen 19-9 (CA19-9) and carcinoembryonic antigen 
(CEA) levels were collected from the hospital database.

Contrast‑enhanced ultrasound image acquisition
Four different US devices (MyLab 90, ESAOTE, Italy; 
Aloka, HITACHI, Japan; LIGIQ E20, GE, USA; Resona 
7, Mindray, China) equipped with an abdominal probe 
were used to capture the CEUS videos and/or images. 
Examinations were performed by one of the six radi-
ologists with over 10 years of experience in abdominal 
CEUS. Before each examination, the proper contrast 
mode, including gain, depth, acoustic window, mechani-
cal index, and focal zone, were adjusted. First, 2.4 mL 
of the contrast agent (SonoVue®; Bracco, Milan, Italy) 
was injected, followed by a 5-mL saline flush. The timer 
was started simultaneously when the contrast agent was 
being injected. Subsequently, the probe was kept in a sta-
ble state for 120 s to detect the pancreatic lesion and the 
surrounding pancreatic parenchyma. Finally, the video 
was recorded in Dicom format.

In this study, only one key CEUS image of each patient 
was finally selected for analysis. CEUS images of pan-
creatic lesions were mainly divided into three phases: 

vascular phase (0–30 s), pancreatic phase (31–60 s), 
and delayed phase (61–120 s) [14, 18]. Previous stud-
ies have shown that diagnosis of PDAC and CP using 
CEUS is mainly based on different enhancement pat-
terns of the lesions. Studies have confirmed that dur-
ing the pancreatic phase (30–40 s), the enhancement 
pattern could be high enhancement, equal enhance-
ment, or low enhancement depending on the contrast 
of enhancement intensity between lesions and pancre-
atic parenchyma [13, 14, 31, 32]. Based on the above 
principles, we developed the criteria for the selection 
of key CEUS images. Owing to the retrospective nature 
of the study, dynamic CEUS video data of all patients 
were not completely preserved (half of the patients had 
no video). For maximal use of the existing data, image 
selection mainly included two schemes. For cases 
without dynamic video, 15–20 images were generally 
retained in the workstation during routine clinical work 
of CEUS examination in three participating hospitals, 
including important static CEUS images of three differ-
ent phases. A typical static CEUS image of the pancre-
atic phase was selected for analysis, which showed the 
maximum diameter of the lesion at approximately the 
35th second in duration. For cases with dynamic video, 
we directly selected the single frame around the 35th 

Fig. 1  Retrospective workflow. CEUS, contrast-enhanced ultrasound; PDAC, pancreatic ductal adenocarcinoma; CP, chronic pancreatitis
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second in the dynamic video as a typical CEUS image 
for model development after preprocessing.

Region of interest extraction and preprocessing
The raw CEUS images were obtained by selecting the 
key frame from the CEUS videos or existing raw CEUS 
images extracted from the CEUS videos. Since two-
dimensional (2D) grayscale US and CEUS images were 
displayed simultaneously in one view (Additional file  1: 
Fig. S1), we defined a rectangular region of interest (ROI) 
covering the lesion on the raw CEUS image, to eliminate 
the interference of irrelevant information from the image 
and non-lesion areas. The radiologist first determined the 
lesion area according to the 2D grayscale images in the 
raw CEUS images, following which the ROI was marked at 
the same location on the CEUS images. The open-source 
software labelme was used to label the ROI with a rectan-
gular bounding box, and then the ROI image was cropped 
from the CEUS image [33]. In principle, the ROI image 
included the lesion and surrounding tissues. After the ROI 
extraction, further preprocessing was performed to obtain 
the resized and grayscale ROI images for model develop-
ment. All colored ROI images were converted to greyscale, 

considering the color difference of the CEUS images col-
lected from different US devices (Additional file 1: Fig. S2) 
and the minimal correlation between the enhancement 
pattern and color to improve the robustness of the DLR 
model for different equipment. Thus, only the distribu-
tion of the image gray values could affect the DLR model 
output. Finally, the grayscale ROI images were resized 
to 224×224 and inputted into the DLR model. The ROI 
extraction and preprocessing workflow is shown in Fig. 2.

Deep learning radiomics model development
The DLR model was based on the Resnet-50 [34] back-
bone to extract deep learning features for classification 
(Fig.  2). Two fully connected layers with outputs of 512 
and 2 neurons, respectively, and a softmax activation layer 
were placed on top of the convolutional layers to generate 
the AI scores for PDAC and CP. Using the softmax activa-
tion layer can give the AI score the meaning of probabil-
ity, ensuring that the sum of the AI score in PDAC and 
CP categories for one lesion is 1. The dropout layer with 
a probability of 0.5 was added between every two fully 
connected layers to alleviate overfitting. Additional file 1: 
Table  S1 illustrates the detailed architecture of our DLR 

Fig. 2  Workflow of ROI extraction and preprocessing and our DLR model. The ROI image is extracted from the raw CEUS video, if available; 
otherwise it is extracted directly from the existing CEUS images. The resized and grayscale ROI images are fed into our model which outputs the AI 
score and heatmap for each lesion. The radiologists provide an initial decision on each lesion and then adjust their decisions, if uncertain, based on 
the additional information provided by the DLR model. CEUS, contrast-enhanced ultrasound; PDAC, pancreatic ductal adenocarcinoma; CP, chronic 
pancreatitis; ROI, region of interest; AI, artificial intelligence; DLR, deep learning radiomics
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model. We also tested other typical image classification 
backbones, including Inception-v3 [35], VGG-16 [36], and 
Densenet-121 [37]. The performance between different 
networks was very small in every cohort (Additional file 1: 
Fig. S3). Because Resnet-50 achieved the highest AUC in 
most validation cohorts, we chose Resnet-50 as the back-
bone for feature extraction. The detailed training process 
is provided in Additional file 1: Method S1 [38, 39].

Two‑round reader study
A two-round reader study was conducted to investi-
gate the clinical benefits radiologists actually obtained 
through the assistance of the DLR model (Fig.  2). 
Five radiologists with an average of 9 years of CEUS 

experience (3–15 years) participated in this study. A total 
of 207 lesions (150 positives) from the internal validation 
cohort and the external validation cohorts 1 and 2 were 
presented in random order. During the whole process, 
the radiologists were blinded to each other, the original 
diagnostic reports, and the final pathology results. The 
details of the two-round reader study are provided in 
Additional file 1: Method S2 [40].

Statistical analysis
Statistical analyses were performed using SPSS (version 
23.0; IBM Corp., Armonk, NY, USA) and Python 3.7. 
Continuous variables were described as mean and stand-
ard deviation (SD), and categorical variables, as number 

Fig. 3  Comparison between performance of the DLR model and radiologists. The figure shows the identification of PDAC and CP in the training 
cohort, internal validation cohort, and external validation cohorts 1 and 2 using the DLR model and by individual radiologists. The performance of 
our DLR model is compared with each of the five readers and the average reader. DLR, deep learning radiomics; AUC, area under the curve; PDAC, 
pancreatic ductal adenocarcinoma; CP, chronic pancreatitis
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and percentage. Between-group comparisons were per-
formed using the Student’s t-test or Mann–Whitney U 
test for quantitative variables and the chi-squared test 
for qualitative variables. The 95% confidence interval (CI) 
was calculated using bootstrapping with 2000 resamples. 
The McNemar’s test was used to calculate whether the 
DLR model and the radiologists had significant differ-
ences in sensitivity and specificity. All statistical analyses 
were two-sided with statistical significance set at P <.05.

Results
Clinical data
In total, 558 patients with pancreatic lesions were 
enrolled (Fig.  1). Pathological findings showed PDAC 
lesions in 414 cases and CP lesions in 144 cases. Table 1 

summarizes the detailed patient demographics and pan-
creatic lesion characteristics.

Comparison between deep learning radiomics model 
and radiologists
The radiologists’ decisions from the first-round reading 
were compared with the DLR model. The receiver opera-
tor characteristic (ROC) curve of the DLR model, the 
diagnoses of each radiologist, and the average diagnos-
tic results of all radiologists of the different cohorts are 
shown in Fig. 3. Our DLR model achieved a high AUC of 
0.986 (95% CI 0.975–0.994), 0.978 (95% CI 0.950–0.996), 
0.967 (95% CI 0.917–1.000), and 0.953 (95% CI 0.877–
1.000) in the training, internal validation, and external 
validation cohorts 1 and 2, respectively. The sensitivity 

Table 2  Summary of the changes in the decision-making of radiologists before and after AI assistance

The upward arrow (↑) represents indicators that improved owing to AI assistance

PDAC pancreatic ductal adenocarcinoma, CP chronic pancreatitis, AI artificial intelligence

*P<.05
a Number of patients for whom the radiologists altered their decision from CP to PDAC
b Number of patients for whom the radiologists altered their decision from PDAC to CP

Reader 
number

True negative True positive CP 
↓
PDACa

PDAC 
↓
CPb

Sensitivity (%) Specificity (%)

Internal validation cohort 1 33→28 52→70↑ 23 0 71.2→95.9↑* 91.7→77.8

2 19→27↑ 65→73↑ 9 9 89.0→100.0↑* 52.8→75.0↑*

3 22→27↑ 70→73↑ 3 5 95.9→100.0↑ 61.1→75.0↑
4 32→33↑ 63→69↑ 6 1 86.3→94.5↑* 88.9→91.7↑
5 22→33↑ 58→64↑ 5 13 79.5→84.2↑ 61.1→91.7↑*

External validation cohort 1 1 5→8↑ 34→36↑ 4 5 87.2→92.3↑ 45.5→72.7↑
2 8→8 31→34↑ 4 1 79.5→87.2↑ 72.7→72.7

3 10→10 33→35↑ 2 0 84.6→89.7↑ 90.9→90.9

4 10→10 33→36↑ 3 0 84.6→92.3↑ 90.9→90.9

5 8→9↑ 28→33↑ 9 5 71.8→84.6↑ 72.7→81.8↑
External validation cohort 2 1 7→7 31→35↑ 6 2 81.6→92.1↑ 70.0→70.0

2 6→6 32→35↑ 3 0 84.2→92.1↑ 60.0→60.0

3 9→8 31→35↑ 7 2 81.6→92.1↑ 90.0→80.0

4 6→8↑ 34→36↑ 2 2 89.5→94.7↑ 60.0→80.0↑
5 7→4 29→36↑ 13 3 76.3→94.7↑* 70.0→40.0

(See figure on next page.)
Fig. 4  Typical cases of our DLR model guiding radiologists to make correct decisions. The top panel shows two PDAC lesions. Most radiologists 
consider these lesions as CP lesions in the first reading, but 100% accuracy is achieved with access to the additional information generated from 
the DLR model. In these two cases, the score of the DLR model for PDAC is significantly higher than that of CP, and the area of the highlighted 
regions is large in the heatmaps. Most of them are distributed inside the tumor, which is consistent with the regular pattern of the PDAC lesions 
found. The bottom panel shows two CP lesions. Most radiologists consider these lesions as PDAC lesions in the first reading, and 100% accuracy is 
achieved with access to the additional information generated from the DLR model. In these two cases, the DLR model scores CP significantly higher 
than PDAC, and the area of the highlighted regions is small in the heatmaps and mostly distributed at the boundary of the ROI image, which is 
consistent with the regular pattern of CP lesions found. PDAC, pancreatic ductal adenocarcinoma; CP, chronic pancreatitis; ROI: region of interest; AI, 
artificial intelligence; DLR, deep learning radiomics
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Fig. 4  (See legend on previous page.)
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of internal validation, external validation cohort 1, and 
external validation cohort 2 were 97.3% (95% CI 93.2%–
100%), 87.2% (95% CI 76.3%–97.2%), and 0.974 (95% CI 
0.914–1.000); and the specificity values were 83.3% (95% 
CI 70.0%–94.3%), 100% (95% CI 100%–100%), and 70.0% 
(95% CI 37.5%–100%), respectively. The sensitivity and 
specificity results were based on the operation point of 
0.5 [41]. The confusion matrices of DLR model are pre-
sented in Additional file 1: Fig. S4. Diagnoses of the five 
radiologists were either worse or comparable to those 
of the model. This is demonstrated by almost no green 
point reaching the upper left region of the ROC curve. 
Furthermore, average of all three reader diagnoses in the 
validation cohorts were located below the ROC curve 
of the model (Fig.  3, green crosses), revealing that our 
model was superior to the radiologists in general. The 
confusion matrices of the comprehensive diagnoses from 
the five readers without DLR assistance are presented in 
Additional file 1: Fig. S4.

For a more specific comparison, we also compared the 
sensitivity and specificity between the model and each 
radiologist. For fairness, we adjusted the operation point 
of the DLR model so that the specificity (sensitivity) 
matched the specificity (sensitivity) of each radiologist 
when comparing sensitivity (specificity). Since radiolo-
gists provide direct qualitative classification reports, sen-
sitivity and specificity are fixed. The sensitivity and 
specificity of DLR model can be changed by adjusting the 
classification threshold. Based on the above principles, 
we achieved a specific comparison between the diagnos-
tic performance of DLR model and radiologists. Detailed 
results are shown in Additional file  1: Table  S2. In the 
internal validation cohort, the DLR model achieved bet-
ter sensitivity and specificity than all radiologists, with 
a significantly higher sensitivity than three out of the 
five radiologists (P <.05 for Reader-1, Reader-2, and 
Reader-5) and a significantly higher specificity than three 
out of the five radiologists (P <.05 for Reader-2, Reader-3, 
and Reader-5). In the external validation cohort 1, the 
DLR model also achieved better sensitivity and specificity 
than all radiologists, with a significantly higher sensitivity 

than two out of the five radiologists (P <.05 for Reader-2 
and Reader-5) and significantly higher specificity than 
Reader-1 (P <.05). In the external validation cohort 2, 
the DLR model achieved better sensitivity and specific-
ity than all radiologists, except Reader-3. It showed a 
significantly higher sensitivity than two out of the five 
radiologists (P <.05 for Reader-2 and Reader-5), but not a 
significantly higher specificity.

Enhanced diagnosis with AI assistance
The change in diagnoses given by the five radiologists 
before and after AI assistance were analyzed in the 
two-round reader study. Detailed changes in their deci-
sion, sensitivity, and specificity are shown in Table  2; 
and the confusion matrices of each radiologist with-
out and with AI assistance are shown in the Additional 
file 1: Figs. S5 and S6. In the internal validation cohort, 
all radiologists achieved higher sensitivity, and four out 
of the five radiologists achieved higher specificity with AI 
assistance. Three and two of five radiologists had a sig-
nificant improvement in sensitivity (P <.05 for Reader-1, 
Reader-2, and Reader-4) and specificity (P<.05 for 
Reader-2 and Reader-4), respectively. In external valida-
tion cohort 1, all radiologists achieved higher sensitivity, 
and two out of the five radiologists achieved higher speci-
ficity with AI assistance. In external validation cohort 2, 
all radiologists achieved higher sensitivity, and one out of 
the five radiologists achieved higher specificity with AI 
assistance. Reader-5 had a significantly higher sensitivity 
than the first-round results (P<.05). In all three validation 
cohorts, we found a positive effect of the DLR model in 
assisting radiologists to enhance their average accuracy 
(Fig. 3, orange points and crosses). Additionally, the con-
fusion matrices of the comprehensive diagnoses of the 
five radiologists with AI assistance are given in the Addi-
tional file 1: Fig. S4.

To illustrate the clinical value of our DLR model more 
vividly, some successful and unsuccessful examples 
where radiologists changed their first-round decisions 
due to AI assistance are shown in Figs. 4 and 5. Although 
AI scores and heatmaps given by the DLR model misled 

Fig. 5  Typical cases of our DLR model that misled radiologists to make incorrect decisions. The top panel shows two PDAC lesions. All radiologists 
consider these two lesions to be PDAC lesions in the first reading. However, with access to the information from the DLR model, Reader-5 changed 
to the correct decision, considering them as CP lesions. In these two cases, the score of DLR model for PDAC is significantly higher than that of CP, 
and the area of the highlighted regions in the heatmaps are large and mostly distributed inside the tumor, which is consistent with other PDAC 
cases. Since Reader-5 is a junior radiologist, we believe that Reader-5’s mistakes may be due to lack of experience or carelessness. The bottom panel 
shows two CP lesions, which are inconsistent with the diagnosis of the radiologists in the first reading. However, with access to the information 
provided by the DLR model, all radiologists make the wrong decision. In these two cases, the misjudgment in the first case may be due to the large 
highlighted area of the generated heatmap, which is relatively rare in CP lesions, although most of the highlighted areas are still located at the 
boundary of the image. In the second case, the PDAC score with the DLR model is significantly higher than that of CP, which represents a case of AI 
misjudgment, thus misleading the radiologists. PDAC, pancreatic ductal adenocarcinoma; CP, chronic pancreatitis; ROI, region of interest; AI, artificial 
intelligence; DLR, deep learning radiomics

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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the radiologists’ decisions in some cases, the total scores 
of the five radiologists for all lesions in the validation 
cohorts before and after DLR assistance exhibited a clear 
trend of enhanced diagnostic performance (Fig. 6). The 
total score was calculated as follows: if a patient was 
identified as a PDAC case by a radiologist, one point was 
awarded. Therefore, for five reads, the highest score was 
five, and the lowest score was zero. The higher the score, 
the more experts believed that the lesion was PDAC. The 
total scores demonstrated that a systematic improve-
ment of the diagnostic accuracy was achieved in both 
PDAC and CP groups for all human experts with the 
help of the DLR model.

Noticeably, the heatmaps generated by gradient-
weighted class activation mapping for model visualiza-
tion had different patterns in PDAC and CP images [40]. 
More specifically, the highlighted region for PDAC cases 
was greater than that of CP cases in the heatmaps, and 
most of those regions were located inside the lesions. 
In contrast, highlighted regions were mainly distributed 
at the boundary of the lesion in CP heatmaps. Addi-
tionally, radiologists noticed that for PDAC lesions, the 
highlighted regions were mainly distributed in the low-
enhancement area inside the tumor, frequently adjacent 
to a high-enhancement region. Some heatmap examples 
of ROI images for PDAC and CP are shown in Fig. 7.

Discussion
In this study, we attempted for the first time to investi-
gate the performance of CEUS-based DLR in the diag-
nosis of PDAC and CP. Compared with human experts, 
our model achieved an overall better performance in all 
validation cohorts. Furthermore, we demonstrated that 

by incorporating AI scores and heatmaps, radiologists 
improved their decision-making, revealing the clinical 
value of applying the DLR model in clinical practice. 
Compared with other radiomics studies, a major high-
light here was the use of the two-round reader inves-
tigation with five radiologists based on multicenter 
data.

The performance of our DLR model based on the CEUS 
images was better than or comparable to that of differ-
ent models using other modalities, including MDCT, 
MRI, PET-CT, and EUS [28–30, 42]. This could be due 
to two possible reasons. First, compared with machine 
learning methods used in most of these studies [28, 29], 
the DLR model can automatically learn the adaptive fea-
tures based on a specific task (effective identification of 
PDAC and CP) and it is flexible. Second, the diagnostic 
value of CEUS for PDAC has been demonstrated in pre-
vious studies [13, 43–45], confirming that the enhance-
ment pattern in the lesion area contributes to qualitative 
diagnosis. Thus, it may contribute more to quantitative 
diagnosis.

Our DLR model achieved significantly higher, higher, 
or comparable sensitivity and specificity compared with 
the five radiologists in our first-round reader study. 
Although radiologists can identify lesions based on 
enhancement patterns, PDAC and CP may be difficult 
to distinguish when they exhibit similar CEUS enhance-
ment patterns, mainly due to the presence of abundant 
fibrous tissue within PDAC lesions or necrosis within CP 
lesions. The DLR model can further learn and use high-
level abstract features that are unrecognizable to humans 
to identify PDAC and CP, thus surpassing the diagnostic 
performance of human experts [24, 46–48].

Fig. 6  A summary of the total scores from five radiologists before and after DLR model assistance for every lesion in the validation cohorts. The red 
and green circles indicate the total score without and with DLR model assistance, respectively. The blue circles indicate that the lesion has the same 
score before and after AI assistance. The arrows indicate the trend of the total score after AI assistance. The total score is obtained by the sum of the 
scores of five radiologists individually. If a radiologist believes that a lesion is PDAC, it is scored as one point leading to a maximum score of five. The 
higher the score, the more experts believe that the lesion is PDAC. PDAC, pancreatic ductal adenocarcinoma; CP, chronic pancreatitis; AI, artificial 
intelligence; DLR, deep learning radiomics
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Furthermore, we explored the benefits that radiolo-
gists actually obtained from the DLR assistance in clin-
ical practice. We believe this is particularly important 
because DLR models will play a supporting role in the 
foreseeable future. Although AI and radiomics models 

have their superiorities, human experts would still 
make the final decision. One major reason is that the 
interpretability of deep learning features is still in its 
infancy [49, 50], and the biological mechanism behind 
these radiomics features remain underexplored. 

Fig. 7  Examples of heatmaps generated by our DLR model for PDAC and CP lesions. Generally, the highlighted area of the PDAC lesions is larger 
than that of the CP lesions, and most of them are distributed inside the tumor. The highlighted areas are dominated by low-enhancement regions 
with adjacent high-enhancement regions around. The highlighted regions of the CP lesions are mainly distributed at the boundary of the image. 
This may be due to the lack of PDAC features in the center of the ROI. PDAC, pancreatic ductal adenocarcinoma; CP, chronic pancreatitis; ROI, region 
of interest; DLR, deep learning radiomics
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However, this should not stop radiologists from uti-
lizing radiomics methods to enhance their diagnosis. 
In our design, AI scores notified radiologists about 
patients with different diagnoses between them and 
quantitative computer analysis. Heatmaps offered 
extra information for guiding their attention to the 
highlighted areas in the CEUS images so that they re-
evaluated images more efficiently to decide whether to 
re-evaluate their decision. With this assisting strategy 
in the second-round image reading, human experts 
showed an overall increase in sensitivity to PDAC 
assessment with little or no loss of specificity.

We can understand how they helped radiologists 
effectively by investigating AI scores and heatmaps 
more thoroughly. The AI score can be regarded as the 
predicted probability of PDAC and CP by the DLR 
model. As can be seen from the frequency distribution 
histogram in Additional file 1: Fig. S7, we found that our 
DLR model provided a large ratio of extreme AI scores 
(e.g., greater than 0.9 for PDAC and less than 0.1 for CP 
lesions). As shown in Figs. 4 and 5, when the model pro-
vides an extreme score and strongly suggested the lesion 
are PDAC or CP, the AI score itself served as a strong 
indicator signal to the radiologists. The small ratio of 
ambiguous AI scores certainly helped with this “alarm” 
effect. Furthermore, heatmaps generated by DLR model 
reflected different patterns in the PDAC and CP lesions. 
For PDAC lesions, the highlighted areas were more 
concentrated in the low-enhancement region adjacent 
to the high enhancement area within the tumor, likely 
because of the DLR model learning key features from 
low-enhancement patterns related with less micro-
vascular density, abundant fibrous tissue, and large 
amounts of necrotic tissue [51–54]. For CP lesions, 
since the model did not find important features towards 
PDAC, the highlighted area was relatively small and 
mainly distributed at the boundary of the ROI [55–59]. 
Therefore, the “alarm” effect and interpretable heatmap 
patterns together assisted radiologists to achieve real 
diagnostic benefits effectively.

Another potential clinical value of the DLR model is that 
it may help junior radiologists more effectively. Although 
all radiologists obtained positive assistance from the 
model, Reader-5, the junior radiologist, benefited the most. 
Therefore, this approach holds the potential to steepen the 
learning curve of radiologists with less experience.

Our study had several limitations. First, although this 
was a multicenter study, the dataset was not large, espe-
cially for the external validation cohort. Second, owing 
to the retrospective nature of the study, we did not use 
CEUS videos, which probably weakened the performance 
of the DLR strategy [14, 18]. Nevertheless, the strong 

performance of our model was sufficient to show that 
the use of static CEUS images provided effective clinical 
assistance.

Conclusion
A DLR model for the diagnosis of PDAC and CP was 
developed from a multicenter retrospective dataset based 
on CEUS images. Further, a two-round reader study 
demonstrated that the model was effective in assisting 
radiologists to improve diagnosis.
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