
Published online 16 July 2014 Nucleic Acids Research, 2014, Vol. 42, No. 15 e122
doi: 10.1093/nar/gku585

Inferring population structure and relationship using
minimal independent evolutionary markers in
Y-chromosome: a hybrid approach of recursive
feature selection for hierarchical clustering
Amit Kumar Srivastava1, Rupali Chopra1, Shafat Ali1, Shweta Aggarwal1, Lovekesh Vig2

and Rameshwar Nath Koul Bamezai3,*

1National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi
110067, India, 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067,
India and 3National Centre of Applied Human Genetics, School of Life Sciences, and School of Computational and
Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India

Received November 22, 2013; Revised June 10, 2014; Accepted June 16, 2014

ABSTRACT

Inundation of evolutionary markers expedited in Hu-
man Genome Project and 1000 Genome Consor-
tium has necessitated pruning of redundant and
dependent variables. Various computational tools
based on machine-learning and data-mining meth-
ods like feature selection/extraction have been pro-
posed to escape the curse of dimensionality in large
datasets. Incidentally, evolutionary studies, primar-
ily based on sequentially evolved variations have
remained un-facilitated by such advances till date.
Here, we present a novel approach of recursive
feature selection for hierarchical clustering of Y-
chromosomal SNPs/haplogroups to select a mini-
mal set of independent markers, sufficient to infer
population structure as precisely as deduced by a
larger number of evolutionary markers. To validate
the applicability of our approach, we optimally de-
signed MALDI-TOF mass spectrometry-based multi-
plex to accommodate independent Y-chromosomal
markers in a single multiplex and genotyped two ge-
ographically distinct Indian populations. An analysis
of 105 world-wide populations reflected that 15 inde-
pendent variations/markers were optimal in defining
population structure parameters, such as FST, molec-
ular variance and correlation-based relationship. A
subsequent addition of randomly selected markers
had a negligible effect (close to zero, i.e. 1 × 10−3) on
these parameters. The study proves efficient in trac-
ing complex population structures and deriving re-

lationships among world-wide populations in a cost-
effective and expedient manner.

INTRODUCTION

Human population genetics has witnessed advances
through inundation of thousands of evolutionary markers
made known from Human Genome project (HGP) and the
1000 Genome Consortium (1000 GC) studies. Also, mark-
ers in haploid mitochondrial genome (1) and male-specific
Y-chromosome (MSY) (2) are incidentally categorized
under haplogroups on the basis of sequential events of
ancestral and acquired mutations in a time frame of hu-
man evolution. However, these ever-increasing variations
impose two major challenges to evolutionary studies in
identifying population structure and their relationship. The
abundant presence of redundant and inter-dependent vari-
ables gives rise to the problem of high dimensionality and
high genotyping cost limiting the sample size for a study.
An appropriate alternative to overcome these problems is to
select and study highly informative independent variations,
sufficient to infer populations’ structure and relationship
as precisely as inferred from a larger set of evolutionary
markers. In the light of difficulties and proposed solution,
pruning of redundant and dependent variations through
adaptation and development of new approaches followed
by low-cost genotyping technologies is essential.

In the past decade, various computational and statisti-
cal approaches based on Bayesian clustering (3–6), Wright–
Fisher model (7) and machine learning and data mining
methods (8,9) have revolutionized genetic studies to ex-
pedite processing of large datasets more precisely. How-
ever, most of the available models and algorithms infer-
ring populations’ structure and relationship consider vari-
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ables as independent events which remain partially true
for sequentially evolved markers. Although few models
exploiting machine learning and data mining-based fea-
ture selection/extraction methods have recently been pro-
posed for minimizing redundancy and dependency in a va-
riety of high dimensional biological data including genome-
wide single nucleotide polymorphism (SNP) data (10–
14), nevertheless evolutionary studies still suffer with the
curse of dimensionality (15) due to absence of appropri-
ate models/approaches dealing with sequentially evolved
markers in haploid genome.

In view of a wide applicability of feature
selection/extraction methods in high-dimensional bio-
logical data, current models dealing with genome-wide
SNP data are based on either haplotype block-dependent
pair-wise linkage disequilibrium (LD) (16,17) or haplo-
type block-independent F-test (18), t-test (18), χ2-test
and regression parameters (11,14). However, each of the
proposed methods has its own strengths and limitations.
Thus, there is a need for hybrid models exploiting both
supervised and unsupervised machine learning methods.

In the current study, we used a correlation coefficient-
based supervised feature selection method embedded with
agglomerative hierarchical clustering based on prior knowl-
edge of Y-chromosomal phylogeny. To validate our novel
approach, we chose a model study based on real datasets
of male-specific Y-chromosomal (MSY) variations gener-
ated in present and earlier studies. As per neutral theory of
molecular evolution (7) and Kimura’s step-wise mutation
model (19), a major source of allelic diffusion in finite pop-
ulations is fixation of neutral mutations by genetic drift, i.e.
mutations occurring in steps are defined by state of varia-
tion occurred in the preceding generation. The same applies
to Y-chromosome phylogeny as well, i.e. each haplogroup
(combination of same or different haplotypes) is an out-
come of one or more mutation event, which later on sta-
bilizes under different evolutionary forces, such as migra-
tion, genetic drift, selection and admixture in a population
or geographical region. Therefore, lower nodes in hierarchy
appear in the background of already existing higher ones
(Figure 1). In the background of the above fact, only few
evolutionary markers which are most ancestral in their re-
spective clades could be considered independent and rest
are sequentially derived after the fixation and selection of
ancestral ones (Figure 1).

At present, the hierarchical phylogeny of paternally in-
herited human Y chromosome with universal nomenclature
by Y Chromosome Consortium (http://ycc.biosci.arizona.
edu) consists of 20 major (A–T) and 311 divergent hap-
logroups, defined by 599 validated binary markers (20). This
nomenclature denotes all major clades (haplogroups) by
capital letters (e.g. A, B, C, etc.) and sub-clades either by
numbers or small letters (e.g. H1a, H1b, R1a1, etc.) (21).
However, an addition of 2870 variations in Y chromosome
including two-third novel ones from the 1000 GC has dif-
ferentiated further the already existing haplogroups/clades
into more profound sub-haplogroups/sub-clades (21,22).
In an ocean of a huge number of SNPs to be genotyped
simultaneously and the limitations of the high-throughput
technologies to provide desired outcome in a large dataset
of diverse population groups, a scope of pruning of such

Figure 1. Representative example of hierarchical events of mutations in
evolution (as would happen say in the Y-chromosome) in human popula-
tion. ‘A’ represents the most recent common ancestor with a genetic back-
ground with mutation e1. In the background of e1 three independent mu-
tation events follow to give rise to three different clades ‘B, C, D’. The
variations originating in lower nodes later would represent the ancestors
of their respective clades.

variables is justified, even within Y chromosome alone. Ad-
ditionally, the optimization of the procedure to genotype all
independent markers in one go without compromising the
quality of the results becomes critical.

Generally, evolutionary studies prefer medium through-
put techniques (suitable for hundreds of SNPs in large
sample size) over high-throughput technologies (suit-
able for millions of SNPs in limited sample size), since
evolutionarily conserved SNPs are limited in numbers
and need to be genotyped in large sample size. Vari-
ous medium-throughput technologies, e.g. matrix-assisted
laser desorption/ionization time-of-flight mass spectrom-
etry (MALDI-TOF MS) (23–33), TaqMan (34) and
SNaPshotTM (21,35–41) have been developed in the past
few years and validated with respect to accuracy, sensitivity,
flexibility in assay designing and cost per genotype (42–44).
Based on the requirement and above-mentioned criterion,
MALDI-TOF-MS-based iPLEX GOLD assay from SE-
QUENOM, Inc. (San Diego, CA, USA) was used for mul-
tiplex genotyping of Y-chromosome SNPs in the present
study.

Current study (Figure 2) has taken care of the problems
of high-dimensionality and expensive genotyping methods
simultaneously. The problem of high-dimensionality was at-
tended to by the selection of highly informative indepen-
dent Y-chromosomal markers (features) through a novel ap-
proach of ‘recursive feature selection for hierarchical clus-
tering (RFSHC)’. Our approach utilized recursive selection
of features through variable ranking on the basis of Pear-
son’s correlation coefficient (PCC) embedded with agglom-
erative (bottom up) hierarchical clustering based on judi-
cious use of phylogeny of Y-chromosomal haplogroups. The
approach was initially applied on a dataset of 50 popu-
lations. Later, observations from above dataset were con-
firmed on two datasets of 79 and 105 populations. Sev-
eral computational analyses such as principal component
analysis (PCA) plots, cluster validation, purity of clus-
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Figure 2. A flow-chart representing problems in evolutionary studies, our
hypothesis, aim of the study with step-wise methodology adopted and con-
clusion.

ters and their comparison with already existing methods
of feature selection were performed to prove the authen-
ticity of our novel approach. Further, to cut the cost
as much as possible without compromising on the abil-
ity of estimating population structure, these independent
markers were multiplexed together into a single multiplex
by using a medium-throughput MALDI-TOF-MS plat-
form ‘SEQUENOM’. In addition, recently evolved hap-
logroups representing lower nodes in Y-chromosome hi-
erarchy were accommodated in subsequent three multi-
plexes in a continent-specific manner to check even mi-
nor changes in the resolution of population structure and
relationship, if any. Moreover, newly designed multiplexes
consisting of highly informative-independent features were
genotyped for two geographically independent Indian pop-
ulation groups (North India and East India) and data was
analyzed along with 105 world-wide populations (datasets
of 50, 79 and 105 populations) for population structure
parameters such as population differentiation (FST) and
molecular variance. The results illustrated that an optimal
set of 15 independent Y-chromosomal markers was suffi-
cient to infer populations’ structure and relationship with

equivalent resolution and precision as would be deduced af-
ter the use of a larger set of markers (Figure 2).

MATERIALS AND METHODS

Feature selection

As numerous evolutionary variations defining population
structure and relationship include only few independent
markers which are most ancestral in their respective clades,
the inter-dependence of these markers is well established
(Figure 1). In such circumstances, population structure and
relationship could be defined as follows:

W = [W1 + a(W2)] − b (1)

where W is final observation represented by population
differentiation, diversity or variance, W1 is output from
minimal-independent markers, W2 is output from ran-
domly selected variables dependent on W1, i.e. W2 = f(W1),
a and b are constants where a is no of randomly selected fac-
tors and b is factor of reduction.

In case of perfect dependence of representative markers
on their ancestral ones, above equation would be shaped as

a(W2) = b or a(W2) − b = 0 (2)

i.e.

W = W1 (3)

However, we cannot assume a practical situation where
representative markers would be perfectly dependent on
their progenitor, i.e. zero effect of these markers on pop-
ulation structure and relationship, utmost negligible effect
could be considered, i.e.

a(W2) − b ≈ 0 (4)

With above background, we adopted an approach
of feature selection through variable ranking based on
PCC to minimize the inter-dependency derived redun-
dancy of evolutionary (Y-chromosomal) markers and
select highly informative-independent ones. Since, Y-
chromosomal markers are usually genotyped in population-
specific manner; availability of large dataset regarding these
markers from world-wide populations was major limitation
for validation of our novel approach. Therefore, markers
were appropriately selected on the basis of prior knowledge
of phylogeny of Y-chromosomal haplogroups. To avoid any
bias during selection process, we extracted markers repre-
senting higher and lower nodes in population tree simulta-
neously. Therefore, let E be the collection of these evolution-
ary markers which is defined as

E = {e1, e2, . . . , eN} (5)

where |E| = N.
We first generated a square symmetrical Pearson’s corre-

lation matrix for appropriately selected variables (N × N)
using PCA. For example, matrix ‘M’ for random evolution-
ary markers/variables e1, e2, e3, . . . , eN can be represented
as follows:

M =
( corr(e1e1)corr(e1e2)corr(e1e3) . . . corr(e1eN)

corr(e2e1)corr(e2e2)corr(e2e3) . . . corr(e2eN)
corr(e3e1)corr(e3e2)corr(e3e3) . . . corr(e3eN)

)
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Correlation among variables is denoted by PCC (45):

ke1e2 =
∑n

i=1 ( f e1i − f e1)( f e2i − f e2)√∑n
i=1 ( f e1i − f e1)2( f e2i − f e2)2

(6)

where ke1e2 is correlation coefficient for random variables e1
and e2 representing n number of populations, fe1i and fe2i are
frequencies of e1 and e2 for population i, fe1 and fe2 are av-
erage frequencies of e1 and e2. From Equation (6), the cor-
relation coefficient would be +1 in case of a perfect positive
(increasing) linear relationship (correlation) and −1 in case
of a perfect negative (decreasing) linear relationship (anti-
correlation), whereas values between −1 and 1 in all other
cases indicate the degree of linear dependence between the
variables. As it approaches zero there would be minimum
relationship (closer to uncorrelated), i.e. the closer the coef-
ficient value to either −1 or 1, the stronger the correlation
between the variables.

On the basis of PCC-based variable ranking, we ob-
served that few markers, considered as independent sig-
natures for diversification of male populations world-wide
were highly correlated. However, we could not have merged
two such markers providing independent signature for Y-
chromosomal haplogroups, knowing the fact that these
markers are located in non-recombining Y-chromosome
which itself is haploid in nature representing a haplotype
block and thereby, forms the basis for close correlation.
This situation is unlike autosomal SNPs where both condi-
tions, i.e. haplotype block-dependent and haplotype block-
independent are considerable. Therefore, we embedded fea-
ture selection with agglomerative (bottom up) hierarchical
clustering of haplogroups on the basis of the prior knowl-
edge of phylogeny of Y-chromosomal haplogroups to min-
imize the redundancy generated by markers representing
lower nodes in Y-chromosomal hierarchy and depending on
the higher nodes of their respective clades (Figures 1 and
3). With this approach, sub-clades were clustered into their
respective major clades and again pruned on the basis of
PCC. The above step was repeated till we reached the most
ancestral nodes (12 markers) of Y-chromosome phylogeny
(Supplementary Table S1a–i) and the procedure named as
RFSHC.

Computational approach

We initially generated a correlation matrix of 32 common
Y-chromosomal markers from 50 populations using PCA.
We observed that few markers such as ‘H*’, ‘H1’, ‘J*’ and
‘O’ were closely and significantly related to each other (cor-
relation coefficient ≥ 0.78) (Supplementary Figure S1a).
Similarly we observed two separate sets of close variables:
‘C3’, ‘K*’, ‘R*’and ‘NO*’, ‘Q’ (correlation coefficient ≥
0.68) (Supplementary Figure S1a). Since ‘H’, ‘J’, ‘O’, ‘Q’
and ‘R’ are major haplogroups of human Y chromosome
phylogeny, random removal or merging of variables could
disturb the harmony of Y-chromosomal haplogroups’ phy-
logeny. Hence, we embedded feature selection with agglom-
erative hierarchical clustering of sub-haplogroups into ma-
jor haplogroups on the basis of prior knowledge of phy-
logeny of Y-chromosomal haplogroups. This approach led
to moving one level up in hierarchy and in the next step,

Figure 3. Hierarchical phylogeny based on 127 successfully worked Y-
chromosome SNPs, genotyped through four systematically designed multi-
plexes, yellow highlighted SNPs represent PLEX 1, green highlighted SNPs
represent the PLEX 2, blue highlighted SNPs represent the PLEX 3 and
red highlighted SNPs represent the PLEX 4.

correlation matrix was generated on the basis of 25 vari-
ables obtained by merging of ‘G1 and G2’, ‘H* and H1’,
‘J* and J1’, ‘J2*, J2a and J2b’, ‘L*, L2 and L3’, ‘R1a1* and
R1a1a’, ‘R*, R1b* and R1b1’ into their respective major
clades ‘G’, ‘H’, ‘J*’, ‘J2’, ‘L’, ‘R1a1’ and ‘R*’ (Supplemen-
tary Table S1a and b). We observed that values of correla-
tion coefficients decreased at this step (Supplementary Fig-
ure S1b). However, some of the above mentioned highly cor-
related variables at the step of 32 SNPs which could not be
removed for being critical nodes in evolutionary tree were
still closely related. Therefore, we again merged ‘L, T, K*,
NO*, N, O and Q’ into a major clade ‘K,T (xR)’ and gen-
erated a correlation matrix on the basis of 15 markers (Sup-
plementary Table S1c). The matrix showed minimum corre-
lation among all the markers except ‘F* and H’ (correlation
coefficient = 0.59, which itself is quite low) (Supplementary
Figure S1c). To rule out any possibility of interdependence
generated redundancy, the process was repeated till 12 most
ancestral markers (Supplementary Table S1d, Supplemen-
tary Figure S1d) and evaluated in a set of 79 and 105 pop-
ulations besides initial set of 50 populations (Supplemen-
tary Table S1e–i). Interestingly, we observed that a set of
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15 markers was most optimal in all sets of populations for
defining population structure and relationship as confirmed
by PCA plots, cluster validation, purity of clusters and their
comparison with two independent existing methods (infor-
mation gain and χ2) of feature selection.

SNP selection for multiplex designing

Initially, SNPs were chosen from non-recombining Y chro-
mosome (NRY), based on their position in Y chromo-
some hierarchical phylogenetic tree and the distribution
of paternal haplogroups in different geographic and eth-
nic groups. A total of 1551 polymorphisms including 599
SNPs depicting 311 haplogroups (20) along with new en-
tries from International Society of Genetic Genealogy
(ISOGG) and Family Tree (FT) DNA Database were used
to precisely select 133 SNPs covering nearly all major
world-wide haplogroups (A–R) and their sub-haplogroups.
We aimed to accommodate nearly all independent hap-
logroups (A–R) in a single, i.e. first multiplex. Addition-
ally, second, third and fourth multiplexes were designed
for sub-clades/haplogroups, sub-subclades/haplogroups,
respectively. Third and fourth multiplexes were specifically
selected for Eurasian haplogroups and sub-haplogroups,
e.g. H, J, O, R and their sub-clades, to examine the effect
of recently evolved evolutionary markers on the resolution
of populations’ structure and relationship.

Multiplex designing

SEQUENOM, Inc. provides its own software
‘MassARRAY R© Assay Design 3.1’ for multiplex primer
designing which can accommodate upto 40 SNPs in
one well till date. Multiplexing is a five step process: (i)
rs sequence retriever: downloads flanking sequence of
every known SNP from NCBI––dbSNP by using their
rs ID, in case SNP does not have rs ID, the flanking
sequence can be manually downloaded from NCBI
(http://www.ncbi.nlm.nih.gov/mapview) database. (ii)
ProxSNP: searches for any proximal SNP in the flanking
region of desired SNP (usually 200 bp flank is provided
for this step). (iii) PreXTEND: designs pre-extension PCR
primers in the output of ProxSNP (usually 80–120 bp
PCR product is optimum for further UEP designing). (iv)
Assay design: designs extension primers for extension PCR
within the amplicon of pre-extension PCR which binds to
one nucleotide upstream to the polymorphic loci [locus].
Extension primers are highly specific to the polymorphic
loci, as iPLEX reaction products have minimum 16 Da
difference in mass (Supplementary Table S2) (46). (v)
PleXTEND: validates multiplex assays.

Taking the advantage of these features, a total of 206
SNPs representing nearly all major clades and sub-clades
of Y-chromosome phylogeny along with their 200 bp flanks
were processed using online tools (ProxSNP and PreX-
TEND). However, 18 SNPs could not pass the criteria of
software for multiplex assay designing and 188 SNPs were
used for assay design software. Out of 188 SNPs, we first se-
lected 15 highly informative independent SNPs to accom-
modate in a single multiplex. Since assay design software
from SEQUENOM, Inc. allowed us to accommodate up to

40 SNPs in a single multiplex, we super-plexed the initial
multiplex of the 15 independent variables with rest of the
SNPs to accommodate 22 more SNPs representing major
clades (haplogroups) or sub-clades (sub-haplogroups) for
fill-in purpose only. However, in this process of fill-in, four
independent SNPs were left out and accommodated into
subsequent multiplexes. Once first multiplex was ready, sub-
sequent multiplexes were designed by critical selection of
important SNPs representing sub-clades and sub-subclades
for affirmative purposes only. All four multiplexes together
accommodated 133 SNPs whereas rest were included in
many multiplexes consisting very low number of markers
and therefore, left out. While assay designing the default
settings of amplicon length in a range of 80–120, primer
length (17–24) and Tm (45–60◦C) were maintained to ob-
tain maximum efficiency. Based on our multiplexing cri-
teria (of systematic approach with cost-effectiveness and
high-throughput precision) for high-resolution mapping of
Y chromosome phylogeny, 133 critically important SNPs
were chosen for generating four multiplexes, with 37 SNPs
in PLEX 1, 36 SNPs in PLEX 2, 32 SNPs in PLEX 3 and
28 SNPs in PLEX 4 (Supplementary Table S3). Finally, all
pre-extension and extension primers were checked for any
cross-complementation throughout the genome and within
primers to ensure perfect specificity.

DNA samples

Peripheral blood samples were drawn from 359 healthy con-
trols from North India and 71 healthy controls from Orissa,
India after seeking their consent and approval of JNU
ethical Committee. DNA was isolated from 500 �l blood
by phenol–chloroform method and dissolved in TE [Tris–
HCl (pH 8.0) + ethylinediaminetetraacetatic acid (EDTA)]
buffer for long storage. Genomic DNA was quantitated
on Nanodrop (ND1000) and checked for quality through
agarose gel (0.8%) electrophoresis.

Multiplex PCR amplification

PCR amplification was accomplished by using 20–25 ng
DNA templates, 10× PCR buffer (1×/reaction), 25 mM
MgCl2 (2 mM/reaction), 25 mM deoxyribonucleotide
(dNTPs) (500 �M/reaction), 1 �M extension primer mix
(200 nM each/reaction) and 1 unit of Hot Start polymerase
(all reagents were provided in PCR kit by SEQUENOM,
Inc.) for 5 �l reaction in following amplification conditions:
94◦C for 4 min followed by 40 cycles of 94◦C for 20 s, 56◦C
for 30 s, 72◦C for 1 min and final extension of 72◦C for 3
min followed by 4◦C-hold.

SAP treatment

Amplification products were SAP (shrimp alkaline phos-
phatase) treated (37◦C for 40 min, 85◦C for 5 min, 4◦C-
hold) to remove unincorporated nucleotides. Attractive-
ness of this assay is that exonuclease treatment is not re-
quired for left-over primers as they have a 10-mer tag (5′-
ACGTTGGATG-3′) at 5′ end which enables them to lie out-
side the window (4500 – 9000 Da).

http://www.ncbi.nlm.nih.gov/mapview
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UEP (un-extended primer) adjustment

For iPLEX Gold reaction, the concentration of extension
primers was optimized as per instructions provided by SE-
QUENOM, Inc. to control signal-to-noise ratio. Prior to
genotyping, a mix of un-extended primers (UEPs) was run
on spectroCHIP and analyzed in Typer 4.0 providing an ad-
justment sheet. Based on the adjustment sheet, extension
primers were divided into three sets: low mass UEP, medium
mass UEP and high mass UEP. Concentration of high mass
and medium mass UEPs was increased accordingly to get
detectable peak intensity.

iPLEX extension reaction

iPLEX Gold reaction was set using 10× iPLEX Gold Buffer
(1×/reaction), 10× iPLEX termination mix (1×/reaction),
iPLEX enzyme (0.041 �l/reaction) and primer mix (all
reagents were provided in PCR kit by SEQUENOM, Inc.)
in 2 �l reaction volume. Reaction was cycled by using 200-
short-step program including two loops of cycles. Initial de-
naturation was done at 94◦C for 30 s followed by annealing
at 52◦C for 5 min and extension at 80◦C for 5 min. The an-
nealing and extension steps were repeated for 11 cycles and
looped back to denaturing step (94◦C for 5 min) for 40 cy-
cles. A final extension was done at 72◦C for 3 min followed
by 4◦C-hold.

Clean resin

iPLEX Gold reaction products were washed by resin beads
(6 mg/well) to remove salts which interferes with MALDI-
TOF MS.

MALDI-TOF mass spectrometry

Cleaned samples were spotted on SpectroCHIP by ‘Nan-
odispenser’ (spotting speed and volume is set according to
the environment for example in moist environment compar-
atively less volume at slow speed should be dispensed). Fi-
nally, spotted SpectroCHIP was exposed to a LASER (light
amplification by stimulated emission of radiation) beam
and allelic discrimination was obtained by mass to charge
(m/z) ratio. Output files were in .xml format and data was
analyzed using Typer 4.0 software.

To check the accuracy of the technique, we genotyped
randomly selected samples as positive controls using same
platform and observed 100% concordance with the re-
sults obtained earlier. Additionally, 2 blank wells/96 wells
were used to avoid any false positive result or cross-
contamination. We also used two markers for 10 hap-
logroups, (CF, C, F, G, J, K, L, O, R, R1a and R1a1) and
observed 100% genotyping concordance in results. Peak in-
tensity of each SNP was sufficient for detection with average
call rate of >95% (Supplementary Figure S2a, b, c and d).

Statistical analysis

Statistical analyses were carried out to show the applica-
bility of our approach with designed multiplexes for refin-
ing populations’ ancestry, homogeneity, differentiation and
variance. Firstly, the data generated in the present study

was analyzed separately. Later, this data was compared
to a large dataset from 105 distinct world-wide popula-
tions including 12 835 samples on the basis of common
haplogroup frequency (Supplementary Table S4). Pearson’s
correlation matrix of Y-chromosome SNPs/haplogroups
was obtained by PCA through XLSTAT add-in (www.
xlstat.com/). Homogeneity/stratification in present data
was checked by using PCA through PLINK 1.07 (www.
pngu.mgh.harvard.edu/∼purcell/plink/) and three compo-
nents representing highest cumulative variability were plot-
ted by using SPSS 17.0. Also, populations’ correlation in
combined dataset was verified by PCA based on haplogroup
frequency in MS-Excel by using XLSTAT add-in (www.
xlstat.com/). Internal measures (Dunn index and connectiv-
ity) of population clusters ranging from three to seven were
validated through different clustering methods, like Hier-
archical clustering, K-medoid, K-means by using clValid
R package (http://cran.r-project.org/web/packages/clValid/
index.html/). Further, purity of most appropriate clusters
obtained through above means was checked through hier-
archical clustering using KKNN R package (http://cran.r-
project.org/web/packages/kknn/index.html/). To prove the
authenticity of our approach, the purity of appropriate clus-
ters obtained through RFSHC was compared with two in-
dependent existing methods (information gain and χ2) of
feature selection for varying set of markers (32, 25, 15 and
12) in datasets of 50 and 79 populations. Population dif-
ferentiation indices (FST values) were calculated by AR-
LEQUIN v3.0. Pair-wise FST values between populations
were graphically represented on a color-coded heatmap
by using Gplots R package (http://cran.r-project.org/web/
packages/gplots/index.html/).

RESULTS

In order to reach an optimal number of independent vari-
ables (evolutionary markers/SNPs) for resolving the pop-
ulation structure and relationship world-wide, we applied
a combined approach of feature selection and hierarchical
clustering for pruning of variables in human Y-chromosome
(Figure 3). At each step, optimization was validated by
several computational simulations, such as comparison of
PCA plots, evaluation of population clusters and their val-
idation, scrutiny of the purity of the resulting clusters and
their comparison with already existing methods of feature
selection. Population clustering was performed through
three different methods, namely hierarchical clustering, K-
medoid and K-means. The most optimal cluster size for
each population set was determined by considering the
PCA plots of populations (Figure 4), followed by evalua-
tion of the Dunn index (47) and connectivity (48) for all
cluster sizes (3–7) with different sets of markers (Supple-
mentary Figure S3a, b and c). Later, the purity of clusters
was compared with different marker sets for the most ap-
propriate cluster size in each population set (Figure 5). Pu-
rity of clusters (Y-axis) as a measure of varying number of
markers (X-axis) is represented in Figure 6a and b for a
set of 50 and 79 populations, respectively. Population clus-
tering ability of our methodology was also compared with
two existing feature selection methods of information gain
and χ2 (Table 1). These formed the basis for systematically

http://www.xlstat.com/
http://www.pngu.mgh.harvard.edu/~purcell/plink/
http://www.xlstat.com/
http://cran.r-project.org/web/packages/clValid/index.html/
http://cran.r-project.org/web/packages/kknn/index.html/
http://cran.r-project.org/web/packages/gplots/index.html/
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Figure 4. Structure of South Asian (different regions of India including
our lab data; Sharma et. al., (49) and Pakistan); Caucasus; Near/Middle
East (Iran, Georgia and Turkey); Central Asian (Gulf Countries and Iraq);
South East Asian including Mongolians and others; European; USA and
African populations using principal component analysis (PCA), based on
15, 25 and 32 common haplogroups (variables) for a set of 50, 79 and 105
populations.

designing the multiplexes to accommodate independent Y-
chromosome evolutionary markers in a single multiplex and
generate three subsequent continent-specific multiplexes for
recently evolved populations.

To validate the utility of our approach with the designed
multiplexes, we genotyped two geographically distinct In-
dian populations (359 North Indian and 71 East Indian
healthy controls) for all four multiplexes with the optimal
number of 133 markers, of which 127 SNPs worked success-
fully, depicting 123 distinct Y-chromosome haplogroups in-
cluding 2 super haplogroups, 17 major haplogroups, 29 sub-
haplogroups and 75 sub-subhaplogroups (Figure 3). We ob-
served a total of 28 divergent haplogroups (excluding super-
haplogroups and major haplogroups) with at least one sam-
ple in each group. The details of major contributors are pro-
vided in Figure 3. The data was also analyzed in 105 world-
wide populations with a dataset of 12 835 samples (Supple-
mentary Table S4).

Pruning of variables through correlation matrix among Y-
chromosome markers

Initial analysis in a combined dataset of 50 popula-
tions (4682 samples from South Asia, Caucasus and
Near/Middle East) indicated that correlation of variables
decreased with present approach (Supplementary Figure
S1). Matrix of precisely selected 32 Y-chromosome hap-
logroups including major and minor nodes from avail-

Figure 5. Agglomerative hierarchical clustering of different set of popula-
tions (50, 79 and 105) with varying set of markers (32, 25, 15 and 12) using
average distance method. X-axis and Y-axis denote populations and num-
ber of clusters respectively. Based on the result of cluster validation and
PCA plots, 3, 4 and 5 clusters were defined for 50, 79 and 105 populations,
respectively.

able data in literature represented many haplogroups in
close correlation as discussed in computational approach.
However, by embedding feature selection with agglomera-
tive hierarchical clustering approach, we eventually reached
an optimal set of 15 non-redundant and independent Y-
chromosome haplogroups which could lead to a similar res-
olution of population structure as was obtained by higher
number of variables say, 25, 32 or even 127 (present study).
Later, analysis was repeated in a set of 79 populations
(10 890 samples from diverse geographical regions, e.g.
South Asia including major geographic regions of India
(49) and Pakistan, Caucasus, Near/Middle East, Central
Asia, South-East Asia, Russia, Europe and USA) and 105
populations (12 835 samples from diverse regions of world)
(Supplementary Table S4) to confirm the results obtained
in the initial analysis.
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Table 1. Comparison of the proposed method of ‘RFSHC’ and two already existing independent methods of feature selection

(a) Comparative tables of purity of clusters (weighted average) derived from independent haplogroups

Method of feature
selection Number of independent features Purity of clusters (%)

50 Populations 79 Populations 50 Populations 79 Populations

Information gain 14 13 67.48 68.33
χ2 14 12 67.48 68.33
RFSHC 15 15 86.03 80.68

(b) Details of independent haplogroups derived from proposed and existing methodologies of feature selection

RFSHC Information gain χ2 RFSHC Information gain χ2

Independent HGs in a dataset of 50 populations Independent HGs in a dataset of 79 populations

A E E A E E
B G2 G2 B C3 G
D I I D G H
E J1 J1 E H I
C* J2a J2a C* I J*
C3 J2b J2b C3 J* J2
F* L* L* F* J2 L
G L2 L2 G L T
H L3 L3 H T Q
IJ* T T IJ* Q R1*
I Q Q I R1* R1a1
J* R1a1a R1a1a J* R1a1 R2
J2 R1b1 R1b1 J2 R2 ×
K,T R2 R2 K,T × ×
R × × R × ×

Comparison of PCA Plots in combined datasets

A combined data analysis of world-wide populations was
performed on the basis of 32, 25, 15 and 12 common hap-
logroups in 50 populations (Supplementary Table S5a–d);
25, 15 and 12 common haplogroups in 79 populations (Sup-
plementary Table S5e, f and g), and 15, 12 common hap-
logroups for 105 populations (Supplementary Table S5h
and i). Comparison of PCA plots was made in two ways:
(i) with different set of markers for same number of popula-
tion and (ii) with different set of populations for same num-
ber of common markers. All four sets of markers, i.e. 32,
25, 15 and 12 common haplogroups could only be used for
the first dataset of 50 populations. Due to limitation of data
available from literature, we could not include higher num-
ber of markers in subsequent steps of analysis. Comparison
of the PCA plots based on 32, 25, 15 and 12 common hap-
logroups for 50 populations [4682 samples from South Asia
(India (49) and Pakistan), Caucasus and Near/Middle East
(Iran and Georgia)] depicted the retention of three clusters
of populations up to 15 markers, which was completely dis-
torted with 12 markers. Although cluster of Caucasian pop-
ulations was quite sparse in the PCA plot using 15 markers,
these formed a single cluster, as observed in PCA plots with
25 or 32 markers; whereas PCA plot with 12 markers de-
picted two distinct clusters of Caucasian populations (Fig-
ure 4). This was more evident in further PCA plots based on
25, 15 and 12 common markers in the set of 79 populations
(four clusters), and 15, 12 common markers in a set of 105
populations (5 clusters), representing similar resolution of
population structure with a set of 25 or 15 markers but sub-
stantially deteriorated with a set of 12 markers in the same

dataset (Figure 4). On the other hand, a comparison of PCA
plots with increasing number of populations for the same
number of common haplogroups showed an increase in the
resolution of population structure with increasing number
of populations (Figure 4).

Cluster validation and purity of clusters

Of the three essential measures: (i) internal, (ii) stability, (iii)
biological (50) for cluster validation in any kind of cluster-
ing method, internal measures were used in this study for
validation of clustering of population groups at different
steps. The Dunn index (47) and connectivity (48) are popu-
lar internal measures of cluster quality indicating the max-
imization of inter-cluster distance, minimization of intra-
cluster distance and consistency of nearest neighbor as-
signments, respectively. For an ideal clustering, Dunn index
should be high and connectivity low.

For each population set the three clustering algorithms
were run for different cluster sizes (3–7). Taking the PCA
plots into consideration, cluster sizes of 3, 4 and 5 were ob-
served to yield adequately high values of Dunn index and
low values of connectivity for the set 50, 79 and 105 pop-
ulations, respectively. Supplementary Figure S3a, b and c
shows the relative values of these scores obtained for differ-
ent cluster sizes. After determining the appropriate cluster
sizes, i.e. 3, 4 and 5 for the set of 50, 79 and 105 popula-
tions, respectively, we examined the values of Dunn index
and connectivity for these clusters using different marker
sets (12, 15, 25 and 32 markers). It was observed that a set of
15 markers yielded the best results for the above parameters
(Supplementary Figure S3a, b and c) and also for cluster
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Figure 6. (a and b) A scatter plot of purity of clusters, as a measure of
varying number of markers (32, 25, 15 and 12 for a set 50 populations)
and (25, 15 and 12 for a set of 79 populations), respectively.

purity (Figures 5 and 6a and b) in each population set. The
purity measure of most appropriate clusters was evaluated
for population sizes 50 (with respect to 32 and 25 markers)
and 79 (with respect to 25 markers) for different number of
markers by using following formulae:

purity measure =
number of populations in a cluster by lower set of markers

number of populations in the same cluster by higher set of markers

weighted average purity of cluster in a population set =∑
purity measure × number of populations in a given cluster

total number of populations

Again, with the above calculation a set of 15 markers pro-
vided superior results in comparison to 12 markers and al-
most equivalent to 25 and 32 marker sets in all set of pop-
ulations (Figures 5 and 6a and b). Though purity of clus-
ters in a dataset of 50 populations was marginally higher
for 25 markers than 15 markers, nevertheless the set of 15

markers justified its use for the identification of popula-
tions’ structure and their relationship in various other ways.
These were, better internal measures, i.e. higher Dunn in-
dex and lower connectivity, in comparison to 25 markers
(Supplementary Figure S3a, b and c); retention of popula-
tion structure in PCA plots as compared with 25 and 32
markers; and cost-effective genotyping as compared with
the larger set of markers (25 or 32). The above features were
suggestive of the use of 15 markers as an optimal set of Y-
chromosomal markers.

Comparison of purity of clusters obtained through RFSHC
with existing methods of feature selection

Purity of clusters obtained through the proposed ‘RFSHC’
approach was compared with two already existing meth-
ods of; information gain and chi square. The results rep-
resented that purity obtained through our approach was
better in comparison to that obtained through above men-
tioned existing methods (Table 1a). Further, observation of
independent haplogroups derived from different methods il-
lustrated that a few major haplogroups skipped during the
selection of independent features, which would disturb the
Y-chromosomal phylogeny and therefore compromise the
inference of population structure and their relationship.

Validation of approach through population structure param-
eters

To show the applicability of our approach and systemat-
ically designed multiplexes, we also compared population
structure and stratification in present dataset independently
with different number of variables (evolutionary markers)
in uniform sample size (430 samples). In the background
of initial ancestry information obtained through genotyp-
ing of 133 Y-chromosomal markers, the structure of popu-
lations under present study was further dissected through
PCA using 127 (six markers did not work in multiplex),
32, 25, 15 and 12 Y chromosome binary markers. In the
study, despite substantial frequency difference in certain
haplogroups among North Indian and East Indian popu-
lations, we did not observe stratification in different plots
generated through PCA on the basis of 127, 32, 25, 15 and
12 markers (Figure 7). Except few outliers, samples were
distributed in different clusters, each representing samples
from the two studied populations and indicating a possible
admixture event after initial settlement of both population
groups in India. Utility of the set of 15 markers in dissecting
population structure and arriving at similar conclusions, as
with larger number of markers, was evident.

Besides population structure and stratification, hap-
logroup frequency data based on genotyping through these
multiplexes could also define population complexity pa-
rameters, such as Genetic differentiation (FST) and molec-
ular variance. Through a combined data analysis, we at-
tempted to define these parameters for each set of above-
mentioned populations which were further categorized as
‘No Group (all populations under analysis were grouped
together)’, ‘Demographic Group (populations under analy-
sis were grouped according to their geographic niche)’ and
‘Ethno-linguistic Group (populations under analysis were
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Figure 7. PCA plots reflecting population structure of samples included
in the present study from North India (359 samples) and East India (71
samples), using 127, 32, 25, 15 and 12 Y-chromosome SNPs.

grouped according to their ethnicity and languages)’. Com-
parison of results among different categories of population
groups for each set of markers indicated negligible effect
(10−2) of such groupings (Table 1a–i). Pair-wise FST among
populations in each set of markers, therefore, is represented
only for ‘No Group’ category using color coded heatmaps
(Supplementary Figure S4a–i). Analysis of FST and molec-
ular variance indicated that additional number of variables
over independent ones has negligible effect (1 × 10−3) on
final observation in a constant population size (Table 2).

In conclusion, results based on various computational
simulations, PCA, calculation of population differentiation
(FST) and analysis of molecular variance (AMOVA), re-
flected that resolution of populations’ structure and their re-
lationship with other global populations based on 15 highly
informative independent variables (markers), represented in
the phylogenetic map of Y-chromosomal haplogroups (Fig-
ure 8), were optimal, and the set of markers <15 affected the
results substantially.

Figure 8. Hierarchical phylogeny of Y-chromosomal haplogroups (up to
sub-haplogroup level), depicting positioning of 15 highly informative inde-
pendent markers (marked in red), sufficient to infer population structure
and relationship in a precise and efficient manner. All the 15 markers could
be used in a single plex under similar conditions as depicted in ‘Materials
and Methods’ section, without super-plexing with more markers.

DISCUSSION

In evolutionary context, phylogeny of human Y-
chromosomal haplogroups plays key roles in deciphering
population structure and history. In the background of
Wright–Fisher neutral theory of evolution (7) and step
wise mutation model (19), the ancestral mutations lay the
structural basis for additional variations to generate further
sub-haplogroups within major haplogroups. With the basic
idea of haplogroup generation, only a few evolutionary
markers which are most ancestral in their respective clades
could be considered as independent; whereas rest are
dependent on their background(s), leaving a scope for
hierarchical grading and pruning of redundant variables.
Therefore, an appropriate approach for pruning of the ever
increasing variables is essential to optimize the number
of SNPs which is sufficient to draw the same conclusion
about population structure and ancestry as is possible by
the inclusion of a larger number of variables.

Considering the right-hand thumb rule of haplogroup
generation in human evolution, we attempted to decipher
population structure by optimizing evolutionary markers
using a novel approach ‘RFSHC’ which is a combination of
variable ranking-based feature selection and agglomerative
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hierarchical clustering. Current approach relies on the fact
that although, evolutionary markers are generated through
random mutation events, these events are sequential and
not independent of each other. Our results based on Pear-
son’s correlation matrix indicated that correlation among
variables decreases by employing the above approach and
eventually lead to independent and non-redundant evolu-
tionary markers which could infer world-wide populations’
structure and relationship as efficiently and precisely as a set
of larger number of evolutionary markers. Though slight
changes in the resolution of population structure may oc-
cur in recently evolved populations like Europe, South Asia
where recently generated markers have refined the structure
to some extent, our approach proves suitable for them too
in broader perspective. A comparison of population clus-
tering and purity of most optimal clusters based on four
sets of markers in three different sets of populations illus-
trated that proposed set of 15 independent markers pro-
vide similar results as is obtained by a set of larger num-
ber of variables, such as 25, 32 in combined datasets and as
large as 127 variables in the present dataset, which proves
far better than the results obtained from a set of mark-
ers below 15 (12 markers). Further analysis of present and
combined datasets regarding population structure parame-
ters based on PCA, FST and AMOVA have clearly indicated
negligible effect of additional (>15) evolutionary markers
used for analysis, whereas a substantial change in these pa-
rameters was observed with a set of 12 markers. Some dif-
ferences observed in population structure resolution at the
level of 50 populations were population-specific and justi-
fied by further analysis with increased number of popula-
tions and other more specific parameters. Interestingly, we
observed that results based on a set of 12 markers have little
difference with that based on a set of 15 markers in a small
number of populations, however, the discrepancy becomes
evident with increasing number of populations, approving
proposed 15 markers as an optimum set for tracing popula-
tions’ structure and relationship in world-wide populations.

Further, to deal with the large sample size as required in
evolutionary studies, we need highly efficient, precise and
cost-effective methods. During last decade, various meth-
ods have emerged to provide moderate to high efficiency.
However, most of the available methods seem to be limit-
ing in one or other above-mentioned aspects. Though high-
throughput genotyping methods carry potential to geno-
type millions of SNPs at a time, evolutionary studies involve
hundreds to thousands of SNPs which need to be genotyped
in large sample sizes. This specific requirement provides
an extra advantage to moderately efficient techniques over
high-throughput techniques for evolutionary and forensic
purposes. Here, we adopted the advantage of a moderately
efficient MALDI-TOF mass spectrometry-based iPLEX
Gold Assay (SEQUENOM, Inc.). In addition, our system-
atic multiplexing provided a step-wise gradation of major
male-related haplogroups and their sub-haplogroups in a
continent-specific manner. These multiplexes based on RF-
SHC approach add new dimensions to moderate genotyp-
ing techniques by offering cost-effectiveness for deep reso-
lution of populations’ structure, ancestry and relationship
in large scale evolutionary studies.

Although MALDI-TOF-based SEQUENOM platform
facilitated this study in a speedy manner. Nevertheless, these
highly informative independent evolutionary markers se-
lected through our method could also be genotyped by any
other low or medium throughput platform, such as allele
specific hybridization, PCR and single base extension meth-
ods, RFLP, sequencing based methods and TaqMan as-
say, etc. As the focus of study was to present an optimized
methodology that could infer the population structure and
relationship with minimum expense and maximum effi-
ciency, an objective successfully accomplished by the selec-
tion of 15 highly informative independent Y-chromosomal
markers, the selection of a platform or an approach for
genotyping of these markers remains solely the choice of
a researcher.

In conclusion, the combined approach of feature selec-
tion and hierarchical clustering for pruning of variables in
human Y-chromosome provides a highly efficient and cost-
effective method to expedite the process of understanding
different global populations’ structure and their relation-
ship by using the proposed and validated sets of multiplexes.
The strength of current approach lies in elegantly designed
multiplex of a small set of independent markers leading to
low redundancy and high efficiency. At the same time, this
method is limited to sequentially evolved markers, and can
only be applied to those markers for which hierarchical phy-
logeny is available. However, this feature of our approach
makes it more specific for evolutionary studies.
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