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Abstract
Lipid metabolism, specifically fatty acid oxidation (FAO) mediated by carnitine palmitoyltransferase (CPT) 1A, has been
described to be an important actor of ghrelin action in hypothalamus. However, it is not known whether CPT1A and FAO
mediate the effect of ghrelin on the cortex. Here, we show that ghrelin produces a differential effect on CPT1 activity and γ-
aminobutyric acid (GABA) metabolism in the hypothalamus and cortex of mice. In the hypothalamus, ghrelin enhances CPT1A
activity while GABA transaminase (GABAT) activity, a key enzyme in GABA shunt metabolism, is unaltered. However, in
cortex CPT1A activity and GABATactivity are reduced after ghrelin treatment. Furthermore, in primary cortical neurons, ghrelin
reduces GABA release through a CPT1A reduction. By using CPT1A floxed mice, we have observed that genetic ablation of
CPT1A recapitulates the effect of ghrelin on GABA release in cortical neurons, inducing reductions in mitochondrial oxygen
consumption, cell content of citrate and α-ketoglutarate, and GABA shunt enzyme activity. Taken together, these observations
indicate that ghrelin-induced changes in CPT1A activity modulate mitochondrial function, yielding changes in GABA metab-
olism. This evidence suggests that the action of ghrelin on GABA release is region specific within the brain, providing a basis for
differential effects of ghrelin in the central nervous system.
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GHSR Growth hormone secretagogue receptor
GAD Glutamic acid decarboxylase
SSADH Succinate semialdehyde dehydrogenase
TCA Tricarboxylic acid
VGAT Vesicular GABA transporter
VGLUT Vesicular glutamate transporter

Introduction

Acyl-ghrelin (hereafter referred to as ghrelin) is the only pe-
ripheral hormone with orexigenic effects described to date
[1–3]. It is produced in stomach X/A-like cells where both
ghrelin/obestatin preprohormone gene and ghrelin O-
acyltransferase are expressed [4, 5]. Ghrelin’s main functions
are related to the central control of energy homeostasis and its
use. Specifically, ghrelin promotes food intake [6–9], in-
creased body weight and adiposity [10–12], controls glucose
homeostasis [13, 14] and growth hormone secretion [15], and
enhances motivation for food intake [16–18].

Ghrelin functions in hypothalamus are mediated by growth
hormone secretagogue receptor (GHSR) [19]. The molecular
mechanisms involved under ghrelin activation of GHSR re-
ceptor are not completely understood, but in hypothalamus,
AMP-dependent protein kinase (AMPK) has a key role in
intracellular signal transduction [20–22]. AMPK activation
due to ghrelin promotes acetyl-CoA carboxylase (ACC) inac-
tivation, which reduces malonyl-CoA formation and conse-
quently increases CPT1A activity [23]. CPT1A activation
triggers a series of molecular events leading to increased ex-
pression of orexigenic agouti-related protein (AgRP) and neu-
ropeptide Y (NPY) [24–27], which results in increased
appetite.

Ghrelin has also been involved in GABAergic signaling. It
has been reported that ghrelin inhibits firing of postsynaptic
pro-opiomelanocortin (POMC)-expressing neurons by in-
creasing presynaptic γ-aminobutyric acid (GABA) release
[28]. This increase in GABA output in the orexigenic neurons
is produced as a consequence of glutamic acid decarboxylase
(GAD) expression [29]. Furthermore, CPT1A as an interme-
diate in ghrelin signaling in ventromedial hypothalamus has
been found to increase the expression of vesicular GABA
transporter (VGAT), which is considered the factor that con-
trols GABA quantal size, in CPT1A activity-induced hyper-
phagic rats [30].

Three pathways control the cytoplasmic GABA content to
be released: (1) GAD activity, which is the canonical pathway
to generate GABA out of glutamate [31]; (2) GABA shunt,
which is composed of two enzymatic reactions catalyzed in
mitochondria by succinate semialdehyde dehydrogenase
(SSADH) and GABA transaminase (GABAT) [32, 33]; and
(3) GABA transport into small synaptic vesicles for its release,
via VGAT.

Besides energy balance, other actions of ghrelin related to
anxiety, cognition, stress, and sleep have been extensively
studied [34–37]. For ghrelin to be involved in such processes,
it must reach extra-hypothalamic areas. In fact, GHSR was
first described in pituitary gland, hippocampus, ventral teg-
mental area, raphe nuclei, and hypothalamus [38]. However,
its expression can be extended to neocortex, olfactory bulb,
basal ganglia, and cerebellum [39].Moreover, 76% of primary
cortical neurons are GHSR-positive cells in in vitro culture
[40, 41], which indicates that ghrelin may play an important
role in these brain areas. However, little is known about the
intracellular mediators involved in ghrelin action in cortical
neurons.

In this study, we show that ghrelin’s action on cortical
neurons involves CPT1A modulation that differs from that
observed in hypothalamic neurons. In cortical neurons, ghrel-
in inhibits CPT1A activity and fatty acid oxidation (FAO), and
reduces the levels of Krebs cycle intermediates such as citrate
and α-ketoglutarate, GABA shunt enzymes, and GABA re-
lease under depolarization conditions. These data indicate that
ghrelin modulates GABA in a region-specific fashion, which
may account for the variation in ghrelin actions.

Materials and Methods

Animals and Treatments

The mice strains used in this project were C57BL/6J and
CPT1A(loxP/loxP) mice obtained from HEPD0727_3_H09
clone from the European Conditional Mouse Mutagenesis
(EUCOMM) programme. Once the karyotype had been stud-
ied, HEPD0727_3_H09 clone was chosen to be microinjected
in blastocysts to obtain chimeric mice. Eventually, from the
seven chimera that were obtained, we selected one male with
80% chimerism to obtain offspring. This mouse was crossed
with C57BL/6J to obtain CPT1A(+/frt-loxP) mice. These mice
were genotyped by analyzing the number of lacz-containing
sequences by digital droplet PCR (ddPCR), as described be-
low. These potentially conditional CPT1A mice were cross-
bred with C57BL6/J FLP recombinase-expressing mice to
eliminate the lacz cassette and obtain CPT1A(+/loxP) mice
(Supplemental Fig. 1). CPT1A(+/loxP) mice were crossbred to
obtain homozygous CPT1A(loxP/loxP) mice.

In order to analyze the effects of ghrelin on several cortical
and hypothalamic parameters, we injected a dose of 10 μg
ghrelin (or the equivalent volume of phosphate-buffered solu-
tion, i.e. 300 μL) intraperitoneally (IP) at 0 min and another
dose at 30 min in mice that had been food-deprived for 2 h
after the dark period [42]. All the mice received the same
amount of ghrelin, as their body weights were similar
(25.74 ± 0.52 g for ghrelin-treated mice and 25.52 ± 061 g
for the control group). We monitored eating time and food
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intake for 1 h after the first injection. One hour after the treat-
ment, mice were sacrificed by cervical dislocation and their
tissues collected. All the procedures with mice were approved
by the Animal Experimentation Ethics Committee of the
University of Barcelona (CEEA-UB). DAAM Permit #8173
and colony management Permit C-0020 were obtained from
the Government of Catalonia, according to European
Directive 2010/63/EU.

Cell Cultures and Treatments

Primary cortical neurons were directly obtained from fresh
cortex as described by Solà et al. [43]. Cerebral cortices from
C57BL/6J and CPT1A(loxP/loxP) mice were harvested from un-
born pups on embryonic days from 15 to 17. No isolation with
less than 60% viability was used. Then, 8 × 105 living cells per
well (in 6-well plates) were seeded. Each litter yielded around
6 to 8 plates, which were precoated with 4 °C overnight incu-
bation with 0.005% poly-L-lysine, prepared from 2× solution
(Sigma-Aldrich, ref. P4707). Three hours after seeding, cells
were attached and the medium was replaced with Neurobasal
Medium (GIBCO, ref. 21103-049) supplemented at 1× with
B27 (GIBCO, ref. 17504-044) and GlutaMax (GIBCO, ref.
35050-038), as well as 1% penicillin/streptomycin (100 U/mL
final concentration) (GIBCO, ref. 15140122). Two days after
culturing the cells, 2 μM cytosine β-D-arabinofuranoside
(Sigma-Aldrich, ref. C1768) was added to avoid proliferation
of non-neuronal cells to the medium. Every 2 days, the medi-
um had to be changed by removing half of the previous me-
dium and replacing it with fresh medium. Cells were
prevented from drying out without any medium on them.

To delete CPT1A in the cortical neuron cells, we used CRE
recombinase- and GFP-expressing adenoviral vectors (Ad-
CRE-GFP) (Vector Biolabs, ref. 1700) with a titration of
4.22 × 109 pfu/mL and Ad-GFP (3.32 × 109 PFU/mL) as a
control. We infected the cells with 100 PFU of Ad-CRE-
GFP per cell. The medium was changed the next day. The
medium used was the same as in the regular culture. Ghrelin
treatment was conducted in both primary cortical neurons and
GT1-7. Hypothalamic GT1-7 cells were pretreated for 3 h
with 5 mM glucose pyruvate- and glutamine-enriched
Dulbecco’s modified Eagle medium (DMEM). Primary corti-
cal neurons were pretreated for 3 h with 5 mM glucose
Neurobasal®-A medium (GIBCO, ref. 10888022). Then,
cells were treated with 100 nM ghrelin (Sigma-Aldrich, ref.
G8903) in pretreatment medium for 30 min. To pharmacolog-
ically inhibit CPT1A, we added 40 μg/mL etomoxir in the
30-min ghrelin treatment. To block the tricarboxylic cycle
by inhibiting isocitrate dehydrogenase, we added 700 μM
2-hydroxyglutarate.

Metabolic Extracellular Flux XF Analysis

Cortical neuron cells were cultured in customized Seahorse
24-well plates. Before the measurement, cells were treated
for 3 h with 5 mM glucose medium. In the last 30 min, the
ghrelin treatment was carried out as previously explained.
Then, cells were assayed for 1 h in XF Assay Medium
(Seahorse Bioscience) plus 5 mM glucose. During the assay,
we injected the following at the final concentrations shown:
2 μg/mL oligomycin, 0.16 μM FCCP, and 2 μM antimycin A
(Sigma-Aldrich). Oxygen consumption rate (OCR) was cal-
culated by plotting the oxygen tension of media as a function
of time (pmol/min), and data were normalized by the protein
concentration measured in each well. The results were quan-
tified as the average of 8–10 wells ± SEM per time point in at
least three independent experiments.

Amino Acid Neurotransmitters Release Assay

We carried out the experiments with cultured primary neurons
on the 8th day of in vitro (8 DIV) culture, when they were
mature enough. If an infection had to be made with Ad-CRE,
the cells were infected on 6 DIV, to obtain maximum expres-
sion on 8 DIV. On that day, any pretreatment (5 mM glucose
reduction for 3 h) and ghrelin treatment with 100 nM ghrelin
was completed just before the amino acid neurotransmitter
release assay. Two buffers are needed for this assay: Basal
5 mM KCl Hank’s buffer (K5) and depolarizing 90 mM KCl
Hank’s buffer (K90). After treatment, the wells were washed
with pre-warmed Hank’s Buffer (K5). Then, 1 mL K5 buffer
was added per well and incubated for 10 min at 37 °C, so that
neurons could stabilize in the buffer. The buffer was removed
and cells were incubated with 1 mL K5 for 2 min and the
supernatant was kept in a microcentrifuge tube. Then, cells
were incubated with 1 mL K90 for 2 min and the supernatant
was kept in a microcentrifuge tube. This process was repeated
up to six times, alternating between K5 and K90 solutions and
keeping the neurotransmitters released into the Hank’s solu-
tion for posterior analysis. As a control of non-vesicular neu-
rotransmitter efflux, incubation for 2 min in 1 mL K90 was
carried out without Ca2+ and 3 mM EGTA, and the superna-
tant was kept for analysis. All the samples were stored at −
20 °C until analysis and the cells in the plate were lysed with
0.2 mL NaOH 0.2 N to quantify the protein content for nor-
malization. Amino acid neurotransmitter content was then
measured from the samples by HPLC-MS/MS at the
Institute of Biomedical Research of Barcelona (IIBB-CSIC).

Digital Droplet PCR

To check if CPT1A(+/frt-loxP) contained the correct integration
cassette and the right number of copies in the genome, we
genotyped the allele-specific CPT1A(+/frt-loxP) mice previous
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to generating CPT1A(+/loxP) mice, using a QX100 Droplet
Digital PCR System (BioRad, ref. QX100) that had been
adapted for the use of QX200 ddPCR EvaGreen Supermix
dsDNA binding dye (BioRad, ref. 186-4035). Genomic
DNA was obtained from the tail of CPT1A(+/frt-loxP) mice by
proteinase K digestion and phenol-chloroform purification.
One microgram of genomic DNA was digested for 1 h with
10 U of the restriction enzyme EcoRI. To perform ddPCR, the
primers used were LACZfor GCTGGAGTGACGGC
AGTTAT and LACZrev TACCCGTAGGTAGTCACGCA,
and for the control TERTfor CCTCTGTGTCCGCT
AGTTACA and TERTrev TCTTTGTACCTCGAGATGGC
A. The amplicon sizes were 137 bp for TERT and 197 bp
for LACZ. Due to specific characteristics of ddPCR, a tem-
perature gradient was performed to optimize the annealing of
the primers. The annealing temperatures tested were 58.9,
60.1, 61.0, and 61.6 °C. The selected temperature was
60.1 °C. The ddPCR mixture for each gene amplification
contained the following: 4.4 ng of DNA sample, primer con-
centration at 0.5 μMeach, and 11 μL of EvaGreen® supermix
(BioRad) in a 22-μL final volume. A total of 20μL of reaction
mixture and 70 μL of Droplet Generation Oil were placed in
the pertinent well of the DG8 cartridge (BioRad, ref. 186-
3006). The bubbles were removed from the system, since they
can interfere with emulsification. The cartridge was then
placed in the QX100 droplet generator (BioRad, ref. 186-
3002) for droplet generation. The droplets were transferred
to a 96-well PCR plate. The program for amplification started
with 5min at 95 °C, followed by 39 cycles of 30 s at 95 °C and
1 min at 59 °C; finally, the temperature decreased to 4 °C for
5 min, was increased to 90 °C for 5 min, and the reaction was
kept at 25 °C. The analysis by the QX100 Droplet Reader
(BioRad, ref. 186-3003) and QuantaSoft Software showed
that the tert/lacz ratio is 2.09, which suggest that only one
copy of the construct is present in heterozygous CPT1A(+/frt-

loxP) mice for each two copies of tert reference gene
(Supplemental Fig. 1A and B). All the equipment was avail-
able from the Laboratory of Luminescence and Biomolecular
Spectroscopy (LLEB), Scientific and Technical Services,
Autonomous University of Barcelona (UAB).

mRNA Expression Analysis

Tissues were excised from six mice from each group, frozen,
and stored at − 80 °C. Total RNA was extracted from frozen
brain tissue using the RNeasy Lipid Tissue Mini kit
(QIAGEN, ref. 25-0500-71), following the manufacturer’s in-
dications with minor modifications. Total RNAwas extracted
from cultured cells using the Illustra Mini RNAspin kit (GE
Lifesciences, ref. 25-0500-71), following the manufacturer’s
indications with minor modifications. cDNA was obtained
using TaqMan Reverse Transcription Kit (Applied
Biosystems, ref. N8080234), from 1 μg total RNA from

MBH or 400 μg from cell cultures, because of the varying
RNA extraction yields. The manufacturer’s protocol was used
with hexamer primers to obtain cDNA from all the mRNA.
Quantitative real-time polymerase chain reaction (qRT-PCR)
was performed using Power SYBR Green PCR Master Mix
adapted for LightCycler 480 (Applied Biosystems, ref.
4367659), according to the manufacturer’s indications in the
LightCycler 480 Instrument II (Roche, ref. 05015243001).
The primers of the genes that were analyzed are described in
Supplemental Table 1.

Analysis of Protein Levels

Protein expression analysis was obtained from four mice from
the control group and 4 mice from the ghrelin-treated group.
Frozen hypothalamus and cortex were homogenized in pro-
tein extraction buffer (30 mM Hepes, pH 7.4, 150 mM NaCl,
10% glycerol, 0.5% sodium deoxycholate [DOC], 1% Triton
X-100 with phosphatase and protease inhibitors). Fifty micro-
grams of protein were analyzed on 10% SDS-PAGE gels and
then transferred onto PVDF membranes (Millipore). The fol-
lowing primary antibodies were used: GAD65/GAD2
(1/1000; Cell Signaling ref. 5843), VGLUT2 (1/1000; Cell
Signaling ref. 71555), and β-actin (1/50,000; Sigma-
Aldrich). Blots were incubated with the appropriate IgG-
HRP-conjugated secondary antibody. Protein bands were vi-
sualized using the ECL immunoblotting detection system (GE
Healthcare) and developed on an ImageQuant LAS4000 mini
Fuji luminescence imagining system. The bands were quanti-
fied by densitometry using ImageJ analysis software.

GABA Transaminase Activity

GABA transaminase Assay Kit (BMRService, ref. E134) was
used according to the manufacturer’s indications. This kit is
based on the sequential GABA transamination reaction and
glutamate oxidation, which couples the reduction of
iodonitrotetrazolium (INT) into INT-formazan (ε =
18 mM−1 cm−1 at 492 nm).

Determination of Tissue Acylcarnitine Content

Tissues for analysis were removed quickly, frozen in liquid
nitrogen, and stored at − 80 °C prior to quantification.
Acylcarnitines were analyzed using an Acquity UPLC-TOF
system (Waters) with a BEH C8 column (1.7 μm particle size,
100 mm × 2.1 mm, Waters). The two mobile phases were
1 mM ammonium formate in methanol (phase A) and 2 mM
ammonium formate in H2O (phase B), both phases with
0.05 mM formic acid. The following gradient was pro-
grammed: 0 min, 65% A; 10 min, 90% A; 15 min, 99% A;
17 min, 99% A; 20 min, 65% A, and a flow rate of
0.3 mL min−1. Quantification was carried out using the
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extracted ion chromatogram of each compound, with 50-mDa
windows. The linear dynamic range was determined by
injecting standard mixtures. Positive identification of com-
pounds was based on the accurate mass measurement with
an error < 5 ppm and their LC retention time was compared
to that of a standard (± 2%).

Neuronal Tricarboxylic Acid Cycle Intermediates
Analysis

Analysis of tricarboxylic acids was carried out by gas
chromatography-mass spectrometry (GC-MS) detection, with
a method adapted from the literature [44–46]. Experiments
were performed on cortical cell cultures (2.5 × 105/well). At
the end of the incubations, cells were washed with PBS, and
the cell pellet was resuspended in 500 μl of Milli-Q water and
frozen at − 20 °C until assayed (a separate fraction was set
aside for protein quantification). For the preparation of ex-
tracts, the 500-μl samples were taken to a volume of 2 ml with
water, and 1 ml of 8 M NaOH and 1 ml of 25 mg/ml hydrox-
ylamine was added. The sample was then heated at 60 °C for
30 min, and the pH was adjusted by adding 1 ml of 6 N HCl.
Sequential extractions were carried out as described [44] with
the exception that samples were extracted twice with 2 ml of
diethyl ether and twice with 2 ml of ethyl acetate. A total of
6 μl of 5 mM undecanedioic acid was added to the collection
tube to serve as an internal standard of the derivatization pro-
cedure. Once completely evaporated with nitrogen gas, the
final dry residue was resuspended in 75 μl of trimethylsilyl,
incubated at 60 °C for 30 min and kept at − 20 °C until
injected. A total of 2-μl samples were injected into a GC-
MS (Agilent Technologies ref. 7890A-5975C), with an HP-
5MS 60 × 0.25 × 0.25 capillary column, using a splitless
method and pressure ramp, and the results were analyzed
using ChemStation GC/MSD software. The ratio between
the areas was normalized by the protein concentration of the
sample (μg/μl).

Statistical Analysis

Data are expressed as mean ± SEM. Statistical significance
was determined by two-way ANOVA and the Student’s t test,
using Microsoft Excel and GraphPad Prism 6 software. A p
value of < 0.05 was considered significant.

Results

Ghrelin Modulates CPT1A Activity Differentially
in Cortex and Hypothalamus

To address the differential effects on CPT1A activity in the
cortex and hypothalamus, we measured the CPT1A mRNA

levels and total acylcarnitine content in both regions in
ghrelin-treated and saline-injected control mice. As expected,
ghrelin-treated mice showed a 2-fold increased food intake
(Fig. 1a) and spent more time eating a chow diet (Fig. 1b).
Cortical CPT1A mRNA levels were reduced up to 1.3-fold in
ghrelin-treated mice and showed a slight increase in hypothal-
amus (Fig. 1c). Next, we measured the acylcarnitine content
as an indicator of CPT1 activity in both tissues. Cortex and
hypothalamus had similar acylcarnitine basal levels (4.83 ±
0.15 and 5.30 ± 0.3 pmol/μg, respectively), but in ghrelin-
treated mice, cortical acylcarnitine content dropped to 48%
while the hypothalamic pool increased 3-fold (Fig. 1d).

Ghrelin Modulates GABA Shunt Enzymes
Differentially in Cortex and Hypothalamus

To determine if this change in CPT1 activity correlates with
changes in the expression of genes related to glutamate and
GABA, we determined the mRNA levels of different genes
involved in glutamate and GABA metabolism, taking as a
reference the cortex control group. Vesicular glutamate trans-
porters (VGLUT) 1, 2, and 3 showed different patterns:
VGLUT1 slightly decreased in the hypothalamus and
remained unaltered in cortex (Fig. 2a); while generally
expressed VGLUT2 increased 5-fold in cortex (Fig. 2b) and
GABAergic neuron-associated VGLUT3 decreased up to 0.6-
fold in cortex (Fig. 2c), while both remain unaltered in
hypothalamus.

We also assessed the modulation of GABA metabolism by
ghrelin. mRNA levels of the GABA shunt genes (GABATand
SSADH) were higher in cortex than in hypothalamus (Fig. 2d,
e). In ghrelin-treated mice, cortical levels were reduced, while
hypothalamic levels increased. Thus, intraperitoneal ghrelin
produced differential effects in cortex and hypothalamus in
terms of GABA shunt genes. However, canonical GABA gen-
erators such as GAD did not follow this pattern. GAD1
seemed to be unaffected (Fig. 2f) and GAD2 increased in
the hypothalamus of ghrelin-treated mice, while it remained
unaltered in cortex (Fig. 2g). Vesicular GABA transporter
(VGAT) mRNA levels slightly increased in cortex, and no
changes were observed in the hypothalamus (Fig. 2h).
Altogether, this indicates that GABA metabolism is altered
in the cortex after ghrelin’s injection.

Next, we assessed changes in protein levels of GAD65/
GAD2 and VGLUT2 in the cortex in ghrelin-treated mice.
Neither cortical GAD65/GAD2 nor VGLUT2 protein levels
changed after ghrelin treatment (Fig. 2i). However, cortical
GABAT activity drops to 58% in ghrelin-treated mice, while
hypothalamic GABAT remained unaltered (Fig. 2j). These
results suggest that GABA metabolism is reduced in the cor-
tex after ghrelin’s administration.
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Ghrelin Reduces GABA Release and FAO in Primary
Cortical Neurons

Given that the expression of GABA shunt enzymes is reduced
by ghrelin in mouse cortex, we wanted to assess the direct
effect of ghrelin on the GABA release of cultured primary
neurons. We observed that released GABA at depolarizing
90 mM KCl concentration was significantly reduced up to
55% compared to 5 mM KCl in ghrelin-treated neurons at
glycorrhachia-like glucose levels (5 mM glucose) [47] and
in glucose-deprived medium (Fig. 3a). Furthermore, basal
depolarized levels of released GABA were 4-fold higher at
5 mM glucose, compared to those at 0 and 25 mM glucose.
Since both GABAergic and glutamatergic neurons can be
found in primary cortical cultures, we assessed the effect on
glutamate release as well. In the assay conditions, glutamate
release was not affected at glycorrhachia-like glucose levels,
but it was reduced in glucose-deprived cortical neurons (Fig.
3b). Since CPT1A expression and activity was reduced in the
cortex by intraperitoneal ghrelin, we wanted to assess the ef-
fect of ghrelin on FAO. To do so, we performed metabolic
extracellular flux (XF) analysis in a palmitate-, carnitine-,
and glucose-enriched medium. Basal mitochondrial OCR in
ghrelin-treated neurons was reduced by 80% (0.35 to
0.07 pmol/min/μg, p < 0.05) (Fig. 3c), which is in agreement
with the reduction of CPT1 activity.

CPT1A Ablation Mimics Ghrelin’s Effect on GABA
Release in Primary Cortical Neurons

Since ghrelin treatment in cortical neurons reduced CPT1A
expression, FAO, and GABA release, we wanted to assess
whether the ablation of CPT1A would affect GABA release

in the same direction as ghrelin. Firstly, we generated a poten-
tially conditional CPT1A knockout mouse by taking advan-
tage of two heterozygous stem cell clones from the cell repos-
itory of the European Conditional Mouse Mutagenesis
(EUCOMM) Program. CPT1A(loxP/loxP) mice were obtained
from one of these clones (Supplemental Fig. 1). To assess the
integrity of the loxP sequences, primary hepatocytes obtained
from CPT1A(loxP/loxP) mice were infected with CRE-
expressing adenovirus (CRE). The infection successfully re-
moved the loxP-flanked region containing the CPT1A exon 4,
since gDNA amplicon from both sides of the homologous
region dropped to 219 bp compared to control (GFP) cells
1030-bp amplicon (Fig. 4a, b). Regarding CPT1A mRNA
expression, CRE-infected primary cortical neurons showed a
reduction in wt CPT1A and exon4-deleted CPT1A mRNA
levels (Supplemental Fig. 2d). The amplicon from exon 3 to
5 from CRE-infected cDNAwith an expected 116-bp length
was barely detectable after 24- and 48-h infections, which
indicates great instability of the deleted CPT1A mRNA
product.

Once we had generated the neuronal model, we assessed
the effect of CPT1A deletion on the release of amino acid
neurotransmitters from primary cortical neurons.We observed
a 35% reduction in released GABA in depolarizing condi-
tions, due to ghrelin or CPT1A deletion (Fig. 4b).
Interestingly, when we blocked the tricarboxylic acid (TCA)
cycle by inhibiting isocitrate dehydrogenase with 2-
hydroxyglutarate at basal conditions, GABA release dropped
with a similar trend to ghrelin’s effect. Analysis of mRNA
levels of the GABA shunt genes did not show any change
under ghrelin treatment. However, recombinase-induced
CPT1A deletion significantly reduced mRNA levels of
GABAT, SSADH (Supplemental Fig. 3 a, b). In addition,
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when we analyzed GABAT activity, CPT1A deletion reduced
GABAT activity as it did ghrelin incubation (Fig. 4c).
Furthermore, CPT1A deletion also reduced the mRNA levels
of GAD1 involved in the canonical pathway to generate
GABA out of glutamate and the mRNA levels of the GABA

transporter VGAT as it did ghrelin treatment (Supplemental
Fig. 3 c, e). All these results suggest that CPT1A ablation
recapitulates the ghrelin’s effect on GABA metabolism and
release, which indicates that CPT1A is a mediator of ghrelin’s
action.

Cortex Hypothalamus
0.00
0.01
0.02
0.03
0.04
0.05
1.0

1.5

2.0

**

m
RN

A 
fo

ld
 c

ha
ng

e

0
2
4
6
8

10
250
300
350
400
450
500

* **
**

m
RN

A 
fo

ld
 c

ha
ng

e

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

* **
*

 m
RN

A 
fo

ld
 c

ha
ng

e

m
RN

A 
fo

ld
 c

ha
ng

e

m
RN

A 
fo

ld
 c

ha
ng

e
*m

RN
A 

fo
ld

 c
ha

ng
e

m
RN

A 
fo

ld
 c

ha
ng

e 

m
RN

A 
fo

ld
 c

ha
ng

e

Control Ghrelin   Control Ghrelin

a b c

d e f

g h

GAD 65

β-actin

VGLUT2

i

Cortex Hypothalamus Cortex Hypothalamus

Cortex Hypothalamus Cortex Hypothalamus Cortex Hypothalamus

Cortex Hypothalamus Cortex Hypothalamus

0

2

4

6

8

10
GAD65

0

2

4

6

8

10
VGLUT2

Pr
ot

ei
n 

le
ve

ls 
(A

U)

Pr
ot

ei
n 

le
ve

ls 
(A

U)

Cortex Hypothalamus
0.00

0.02

0.04

0.06

G
AB

AT
 a

ct
ivi

ty
 (I

U/
μg

)

*

*

j

Control
Ghrelin

VGLUT1 VGLUT2 VGLUT3

GABAT SSADH GAD1

GAD2 VGAT

Cortex Hypothalamus Cortex Hypothalamus

Control
Ghrelin

Control
Ghrelin

Control
Ghrelin

Control
Ghrelin

Control
Ghrelin

Control
Ghrelin

Control
Ghrelin

Control
Ghrelin

Control
Ghrelin

Control
Ghrelin

*

*

*

**
**

*

0

1

2

3

4

*

*

0

1

2

3

*

*

Cortex Hypothalamus

Fig. 2 Ghrelin modifies GABA metabolism in cortex. Analysis of the
following in the cortex and hypothalamus of mice after two ip ghrelin
injections. a–c Relative mRNA levels of Vglut1, Vglut2, Vglut3 genes
analyzed by qPCR. The cortex control group is the reference group. d–h
Relative mRNA levels of GABA metabolism genes. The cortex control

group is the reference group n = 6. j Levels of GABAT activity n = 4. i
Representative Western Blot of the protein levels of GAD65, VGLUT2,
and β-actin n = 4. Results are represented as mean + SEM.; *p < 0.05,
**p < 0.01

7222 Mol Neurobiol (2018) 55:7216–7228



CPT1A Deletion and Ghrelin Treatment Reduce
Intracellular Citrate and α-Ketoglutarate in Primary
Cortical Neurons

Since TCA blockage produced similar effects on GABA re-
lease to those observed due to ghrelin and CPT1A deletion,
we assessed the effect of both on TCA cycle intermediates.
Both ghrelin and CPT1A deletion promoted a significant re-
duction in citrate, the main TCA cycle intermediate (Fig. 5a),
and an 80% reduction of α-ketoglutarate (Fig. 5b). The other
intermediates that were assessed (succinate, fumarate, and ma-
late) remained unchanged (Fig. 5c–e).

Discussion

The orexigenic effect of ghrelin in hypothalamus has been
extensively studied [9, 48, 49]. It involves several pathways,
including AMPK activation and ACC phosphorylation [50,
51], leading to reduced production of malonyl-CoA and dis-
inhibition of CPT1A [23, 24, 27, 52–54]. This results in the
production and release of orexigenic neuropeptides AgRP and
NPY, and GABA neurotransmitter. Our results confirm this
effect: ghrelin intraperitoneal administration induces food in-
take in lean mice and increases the hypothalamic acylcarnitine
pool, which indicates that CPT1A is activated. Besides its
orexigenic effect in hypothalamus, ghrelin may enhance mo-
tivation for food intake, since it mediates in the rewarding
effect of palatable food [16–18, 55]. Systemic administration

of ghrelin causes dopamine release in the nucleus accumbens,
which leads to a hedonic feeling of reward that is also needed
for addiction development [17, 56]. This ghrelin effect in-
volves several brain regions like the amygdala, hippocampus,
and prefrontal cortex activated by neuronal projections from
the nucleus accumbens, which suggests that ghrelin has an
indirect effect in these brain regions [57]. This indirect ghrelin
effect could explain our results in cortical tissue where, con-
trary to hypothalamus, ghrelin clearly reduces CPT1A activi-
ty. However, our studies on primary culture of cortical neurons
show that ghrelin has a direct effect on these neurons, reduc-
ing CPT1A and FAO. Mechanistically, GHSR1a seems to
mediate such effects, as it is expressed in cortex [58].
Although not demonstrated yet in the cortex, but increasingly
obse rved in o the r b ra in r eg ions , t he po ten t i a l
heterodimerization of ghrelin receptor GHSR1a with other
GPCR receptors may potentially modulate specific signal
transduction in discrete sets of neurons in the brain (reviewed
in [59, 60]). GHSR1a heterodimerizes with at least five dif-
ferent GPCRs: serotonin 2C receptors attenuating orexigenic
ghrelin signaling [61], dopamine D1 and D2 receptors altering
dopamine signaling [62, 63] and, at peripheral level, with
melanocortin 3 receptors modulating ghrelin signaling [64].
Furthermore, another important player has emerged recently:
the truncated ghrelin receptor lacking transmembrane do-
mains 6 and 7, GHSR1b. This receptor is widely expressed
in many tissues where it co-localizes with the GHSR1a recep-
tor. It has been observed that GHSR1b modulates both inter-
nalization of the active GHSR1a receptor causing the
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subsequent ghrelin signaling attenuation, and the ability of
GHSR1a to form oligomeric complexes with other receptors,
inducing changes in ghrelin-induced signaling [65]. The cel-
lular effects of these receptor-receptor interactions remain elu-
sive in the major regions of brain, and further investigation
will show a versatile system that can transduce signals through
various signaling cascades, probably depending on the cellu-
lar microenvironment that will explain the pleiotropic actions
of ghrelin in different brain areas.

Cortical neurons use a wide range of neurotransmitters. We
assessed the effect of ghrelin on amino acid neurotransmitters,
since most cortical neurons are either GABAergic (15%) or
glutamatergic (85%) [66–68]. Here, we show that ghrelin re-
duces GABA release at glycorrhachia-like glucose levels
(5 mM) [47], while glutamate release remains unaffected.
An important part of GABA production comes from TCA
cycle anaplerotic pathways [69, 70]. One of the TCA
anaplerotic pathways is GABA shunt. GABA shunt is highly
conserved through evolution from plants to vertebrates, with

varying functions among the different species [71–73]. It ac-
tivates itself in pathological events such as Alzheimer’s dis-
ease [74], epileptic episodes [75, 76], and after brain ischemia
[77, 78]. Physiologically, GAD activity changes have been
observed during fasting in hypothalamus. Other researchers
have observed changes in GABA shunt activities related to
modulation of food intake: three hyperphagic rat models show
increased GAD activity in VMH and two of them have in-
creased GABA shunt activities as well [79]. These observa-
tions, together with the previous statement regarding GAD
[29] and VGAT [30], indicate that GABA metabolism modu-
lation in hypothalamus depends on the nutritional state. This
modulation might be extensible to other brain areas, since
caloric restriction can modulate GAD isoenzyme expression
in cerebellum, superior colliculus, temporal cortex [80], and
visual cortex [81]. In our study (Fig. 5f), we show that either
ghrelin or a FAO reduction due to CPT1A ablation can reduce
GABAergic output from cortical neurons. Ghrelin reduction
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of GABAergic output in cortex could explain some of the
central extra-hypothalamic effects of this gastric hormone.

The functional significance of a reduction in inhibitory
neurotransmitters, such as GABA, in cortical neurons under
ghrelin action suggests the excitatory/inhibitory balance is ad-
justed within neuronal networks to function properly, and
could explain animal behavior related with foraging. The
anxiogenic and alertness effect needed to complement hypo-
thalamic effects for foraging in animals [82] and to block sleep
[83] are evident in a paradigm in which inhibitory neurotrans-
mitters, such as GABA, have reduced output. In addition, the
reduction in FAO and mitochondrial respiration observed in
our results could be related with a neuroprotective effect as-
sociated with ghrelin and fasting [35, 84, 85]. Ghrelin’s neu-
roprotective effect with enhancedmemory and spatial learning
in mice may be closely related to mitochondrial metabolism
modulation in rodents [86, 87]. At molecular level, a reduction
in FAO can contribute to a reduction in the production of
reactive oxygen species, protecting the cell from oxidative

stress and reducing apoptosis [88, 89]. CPT1A acts as part
of the mechanism by which ghrelin can modulate mitochon-
drial processes, since the deletion of its gene promotes deep
changes in the metabolic responsiveness of the neuron to
ghrelin. Consequently, CPT1A and FAO may play a role in
other important ghrelin functions, such as stimulating synapsis
and modulating electrical activity, which could increase corti-
cal networks to enhance memory and cognition [41]. Further
studies are needed to clarify the role of CPT1A and FAO in the
molecular mechanisms involved in the various ghrelin
actions.

To sum up, our data demonstrate that ghrelin produces a
differential reduction in cortical GABA output, compared to
hypothalamus. This reduction is produced by a drop in FAO,
which produces a subsequent drop in GABA metabolism and
in TCA intermediates involved in GABA production, which
would explain the reduction in GABA release. This evidence
suggests that the action of ghrelin on GABA is region specific
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within the brain, providing a basis for ghrelin differential ef-
fects in the central nervous system.
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