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Breast cancer (BC) and thyroid cancer (TC) have the highest rate of incidence, especially in
women. Previous studies have revealed that lactate provides energetic and anabolic support
to cancer cells, thus serving as an important oncometabolite with both extracellular and
intracellular signaling functions. However, the correlation of lactate metabolism scores with
thyroid and breast cancer immune characteristics remains to be systematically analyzed. To
investigate the role of lactate at the transcriptome level and its correlation with the clinical
outcome of BC and TC, transcriptome data of 1,217 patients with breast cancer (BC) and 568
patients with thyroid cancer (TC) were collected from The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) datasets with their corresponding clinical and somatic
mutation data. The lactate metabolism score was calculated based on a single-sample gene
set enrichment analysis (ssGSEA). The results showed that lactate metabolism-related genes
and lactate metabolism scores was significantly associated with the survival of patients with
BRCA and THCA. Notably, the lactate metabolism scores were strongly correlated with
human leukocyte antigen (HLA) expression, tumor-infiltrating lymphocyte (TIL) infiltration, and
interferon (IFN) response in BC and TC. Furthermore, the lactate metabolism score was an
independent prognostic factor and could serve as a reliable predictor of overall survival, clinical
characteristics, and immune cell infiltration, with the potential to be applied in immunotherapy
or precise chemotherapy of BC and TC.

Keywords: breast cancer, thyroid cancer, cancer immunotherapy, immune infiltrates, lactate metabolism score,
prognostic factor

1 INTRODUCTION

Breast cancer (BC) and thyroid cancer (TC) are twomalignant diseases with a high rate of occurrence
in women (Siegel et al., 2022). In 2020, BC surpassed lung cancer as the most commonly diagnosed
cancer, with an estimated 2.3 million new cases. TC affects 586,000 people globally, and the global
incidence rate in females is three times greater than in males (Sung et al., 2021). Due to tumor
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heterogeneity, treatment resistance, metastasis, and disease
recurrence, comprehensive treatment of BC and TC is
associated with numerous challenges (Waks and Winer, 2019;
Nabhan et al., 2021). Both thyroid and breast tissues are related to
hormones, and changes in the endocrine system are closely
related to the development of thyroid and breast tumors.
Moreover, a family history of breast cancer, estrogen receptor
(ER) status, progesterone receptor (PR) status, and
triiodothyronine levels are associated with the development of
thyroid and breast tumors (Kuo et al., 2016; Li et al., 2019).
Simultaneously, BC with TC is more common, and the incidence
is gradually on the rise worldwide. Studies have shown that when
the first primary cancer is TC, the most common second primary
cancer is BC; similarly, TC is also the most commonly diagnosed
secondary malignant tumor during BC recurrence
(Vassilopoulou-Sellin et al., 1999). The occurrence of BC with
TC is common among patients with multiple primary cancers
(Endo et al., 2018). Therefore, it is imperative to screen new
potential indices, especially immunotherapy-associated
parameters, for prognostic prediction and individualized
treatment of patients with BC and TC.

Lactate, which has been long neglected as a waste product
derived from glycolysis, is now regarded as an important carbon
source for cellular metabolism. It plays a key role in tumor
development, metastasis, immunosuppression, and therapeutic
response (García-Cañaveras et al., 2019; Ippolito et al., 2019).
Studies have demonstrated that the glycolytic and glutaminolytic
pathways are major contributors to lactate accumulation in the
tumor microenvironment (TME) (Yang et al., 2017; Lee et al.,
2018; Nagao et al., 2019). Several oncogenes and tumor
suppressor genes, including Myc, epidermal growth factor
(EGF), phosphoinositol three kinase (PI3K), mTOR, and
hypoxia-inducible factor 1α (HIF-1α), are involved in the
metabolic switch from oxidative phosphorylation (OXPHOS)
toward altered glycolysis of tumor cells (Dang, 2012; Lu et al.,
2015). The target of HIF-1α is monocarboxylate transporter
(MCT), which ensures both adequate glucose delivery into the
cell and secretion of accumulated lactate out of the cell, and
excessive levels of lactate produced by cancer cells are removed by
MCTs (de la Cruz-López et al., 2019). Accordingly, lactate
transport by MCTs represents a therapeutic vulnerability for
cancer cells (Payen et al., 2020). Moreover, lactate and
glutamine support NADPH production via isocitrate
dehydrogenase 1 (IDH1) and malic enzyme 1 (ME1),
respectively, under glucose-deprived conditions, and ME1 can
synergize with mitochondrial IDH2 to maintain antioxidant
systems to support tumor growth and metastasis (Shao et al.,
2020; Ying et al., 2021). In summary, the accumulation of lactate
in solid tumors is a pivotal and early event in the development of
malignancies, and targeting lactate metabolism is considered a
promising cancer therapeutic strategy.

Immunotherapy has improved the prognosis of a variety of
cancers, and it forms the cornerstone of cancer treatment
alongside traditional surgery, chemotherapy, radiotherapy, and
targeted therapy (Kruger et al., 2019). However, the
immunosuppressive roles of lactate accumulation within the
TME limit the efficacy of immunotherapy. Several experiments

have shown that lactate is an effective antitumor T-cell inhibitor
that facilitates the development of tumor-permissive
(i.e., immunosuppressive) T regulatory cells (Tregs).
Kelderman et al. concluded that in patients with advanced
cutaneous melanoma, the long-term benefit of ipilimumab
treatment was unlikely for patients with baseline serum LDH
levels greater than twice the upper limit of normal levels
(Kelderman et al., 2014). Zhang et al. found that serum LDH
levels predicted response to immune checkpoint inhibitor
therapy—progression-free and significantly shorter overall
survival (OS) in patients with high pretreatment LDH levels in
non-small cell lung cancer (Zhang et al., 2019). Additionally,
research showed that raising intratumoral pH improved CTL
infiltration and response to immunotherapy against CTLA-4,
anti-PD-1, and adoptive cell transfer in mouse melanoma and
pancreatic cancer models (Pilon-Thomas et al., 2016). However,
it the role of lactate in the response to immune checkpoint
inhibition in BC and TC is not understood. Thus, it is
challenging but necessary to identify a better predictor to
evaluate the clinical outcomes accurately before prescribing
immunotherapy for patients with BC and TC.

To our knowledge, this is the first study to develop a lactate
metabolism score system and investigate its role in both BC and
TC. Moreover, we analyzed the relationship between the lactate
metabolism score and the immune microenvironment features
and response to immunotherapy. We also assessed the difference
in susceptibility to common antineoplastic agents between the
high and low lactate metabolism score groups using the GDSC
database. These findings might aid with immune-targeted
therapy by providing an alternative signature to predict
prognosis and treatment success in BC and TC.

2 MATERIALS AND METHODS

2.1 Data Acquisition and Preliminary
Analysis
The expression profile data TCGA-BRCA and TCGA-THCA for
breast invasive and thyroid cancers, respectively, were
downloaded from the UCSC Xena database (http://xena.ucsc.
edu/) with the data type “count” and the count value normalized
to the TPM value. TCGA-BRCA contained transcriptomic data
from a total of 1,217 patients with BC, including 1,072 primary
tumor samples (01A) and 99 normal samples (11A); TCGA-
THCA contained transcriptomic data from a total of 568TC
cases, including 497 (01A) primary tumor samples and 56 (11A)
normal samples, which were included in this analysis.

“Masked Somatic Mutation” data were selected from the
TCGA GDC official website (https://portal.gdc.cancer.gov/) as
somatic mutation data for patients with invasive BC (n = 1,044)
and TC (n = 496), and the data were pre-processed using VarScan
software. Data on somatic mutations were visualized using the
“maftools” R package (Mayakonda and Koeffler, 2016).
Meanwhile, to analyze gene copy number changes in patients
with TCGA-BRCA and TCGA-THCA, the patient’s “Masked
Copy Number Segment” data were downloaded using the
“TCGAbiolinks” R package (Colaprico et al., 2016).
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In addition, the patient clinical data (phenotype), including
age, survival state, follow-up time, and cancer stage, matching
TCGA-BRAC and TCGA-THCA were accessed and downloaded
from the UCSC Xena database. Finally, combined with the
mutation information and clinical information matching of
patients, the clinical data of 1,072 patients with BRCA and
497 with THCA were included.

The microarray data set consisted of four BC datasets, GSE36295
(Merdad et al., 2014), GSE109169 (Chang et al., 2018), GSE58812
(Jézéquel et al., 2015), and GSE20685 (Kao et al., 2011); and 1 TC
dataset, GSE165724 (He et al., 2021). GSE36295, GSE106916, and
GSE20685 were used to verify the lactate metabolism score, and
GSE58812 and GSE20685 were used to verify the prognosis of BC.
Microarray data details are presented in Table 1.

2.2 Collection and Categorization of
Characteristic Gene Set
245 Lactate metabolism-related genes were obtained from
MSigDB database (Liberzon et al., 2011)
“GOMF_LACTATE_DEHYDROGENASE_ACTIVITY”,
“GOBP_LACTATE_TRANSMEMBRANE_TRANSPORT”,
“HP_INCREASED_SERUM_LACTATE”,
“HP_INCREASED_LACTATE_DEHYDROGENASE_LEVEL”,
“HP_ABNORMAL_LACTATE_DEHYDROGENASE_LEVEL”,
“GOMF_LACTATE_TRANSMEMBRANE_
TRANSPORTER_ACTIVITY”, and
“GOMF_L_LACTATE_DEHYDROGENASE_ACTIVITY”.

The gene sets of HLA, TILs, immune cytolytic activity (CYT),
and interferon (IFN) were obtained from previous studies (Ju
et al., 2021). All of the above gene set details are presented in
Supplementary Table S1.

2.3 Evaluation of Lactate Metabolism Score
To quantify lactate metabolism in BC and TC, the lactate
metabolism score was calculated based on a single-sample
gene set enrichment analysis (ssGSEA) (Hänzelmann et al.,
2013), using the gene set related to the lactate metabolism
score (Supplementary Table S1). The lactate metabolism
scores between tumor and normal samples were estimated
from the TCGA and GEO datasets. According to the median
value of the lactate metabolism score, the patients with a score
above the median value were classified as the high lactate
metabolic group, and those with a score below the median
value were classified as the low lactate metabolic group.

2.4 Survival Analysis
We compared the OS and progression-free survival (PFS) of
patients with cancer between the high and low lactate groups in
BC and TC. Kaplan-Meier (K-M) analyses were performed to
compare the differences in survival time (Bland and Altman,
1998). The log-rank test was applied, and the p-value was
calculated. Statistical significance was set at p < 0.05.

To evaluate the predictive ability of lactate-related gene
expression for the prognosis of different tumors, single factor
Cox regression and Lasso regression analyses were performed.
Then, multivariate Cox regression analysis was applied to further
obtain the prognostic characteristic genes related to lactate
metabolism based on TCGA-BRCA and TCGA-THCA
datasets. First, the relationship between the expression of each
differential expressed gene and OS and PFS was analyzed using
univariate Cox proportional regression analysis, and genes with
p < 0.05 were retained. Next, the Lasso algorithm was used to
screen for some meaningful variables in the univariate Cox
regression analysis. To obtain more accurate independent
prognostic factors (prognostic characteristic genes), a final
screening was performed using multivariate Cox regression
analysis.

2.5 Assessment of Immune Infiltration
To evaluate the association of the lactate metabolism score with
thyroid and breast cancer, the tumor’s HLA, CYT, IFN, and TIL
scores were calculated by ssGSEA. Then, the relationship between
the scores and the lactate metabolism scores was analyzed using
Spearman’s correlation. In addition, the macrophage and CD4
cell scores were calculated according to the ssGSEA algorithm
(Hänzelmann et al., 2013). Finally, the macrophage and CD4 cell
infiltration were compared between high and low lactate
metabolism scorescore groups.

2.6 Evaluation of Tumor Immune Activity,
Tumor Mutation Burden, and Immunologic
Characteristics
To assess the tumor immune activity, stromal and immune cells
in malignant tumors were estimated using expression data based
on the ESTIMATE algorithm (Yoshihara et al., 2013). The
algorithm generated an immune score for each tumor sample
and quantified the immune activity (immune infiltration level) of
the tumor based on the samples of immune gene expression. For
each tumor sample, the tumor mutation burden (TMB) was
determined as the total number of somatic mutations (other
than silent mutations) detected in the tumor (Merino et al., 2020).
To compare the ability of immune prediction of lactate
metabolism scores, Each tumor sample was studied based on a
set of glycolytic genes of ssGSEAlactate metabolism score.

2.7 Gene Set Enrichment Analysis
To explore the potential biological functions of the gene sets
related to lactate metabolism between the low and high groups in
BC and TC, GSEA was performed based on a carefully selected
gene set “c2. cp.kegg.v7.2. symbols” (Hänzelmann et al., 2013).
Values with p < 0.05 were considered statistically significant.

TABLE 1 | Common datasets used in this study.

Tumor Types Datasets Samples

Tumor Normal

BRCA GSE36295 45 5
GSE109169 25 25
GSE58812 107 0
GSE20685 327 0
TCGA-BRCA 1,072 99

THCA GSE165724 58 16
TCGA-THCA 497 56
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2.8 Drug Sensitivity Analysis
The Genomics of Drug Sensitivity in Cancer (GDSC) (www.
cancerrxgene.org/) database can be used to obtain tumor drug
response data and sensitive genomic biomarkers (Yang et al.,
2013). Based on the gene expression profile, a ridge regression
model was constructed using the pRRophetic algorithm
(Geeleher et al., 2014). The susceptibility to common
anticancer drugs in the high and low lactate groups was
predicted based on the IC50 values.

The potential therapeutic response of ICB to tumor therapy
was projected through the tumor immune dysfunction and
exclusion (TIDE) score, which is a computational algorithm
based on gene expression profiles (http://tide.dfci.harvard.edu)
(Fu et al., 2020). According to the results of the TIDE analysis, the

differences in various indicators of tumor immunotherapy, such
as TIDE, CD8, and CD274, were compared between the high and
low lactate groups.

2.9 Statistical Analysis
Data were analyzed in R software (Version 4.0.2). To compare
continuous variables between two groups, the statistical
significance of normally distributed variables was estimated
by a Student’s t-test. Differences in non-normally distributed
variables across groups were analyzed by the Mann-Whitney U
test (i.e., the Wilcoxon rank-sum test). The chi-square test or
Fisher’s exact test was used to compare and analyze the
statistical significance between the two groups of categorical
variables.

FIGURE 1 | Comparison of lactate metabolism score and expression of lactate metabolism-related genes in breast cancer (BC) and thyroid cancer (TC). (A)
Comparison of lactate metabolism scores in BC and TC. (B)Comparison of lactate metabolism scores between normal and neoplastic tissues in BC. (C)Comparison of
lactate metabolism scores between normal and neoplastic tissues in TC. (D) The expression of lactate metabolism-related genes in BC and TC. (E) Differentially
expressed genes related to lactate metabolism in BC. (F) Differentially expressed genes related to lactate metabolism in TC. (G) Lactate metabolism-related genes
with significant mutations in BC and TC. (H) Copy number variations in lactate metabolism-related genes in BC and TC.
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FIGURE 2 | Lactate metabolism-related genes and prognostic analysis of patients with BRCA and THCA. (A) Lactate metabolism-related genes in BRCA and
overall survival (OS)-related Lasso regression to screen for prognostic factors. (B) The forest map presents the results of a multivariate Cox regression between genes
associated with lactate metabolism in BRCA and OS. (C)Heat map of OS-related independent risk factors in BRCA. (D) Lactate metabolism-related genes in BRCA and
PFS-related Lasso regression to screen for prognostic factors. (E) The forest map shows the results of a multivariate Cox regression between lactate metabolism-
associated genes in BRCA and PFS. (F) Heat map of PFS-related independent risk factors in BRCA. (G) Lactate metabolism-related genes in THCA and OS-related
Lasso regression to screen for prognostic factors. (H) The forest map reveals the results of multivariate Cox regression between lactate metabolism-related genes in
THCA and OS. (I)Heat map of OS-related independent risk factors in THCA. (J) Lactate metabolism-related genes in THCA and PFS-related Lasso regression to screen
for prognostic factors. (K) The forest map indicates multi-factor Cox regression results of lactate metabolism-related genes and PFS in THCA. (L) Heat map of PFS-
related independent risk factors in THCA.
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The correlation between the two variables was calculated using
the Spearman method. Statistical significance was set at p < 0.05
(Spearman correlation test). The R package “survivalROC” was
used to plot the receiver operating characteristic (ROC) curve
(Blanche et al., 2013), and the area under the ROC curve (AUC)
was applied to assess the prognostic performance of the lactate
metabolism score.

3 RESULTS

3.1 Comparison of Lactate Metabolism
Scores and Expression of Lactate
Metabolism-Related Genes in Breast
Cancer and Thyroid Cancer
First, we performed ssGSEA of lactate metabolism scores based
on gene expression data from TCGA-BRCA and TCGA-THCA
datasets to compare differences between tumor and normal
samples. Lactate metabolism scores were significantly different
between the two cancer types of lactate metabolism scores (p <
0.001, Figure 1A), with BC showing a higher lactate metabolism
score than TC (Figure 1A). Subsequently, we compared the
lactate metabolism scores between the two cancer types and
the normal samples. The results illustrated significantly
different lactate metabolism scores between the normal
samples and both cancers (Figures 1B,C), where BRCA
showed a higher score, while THCA displayed a lower score

compared to normal samples. In addition, the distribution of
expression levels of 245 lactate in patients with the two cancer
types is shown in Figure 1D. Among those 245 genes, BRCA and
THCA showed different expression trends (Figures 1E,F). Thus,
we analyzed the mutations of genes related to lactate metabolism
in BRCA and THCA and found that, in addition to mutations of
the tumor suppressor gene TP53, genes such as LYST and RB1
were also mutated (Figure 1G). Furthermore, analysis of copy
number variations (CNVs) revealed more CNVs in BRCA and
less in THCA (Figure 1H). These results demonstrate that lactate
metabolism is correlated with tumorigenesis and shows
significant tumor heterogeneity.

3.2 Lactate-Related Genes and Lactate
Metabolism Scores Were Significantly
Associated With the Survival of Patients
With BRCA and THCA
To investigate the correlation between the expression of genes
related to lactate metabolism and cancer survival, we first
performed OS and PFS analyses. According to the median
gene expression levels of the two cancer types, the patients
were divided into high expression and low expression groups,
respectively. We performed univariate Cox regression, Lasso
regression, and multivariate Cox regression analyses to identify
independent prognostic factors for genes associated with lactate
metabolism in BC and TC. After analysis, we identified 10 OS-
related independent prognostic factors in BRCA (Figures 2A–C)

FIGURE 3 | Lactate metabolism score and prognostic analysis of patients with BRCA and THCA. (A) The lactate metabolism score in BRCA signifies significant
statistical differences in both overall survival (OS) and progression-free survival (PFS). (B) There are no statistically significant differences in the lactate metabolism score in
THCA between OS and PFS. (C–F) The proportion of lactate metabolism scores in T, N, M, and the cancer stages in BRCA.

Frontiers in Pharmacology | www.frontiersin.org July 2022 | Volume 13 | Article 9284196

Wang et al. Characterization of Lactate Metabolism Score

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


and 8 PFS-related independent prognostic factors (Figures
2D–F) and plotted a heat map of risk factors based on their
expression. The genes STAT4 and POMGNT2 are independent
prognostic factors in both OS and PFS. Furthermore, in THCA,
we identified five OS-related independent prognostic factors
(Figures 2G–I) and three PFS-related independent prognostic
factors (Figures 2J–L) and plotted a heat map of risk factors
based on their expression.

We further analyzed the prognostic value of BRCA and THCA
inOS and PFS based on their lactate metabolism scores. As shown
in Figure 3A, for BRCA, the lactate metabolism scores suggested
significant statistical differences in both OS and PFS, and the
prognosis of patients with high lactate metabolism scores was
worse than that of patients with low lactate metabolism scores. In
THCA, the lactate metabolism score did not differentiate OS from
PFS, i.e., it could not be used as a prognostic biomarker of THCA
(Figure 3B). We then compared the difference in cancer stages
based on the lactate metabolism score of patients with BRCA. As
shown in Figures 3C–G, high lactate metabolism scores were
associated with higher T, N, M, and total cancer stages.

3.3 Validation of Gene Expression in Gene
Expression Omnibus Datasets
To validate the differential and prognostic results of the lactate
metabolism scores described above, we selected appropriate BC

and TC datasets from the GEO database for verification. First, we
demonstrated the difference in lactate metabolism scores between
normal and neoplastic tissues from BC and TC. In the BC datasets
GSE36295 and GSE109169, the lactate metabolism score in tumor
tissues were significantly higher than that TCGA-BRCA dataset
(Figure 4A). In the TC data set GSE165724, the lactate
metabolism score in the tumor tissue was significantly lower
than that in normal and paracancerous tissues (Figure 4B), which
was also consistent with the results from the previous TCGA-
THCA dataset. Patients with high lactate metabolism scores had a
poorer prognosis of OS and RFS in the GSE58812 BC dataset,
according to a subsequent prognostic analysis—a finding that was
consistent with prior TCGA-BRCA prognostic studies
(Figures 4C,D).

3.4 Lactate Metabolism Scores Were
AssociatedWith Human Leukocyte Antigen,
Tumor-Infiltrating Lymphocyte, and
Infiltration, and Interferon in Breast Cancer
and Thyroid Cancer
To further explore the correlation between lactate metabolism and
tumor immunity, we included multiple immune-related indicators,
including CYT, HLA expression, IFN response, and TIL infiltration.
Notably, we found a high correlation of lactate metabolism scores
with HLA expression, TIL infiltration, and IFN response in BC and

FIGURE 4 | Validation of lactate metabolism scores by GEO database. (A) Comparison of lactate metabolism scores in normal and neoplastic tissues from the
breast cancer (BC) datasets GSE36295 and GSE109169. (B)Comparison of lactate metabolism scores in normal, paracancerous, and thyroid cancer (TC) tissues from
the TC dataset GSE165724. (C) The lactate metabolism score in the BC dataset GSE58812 was significantly correlated with the overall survival (OS). (D) The lactate
metabolism score in the BC dataset GSE58812 was significantly correlated with the recurrence-free survival (RFS).
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TC (Figures 5A,B). In addition to comparing the correlation
between the lactate metabolism score and the above indicators,
we studied the correlation between the lactate metabolism-related
genes and the indicators. The results revealed that most of the lactate
metabolism-related genes were negatively correlated with the
indicators; however, a few genes, such as STAT four and SLC7A7,
were positively correlated, with approximately the same trend in
BRCA and THCA (Figures 5C,D).

Considering the apparent correlation between the lactate
metabolism score and tumor immunity, we analyzed more
differences in macrophage and CD4+T cell infiltration between
the high and low lactate metabolism score groups for BRCA and
THCA. In TC, macrophage infiltration was significantly higher in
the low lactate group than in the high lactate group. However,

CD4+T cell infiltration was not significantly different between the
two groups (Figures 5E,F). In BC, macrophage and CD4 + T cell
infiltration in the high lactate group were lower than those in the low
lactate metabolism score group (Figures 5G,H). The above results
suggest that lactatemetabolism is negatively correlated with immune
infiltration, i.e., under high lactate metabolism, immune cell
infiltration is reduced.

3.5 The LactateMetabolism Score Is a Good
Predictor of Immune Characteristics in
Thyroid Cancer and Breast Cancer
Given the previous implications, we observed a significant
correlation between lactate metabolism and tumor immunity.

FIGURE 5 | Relationship between lactate metabolism scores and tumor immunity in breast cancer and thyroid cancer. (A,B) Relationship between lactate
metabolism scores in THCA and BRCA and expression of immune cytolytic activity (CYT), interferon (IFN), tumor-infiltrating lymphocytes (TILs), and human leukocyte
antigen (HLA). (C,D) The relationship between the expression of lactate metabolism-related genes in THCA and BRCA and that of CYT, IFN, TILs, and HLA. (E,F)
Differences in the infiltration of macrophages and CD4+T cells in THCA between high and low lactate metabolism score groups. (G,H) Differences in the infiltration
of macrophage and CD4+T cells in BRCA between high and low lactate metabolism score groups.
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To determine whether the lactate metabolism score could predict
tumor immunity, we used ROC curve analysis to assess the
contribution of the lactate metabolism score in predicting two
immune characteristics (immune score and immune CYT).
Patients were divided into high and low groups according to
the median immune characteristic score of each cancer type.
Moreover, to compare the predictive power for tumor immunity,
we included TMB, MSI, and glycolytic characteristics in this
analysis. Compared with TMB and glycolysis scores, we observed
a higher probability of success for lactate metabolism score as a
predictor of the immune score and a lower probability of success
for MSI as a predictor (Figures 6A,B). The lactate metabolism
score in THCA also indicated the possibility of good prediction,
and the glycolysis score provided a better prediction of the
immunological features of THCA, but TMB and MSI have a
low predictive performance (Figures 6C,D)lactate
metabolism score.

To investigate the potential mechanism of lactate metabolism
scores for estimating immune activity, we compared gene

expression profiles between groups with high and low lactate
metabolism scores and identified KEGG enrichment pathways in
each of the two cancer types by GSEA. In both cancer types, the
immune-related pathways, such as primary immunodeficiency,
the intestinal immune network for IgA production, and the T-cell
receptor signaling pathway, were downregulated in the high
lactate group (Figures 6E,F).

In summary, the above results suggest some of these
pathways play a key role in linking tumor lactate
metabolism to tumor immunity.

3.6 Lactate Metabolic Score and Drug
Sensitivity Analysis in BRCA and THCA
First, we assessed the difference in susceptibility to common
antineoplastic agents between the high and low lactate
metabolism score groups using the GDSC database. In BC,
patients with a low lactate metabolism score were highly
sensitive to most anti-tumor drugs, such as Bexarotene,

FIGURE 6 | The lactate metabolism score is a good predictor of immune characteristics in thyroid and breast cancers. (A,B) Comparison of receiver operating
characteristic (ROC) curves of lactate metabolism score, glycolytic activity in BRCA, and the ability of microsatellite instability (MSI) and tumor mutation burden (TMB) to
predict the immune score and immune cytolytic activity (CYT). (C,D)Comparison of ROC curves of lactate metabolism score, glycolytic activity in THCA, and the ability of
MSI and TMB to predict the immune score and immune CYT. (E,F) The KEGG enrichment pathways of lactate-related genes in BRCA and THCA.
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AS601245, and AZD6482. Similarly, in TC, patients with a low
lactate metabolism score were highly sensitive to anti-cancer
drugs (Figures 7A,B).

Given the important role of immunotherapy in tumors at
present, we first evaluated the sensitivity of patients in the
high and low lactate metabolism score groups to
immunotherapy using the TIDE algorithm. As shown in
Figure 7C, the expression of the TIDE e, exclusive score,
CD8, and CD274 scores in BC was lower in the high lactate
group than in the low lactate group, i.e., patients in the high
lactate group might be more sensitive to the immunotherapy.
The same trend was seen in patients with TC. However, PD-
L1 expression was not significantly different between the high
and low lactate groups (Figure 7D). These results suggest that
patients with high and low lactate metabolism scores from
different tumors may have varied drug sensitivities to

common anticancer drugs and immunotherapy, indicating
the presence of tumor heterogeneity.

4 DISCUSSION

Despite great advances in diagnosis and treatment, both BC and
TC are solid tumors with high incidence and heterogeneity
(Holm et al., 2017; Deng et al., 2020). The complexity of the
TME in BC sand TC, including the accumulation of lactate, leads
to inadequate therapeutic response and drug resistance, and some
patients relapse during treatment. Lactate can act as both a
metabolic fuel for oxidative cells and a signaling molecule in
the TME, which is responsible for several invasive characteristics
of cancer cells, including proliferation, invasion, angiogenesis,
immune evasion, and therapy resistance. New markers are

FIGURE 7 | Drug sensitivity analysis of patients with high and low lactate metabolism scores of breast cancer and thyroid cancer. (A,B) The GDSC database
predicts the difference in sensitivity of patients with high and low lactatemetabolism scores to different anticancer drugs, and 10 drugs with themost significant difference
are ranked according to the p-values. (C,D) The difference in the susceptibility of patients with high and low lactatemetabolism scores to immunotherapy and associated
biomarkers as predicted by the TIDE algorithm.
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therefore urgently needed for the better management of both
diseases. In this study, we constructed a lactate metabolism score
based on lactate metabolism-related genes and established stable
and precise features for prognosis prediction and comprehensive
treatment of BC and TC patients.

Although there have been many previous studies investigating
the association between lactate and tumors, this study is still the
first study to quantify lactate metabolism based on ssGSEA in BC
and TC simultaneously and perform a comprehensive analysis of
molecular and clinical characteristics. We found significant
differences in lactate metabolism scores between the two
cancers in normal tissues, indicating that lactate metabolism
scores may not be a prognostic marker in TC. We found that
few studies have confirmed that the lactate level of TC tissues is
significantly lower than that of normal tissues after reviewing the
literature. One of the most important reasons to explain this
phenomenon is that changes in only one metabolite are not
sufficient to predict the development, metastasis, and
immunosuppression of TC (Khatami et al., 2019). Zhao et al.
demonstrated that glucose metabolism cannot be the only
important metabolite because the metabolism of lipids, amino
acids, and nucleic acids is important as well (Zhao et al., 2015). In
addition, several metabolomics studies have confirmed that the
levels of various cancer metabolites such as fatty acids, glutamine,
lysine, lactate, taurine, and leucine together constitute biomarkers
for TC (Wojtowicz et al., 2017; Zhou et al., 2017). It is also worth
mentioning that we found a high correlation between lactate
metabolism scores with HLA expression, TILs infiltration, and
IFN response in BC and TC. In addition, our study addressed the
use of lactate metabolism scores as an evaluation of anti-tumor
drug sensitivity, which also indicated a positive correlation
between targeting TME and the effectiveness of multiple
immunotherapies. At the same time, we understand that the
absence of further basic experiments is one of the limitations of
this article. Since patients with low lactate scores often achieve
better prognosis and immunotherapeutic response, further
experiments are helpful to elucidate the molecular mechanism
by which lactate inhibits TME immunity.

The predictive role of the lactate metabolism score in BC and
TC is quite different. In our study, BRCA had higher lactate
metabolism scores than normal tissues, while THCA had lower
lactate metabolism scores than normal tissues, both of which
showed the same trend in copy number variation (CNV) analysis.
Meanwhile, the lactate metabolism score did not differentiate OS
from PFI in THCA. The above analysis was also validated in the
GEO database. Although immune cell infiltration is reduced in
both cancers under conditions of high lactate metabolism, CD4 +
T cell infiltration was not correlated with lactate metabolism score
in TC. Lactate metabolism scores are both good predictors of
immune characteristics and drug sensitivity in BC and TC.

Recent studies suggest the role of lactate metabolism-related
genes in predicting tumor progression and response to
immunotherapy. Xie et al. demonstrated that the enhanced
expression of four lactate risk-related genes, SLC25A3, HPDL,
NDUFA13, and NARS2, was correlated with poor prognosis in
patients with skin cutaneous melanoma (SKCM), while patients
with risk-related gene expression may benefit more from immune

checkpoint inhibitor (ICI) therapy (Xie et al., 2022). Sun et al.
established a lactate-related prognostic signature (LRPS) for the
prognosis of patients with kidney renal clear cell carcinoma
(KIRC) based on lactate metabolism-related genes and
confirmed that LRPS might be effective in predicting the
prognosis of patients with KIRC and that patients with low
FPB1 and HDAH expression but high TYMP expression had a
poor prognosis (Sun et al., 2022). In our study, we found that
STAT4 was an independent prognostic factor for BC in terms of
both OS and PFS. The signal transducer and activator of
transcription 4 (STAT4), a member of the STAT family,
increases Th1 cell differentiation and IFNγ production in
immune cells and regulates tumor cell migration and
proliferation (Yang et al., 2020). Although high STAT4
expression is a favorable prognostic factor in hepatocellular,
breast, and ovarian cancers (Wang et al., 2015; Zhao et al.,
2017; Wang et al., 2018), the exact role of STAT4 in cancer
remains unclear. Tumor-infiltrating immune cells, an important
component in the TME, are affected by lactate metabolism levels
(Watson et al., 2021). Brand et al. proposed a mechanism of
lactate-mediated immunosuppression, i.e., lactate and tumor
acidosis inhibit nuclear factor of activated T cells (NFAT), a
key activating transcription factor in tumor-infiltrating CD8 +
T cells and NK cells, resulting in reduced IFNγ production (Brand
et al., 2016). Ping et al. found a significant increase in intracellular
lactate levels in tumor-infiltrating lymphocytes in the TME of
gastric cancer. Increased lactate metabolism levels were inversely
correlated with the percentage of TH1 cells and CTLs in the
tumor, reflecting altered and impaired immune competence
within the TME (Ping et al., 2018). Macrophages have two
central polarization states, including M1 and M2 (Wynn et al.,
2013). M1 macrophage polarization contributes to immunity
against tumors, whereas lactate favors TAM polarization
toward a pro-tumor M2 phenotype (Chen et al., 2021). Lactate
in the TME interacts with a pH-sensing membrane receptor,
Gpr132, on macrophages. Activation of this receptor can increase
the expression of M2 polarization-related genes (Chen et al.,
2017). Moreover, regulation of lactate levels can redistribute M2-
TAM and upregulate PD-L1 to facilitate tumor immune escape,
revealing macrophages as a “checkpoint” in organisms (Shan
et al., 2020). Our findings followed a trend that showed lactate
metabolism was inversely connected with immune infiltration
and that patients with high lactate metabolism scores would
benefit more from immunotherapy.

5 CONCLUSION

This is the first study to comprehensively evaluate the characteristics
of lactate metabolism-related genes in BC and TC and construct a
novel lactate metabolism score, which has a high value for predicting
prognosis and reflecting immune responses in BC and TC. The
lactate metabolism score is a predictive factor that is closely linked to
clinical outcomes. In addition, patients with different scores have
different TME statuses. Therefore, the lactate metabolism score is a
promising prognostic signature for assessing the molecular and
immune characteristics of BC and TC, which can provide
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important insights for subsequent functional study mechanisms and
guide clinicians to make rational treatment decisions.
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