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Abstract

Kinetin or N6-furfuryladenine (K) belongs to a class of plant hormones called cytokinins,

which are biologically active molecules modulating many aspects of plant growth and devel-

opment. However, biological activities of cytokinins are not only limited to plants; their

effects on animals have been widely reported in the literature. Here, we found that Kinetin is

a potent small molecule that efficiently stimulates differentiation of C2C12 myoblasts into

myotubes in vitro. The highest efficacy was achieved at 1μM and 10μM Kinetin concentra-

tions, in both mitogen-poor and rich media. More importantly, Kinetin was able to strongly

stimulate the MyoD-dependent conversion of fibroblasts into myotubes. Kinetin alone did

not give rise to fibroblast conversion and required MyoD; this demonstrates that Kinetin aug-

ments the molecular repertoire of necessary key regulatory factors to facilitate MyoD-medi-

ated myogenic differentiation. This novel Kinetin pro-myogenic function may be explained

by its ability to alter intracellular calcium levels and by its potential to impact on Reactive

Oxygen Species (ROS) signalling. Taken together, our findings unravel the effects of a new

class of small molecules with potent pro-myogenic activities. This opens up new therapeutic

avenues with potential for treating skeletal muscle diseases related to muscle aging and

wasting.

Introduction

Kinetin or N6-furfuryladenine (K) belongs to a class of plant hormones called cytokinins,

which are both adenine and non-adenine derived molecules [1]. Initially, Kinetin was isolated

from autoclaved herring sperm DNA and was shown to be a potent activator of the prolifera-

tion of cultured tobacco pith cells [2]. At the time, there was a consensus that Kinetin did not

occur naturally. However, later studies identified Kinetin in extracts from root nodules of

Casuarina equisetifolia, infected by the bacterium Frankia [3], and in coconut water [4].

Although Kinetin was the first such small molecule to be identified, cytokinins consist of a

number of small molecules that are structurally-similar to Kinetin, where position N6 of an

adenine ring is substituted with either a benzyl residue (N6-benzyladenine, BA), a hydroxyl-

ated isopentenyl residue (trans and cis Zeatin, Zea), or an isopentenyl residue (N6-(Δ2-isopen-

tenyl) adenine, iP). Zeatin was initially identified as the first naturally-occurring cytokinin, in
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immature maize endosperm [5]. Later, it was confirmed that this cytokinin occurs as two iso-

mers: trans, which is active in all plant species, and cis, which is present in all plants but active

only in a subset [6]. It has been widely described that cytokinins are biologically active mole-

cules modulating many aspects of plant growth and development, including a broad spectrum

of biological processes like cell division, shoot initiation and growth, senescence, nutrient

uptake and phyllotaxis. Cytokinins are also involved in vascular, gametophyte, and embryonic

development, as well as in the response to biotic and abiotic factors (reviewed in [1, 7]).

The biological activities of cytokinins are not only limited to plants and their effects on

other organisms, including animals, have been reported widely in the literature. Two species

of fruit flies, Zaprionus paravittiger and Zaprionus indianus, showed prolonged lifespans after

treatment with Kinetin [8], likely by enhancing catalase activity [9]. A similar effect has been

observed when studying nematode worms. For example, Kinetin treatment (200μM) signifi-

cantly increased longevity in Caenorhabditis elegans, and treated groups showed a greater

resistance to oxidative and heat stress [10]. The anti-aging properties of Kinetin have been also

documented in human mammary skin fibroblasts. When supplemented with 40–200μM Kine-

tin, these cells displayed a reduction in a number of morphological features linked to aging,

such as improved cell size and shape, reduced autofluorescence and improved cytoskeleton

appearance. In addition, Kinetin treatment improved cytokinesis and reduced the number of

cells with multiple nuclei [11]. Another study, performed on 3D-reconstructed skin, showed a

beneficial effect of Kinetin via increased levels of proliferation and differentiation markers

[12].

The anti-aging properties of Kinetin can be partially explained by its ability to protect DNA

against oxidative damage mediated by the Fenton reaction [13]. Interestingly, elevated levels of

Kinetin have been found in the urine of cancer patients and it has been suggested that the pres-

ence of Kinetin might indicate the presence of increased oxidative stress and DNA damage

[14]. On the other hand, Kinetin and other cytokinins were shown to modulate a number of

processes, enzymes and transcription factors related to damage-protection in mammals. For

instance, Kinetin induces activity of superoxide dismutase (SOD), catalase (CTL) and glutathi-

one peroxidase (GP) in the human promyelocytic cell line HL-60 [15]. In the mouse hippo-

campal cell line HT22, Kinetin modulates translocation of the transcription factor Nuclear

factor erythroid 2–related factor 2 (Nrf2), which is a major regulator of xenobiotic metabolism.

Nrf2 thus translocates to the nucleus to reach its target, heme oxygenase-1 (HO-1) [16]. Kine-

tin treatment of late-passage endothelial cells leads to altered expression levels of proteins

involved in cytoskeletal function, intracellular trafficking, cell-cycle progression, translation,

protein turnover, coagulation and collagen maintenance [17]. Finally, Isopentenyladenine (iP)

has been shown to bind the gamma subunit of AMP-activated protein kinase (AMPK) and

function as its activator [18].

Taken together, cytokinins have been shown to regulate vital biological processes, not only

in plants but also in mammalian cells, including those identified elsewhere to be critical for

skeletal muscle differentiation and regeneration, like reactive oxygen signalling and oxidative

homeostasis [19]. Hence, in the current study we sought to link these ideas and investigate the

effects of Kinetin and two other cytokinins (namely N6-benzyladenine and trans-Zeatin), on

the differentiation process of myoblasts into myotubes in vitro. For this purpose, we utilised

the well-described murine C2C12 cell line, which is a gold standard to study muscle differenti-

ation in vitro, when grown under mitogen-poor conditions, and which is unable to differenti-

ate in mitogen-rich media. To monitor the differentiation process, we used well-established

markers like Myogenin and Muscle Creatine Kinase (MCK) activity. Any link between Kinetin

and muscle differentiation could potentially lead to new small molecule treatments to inter-

vene in diseases of muscle degeneration and aging.
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Material and methods

RNA extraction and Taqman real-time PCR expression analysis

Cells were briefly washed with PBS, followed by extraction with TRizol (Ambion, UK). The

whole cell suspension was transferred to Epperdorf tubes, followed by a freezing-thawing

cycle. Total RNA from cell lines was extracted with a mini-RNA kit, according to manufac-

turer instructions (Qiagen). The reverse transcription reaction (RT) was performed using

MMLV superscript reverse transcriptase (Invitrogen) and random hexamers (Operon), as

described previously [20]. The final RT reaction was diluted 10-fold in nuclease-free water

(Sigma) for further Taqman-qPCR reactions. All Taqman-qPCR reactions were performed as

described previously [21], using a Cycler 480 Real Time Thermal Block Cycler (Roche). Esti-

mation of mRNA copy number was determined in triplicate for each RNA sample, by compar-

ison to the geometric mean of three endogenous housekeeping genes, Hprt, Gapdh and 18S, as

described previously [22]. The Myogenin and MyoD Taqman assays were purchased from

ABI as described previously [23].

Cell culture

C3H10T1/2 (ATCC CCL-226) and C2C12 (ATCC CRL-1772) cell lines were grown in

D-MEM (1,000 mg/ml glucose) medium containing 15% or 10% FCS, 100 U/ml of penicillin,

100 μg/ml of streptomycin and 0.292 mg/ml L-glutamine (Life Technologies, UK), called here-

after Growth Medium (GM). Cells were grown for 2–3 days to reach 60–80% confluence, in a

humidified atmosphere containing 5% CO2, at 37˚ C. Cells were detached from dishes with

trypsin solution (0.05% trypsin-EDTA) (Life Technologies, UK) and split in a ratio of 1 to 6, as

previously described [24]. For experimental procedures, cells were counted using a cell haemo-

cytometer and seeded in 6-well plates, at 105 cells per well density. All drugs used in this study

including Kinetin (K), Kinetin riboside (KR), N6-benzyladenine (BA), trans-zeatin (ZEA)

were at analytical grade, purchased from Sigma Aldrich. All cytokinins were dissolved in

DMSO (Sigma Aldrich), prepared freshly ahead of cell culture tests. DMSO was used as a nega-

tive control in all experimental settings. Typically, when used, all cytokinins were added to the

medium the next day (within 12–18 hours) after seeding cells. The experimental design work-

flow has been presented as S1 Fig.

Differentiation of C2C12 myoblasts into myotubes

To differentiate C2C12 cell lines to myotubes, cells were grown in Differentiate Medium (DM)

containing D-MEM (1,000 mg/ml glucose) supplemented with 2% (v/v) Horse Serum (HS),

100 U/ml of penicillin, 100 μg/ml of streptomycin and 0.292 mg/ml L-glutamine. Cells were

cultured in DM medium up to 96 hours after removal of mitotic stimuli, until myotubes were

formed. Medium was replaced daily and fresh medium was applied.

MyoD-dependent conversion of fibroblast cell lines

C3H10T1/2 fibroblasts are also able to form myotubes in a so-called conversion assay, as

described previously [24]. To convert fibroblasts into myotubes, cells were transiently trans-

fected with the pCMV-MyoD plasmid (Addgene 8398; a gift from Andrew Lassar) [25], using

Lipofectamine 2000 reagent and Opti-Mem medium (Life Technologies, UK), accordingly to

the manufacturer’s instructions (Life Technologies, UK). 24 hours after transfection, medium

was replaced with DM supplemented with 5% Horse Serum, 100 U/ml of penicillin, 100 μg/ml

of streptomycin and 0.292 mg/ml L-glutamine. Cytokinins or DMSO were added 24 hours

post transfection. Medium was replaced daily with fresh medium. Typically, the conversion of
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fibroblasts into myotubes was terminated 6 days after transfection, and cells were harvested for

further biochemical assays.

Cytotoxicity assay

Cell death was assessed using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide) Assay kit (Abcam), according to the manufacturer’s instructions. Absorbance was

read at 590nm using a Microplate Reader (BioRad).

Muscle Creatine Kinase activity assay

The activity of the Muscle Creatine Kinase was measured using Creatine Kinase assay kit

accordingly to the manufacturer’s instructions (Sigma Aldrich). Absorbance was read at

340nm using a Microplate Reader (BioRad). Briefly, cells were washed twice with ice-cold PBS

and scraped. Cells were centrifuged at 1000 × g and resuspended in PBS containing 0.1%

Tween-20, and incubated on ice for 30 min. The lysates were centrifuged at 10,000 × g for 15

min at 4˚C, and the protein concentration in the supernatant was determined using a Pierce

protein assay kit. Typically, 100μl of sample was used for creatine kinase assay.

Determination of ROS levels

Reactive oxygen species (ROS) were measured using a DCFDA / H2DCFDA—Cellular ROS

Assay Kit (Abcam; ab113851), according to the manufacturer’s instructions. Briefly, C2C12

myoblasts were seeded in 96-well plates in growth media (GM) at cell density of 5000 cells per

well and incubated overnight as described above. Next, adhered cells were treated with Kinetin

at different concentrations. ROS levels were measured at 12h and 24h after Kinetin was added

and cells were stained with DCFDA for 45 min. At least 10 biological replicates per each condi-

tion were performed. Fluorescence was determined using a Microplate Reader (BioRad) at

excitation/emission wavelengths of 485 and 535 nm, respectively.

Statistical analysis

All data were analysed with SPSS (IBM) and One-way ANOVA with a Bonferroni post-hoc
test. Each experiment was performed with at least 3 biological replicates.

Results

To investigate the potential effects of Kinetin and other cytokinins on muscle differentiation,

we used a well-established cellular model: the differentiation of C2C12 myoblasts into myo-

tubes. This is based on the fact that C2C12 myoblasts undergo a differentiation process under

mitogen-poor conditions. These conditions are typically achieved by replacing mitogen-rich

growth medium (GM, e.g. 10–15% FCS) with a mitogen-deprived differentiation medium

(DM, e.g. 2 or 5% HS) [26]. In order to sensitively monitor any potential effect of cytokinins

on myoblasts, we initially used strongly mitogen-rich medium (15% FCS). Since the differenti-

ation process is significantly inhibited here, differentiation is delayed in time and can take up

to 14 days [27]. Hence, we cultured C2C12 cells in GM supplemented with the following cyto-

kinins: trans-Zeatin, Kinetin and N6-benzyladenine, at 1μM and 10μM concentrations. All

treatments were in comparison to C2C12 myoblasts supplemented with DMSO only (negative

control; Fig 1A).

First, there was a significant enhancement effect on the differentiation of myoblasts with

Kinetin, after 7 days in culture (Fig 1C and 1D). N6-benzyladenine also enhanced C2C12 dif-

ferentiation (Fig 1E and 1F), at both 1 μM and 10 μM concentrations. By contrast, trans-Zeatin
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Fig 1. Effect of cytokinins on differentiation of C2C12 cells. Representative pictograms of C2C12 myoblasts grown

in GM growth medium supplemented with 15% FCS for 7 days, in the presence of A) DMSO, B) 10μM trans-Zeatin,

C) 1μM Kinetin, D) 10μM Kinetin, E) 1μM N6-benzyladenine, F) 10μM N6-benzyladenine. G) Fusion index was

significantly higher when C2C12 cells were grown in GM in the presence of Kinetin, at 1μM and 10μM concentrations,

in comparison to cells grown in the presence of GM and DMSO. Similarly, 1μM and 10μM BA increased the Fusion

index in comparison to cells grown in the presence of GM and DMSO. As a positive control, C2C12 cells were grown

in DM supplemented with 2%HS for 4 days. H) Kinetin at 1μM and 10μM concentration, and N6-benzyladenine at

1μM and 10μM concentration, significantly induced MCK activity in comparison to cells grown in DM and DMSO.

Error bars are ± SEM (n = 9). One-way Anova with Bonferroni post hoc test: �p<0.05, ��p<0.01, ���p<0.001. Black

arrows indicate apparent presence of myotubes. Scale bar 50μm. FCS (Foetal Calf Serum); HS (Horse Serum); DM

(Differentiation medium); GM (Growth medium); K (Kinetin); BA (N6-benzyladenine); ZEA (trans-Zeatin); MCK

(Muscle Creatine Kinase).

https://doi.org/10.1371/journal.pone.0258419.g001
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did not show any effect even at the highest 10 μM concentration (Fig 1B). Next, we quantified

the effect of cytokinins on myoblast differentiation using a Fusion index (Fig 1G). We found

that Kinetin had the largest effect on the formation of myotubes, at both tested concentrations.

N6-benzyladenine also showed a statistically significant effect but only at the highest 10 μM

concentration. Zeatin supplementation did not show an increase in the Fusion index, in com-

parison to cells treated with DMSO only (Fig 1G). Notably, we used C2C12 cells grown in DM

(2%HS) as a positive control. Under these conditions, only Kinetin addition reaches and sur-

passes the level of myotube formation achieved by the DM positive control.

We further quantified the pro-differentiation effect of cytokinins using an unbiased assay

based on muscle creatine kinase activity (MCK), which increases during myoblast differentia-

tion. We found a significant increase of MCK activity in the presence of both Kinetin and

N6-benzyladenine, at 1μM and 10μM concentrations, whereas trans-Zeatin did not activate

MCK in comparison to myoblasts supplemented with DMSO (Fig 1H).

We next assessed the effect of Kinetin and N6-benzyladenine on the C2C12 myoblasts,

when grown in the pro-myotube differentiation medium (2%HS). Here, Kinetin (but not

N6-benzyladenine) significantly enhanced differentiation of myoblasts at 3 days post induc-

tion, in the mitogen-poor medium, based on an analysis of Myog mRNA levels (a marker of

myotube formation; Fig 2A) and MCK activity (Fig 2B). These treatments were in comparison

to cells grown in DM supplemented with DMSO-only as a negative control. These effects

diminished 6 days post removal of mitogen, when we no longer found increased levels of either

Myog transcripts (Fig 2C) or MCK activity (Fig 2D). This result may indicate that Kinetin

enhances the differentiation of myoblasts during its early phase. Since there was no extra effect

Fig 2. Kinetin but not N6-benzyladenine (BA) increases C2C12 differentiation in the DM differentiation medium.

C2C12 myoblasts were grown in DM supplemented with 2% horse serum in the presence of DMSO, 1μM or 10μM

Kinetin, 1μM or 10μM BA. Kinetin but not BA increases A) Myog mRNA levels and B) MCK activity, 3 days post

induction of myoblast differentiation. This effect was diminished 6 days post induction of myoblast differentiation,

when C) Myog mRNA levels and D) MCK activity were not elevated in the presence of either Kinetin or

N6-benzyladenine. Error bars are ± SEM (n = 6). One-way Anova with Bonferroni post hoc test: �p<0.05, ��p<0.01,
���p<0.001. HS (Horse Serum); DM (Differentiation Medium); K (Kinetin); BA (N6-benzyladenine); MCK (Muscle

Creatine Kinase); Myog (Myogenin).

https://doi.org/10.1371/journal.pone.0258419.g002
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of N6-benzyladenine on the C2C12 myoblasts grown in the DM, we performed further experi-

ments using Kinetin only as our lead compound: it enhances myoblast differentiation, both in

the growth medium and in differentiation medium.

Next, we investigated the concentration-dependent effect of Kinetin on C2C12 differentia-

tion; C2C12 cells were grown in the GM supplemented with 0.01μM, 0.1μM, 1μM, 10μM and

100μM Kinetin for 7 days. Kinetin enhanced significantly fusion index (Fig 3A) at concentra-

tions ranging from 0.1μM to 100μM. We also used quantitative assays and found that Kinetin

had a significant effect on MCK activity (Fig 3B), at concentrations from 0.1μM to 100μM, as

well increased Myog transcript levels (Fig 3C), at concentrations from 0.01μM to 100μM. It has

to be noted that there was no significant difference in all 3 measurements between 10μM and

100μM Kinetin concentrations. Taken together, this might indicate that Kinetin consistently

enhances myoblast differentiation between 1μM and 100μM concentration.

Since Kinetin riboside (KR) has been shown to display biological activities in mammalian

cells, we tested its ability to induce myoblast differentiation in comparison with Kinetin. We

found that KR did not stimulate C2C12 differentiation in the GM after 7 days in culture at

either 0.1μM, 1μM or 10μM concentrations, as Fusion index was not changed (Fig 4A) and

there was no enhanced MCK activity (Fig 4B). However, in this set of experiments, we

observed that KR–but not Kinetin–might be toxic to C2C12 myoblasts. Hence, we performed

an MTT assay to validate our observation and we found that KR was indeed toxic at 0.1μM,

1μM and 10μM concentrations (Fig 4C), while Kinetin did not show any toxicity at 0.01μM,

0.1μM, 1μM and 10μM concentrations, after 3 days in culture. We also observed no toxicity

after supplementation of the GM with DMSO (Fig 4C). The cytotoxicity of KR was found to be

dose-dependent as there was a significant difference in the cell viability at the 0.1μM and

10μM concentrations.

Next, we investigated time-dependent effects of Kinetin on C2C12 differentiation in GM.

As described above, a significant stimulation of myoblast differentiation was observed after 7

days in culture, hence we performed a number of parallel cultures and assayed for effects of

Kinetin after 3, 5 and 7 days. We found that Kinetin did not induce MCK activity or increase

Myog mRNA levels after 3 days in culture (Fig 5A and 5B). However, there was a significant

stimulation of differentiation of myoblasts after 5 days in culture (Fig 5C and 5D) based on

both increased MCK activity and Myog transcript levels, at 0.1μM, 1 μM and 10μM concentra-

tions. Subsequently, there was a significant effect of Kinetin after 7 days in culture in the GM

supplemented with 0.1μM, 1μM and 10μM Kinetin, in comparison to C2C12 cells treated with

DMSO, based on both MCK activity and Myog mRNA levels (Fig 5E and 5F). This indicates

that Kinetin efficiently stimulates myoblast differentiation in the growth medium within 5

days in culture.

Finally, we assessed the ability of Kinetin to potentiate MyoD-dependent conversion of

murine embryonic fibroblasts into myotubes, as previously described [24]. It is well-estab-

lished that embryonic fibroblasts, like the 10T1/2 cell line, can be differentiated into myotubes

upon MyoD expression, in a so called conversion assay, for example in the differentiation

medium (5%HS). Hence, we transiently transfected 10T1/2 cells with a full-length MyoD

expression construct. At 24 hours post transfection, we replaced the GM with mitogen-poor

medium (5%HS), supplemented with either DMSO or different concentrations of Kinetin (at

0.1μM, 1μM, 10μM concentrations). We assayed the effect of Kinetin on the conversion of

fibroblasts into myotubes after 6 days in culture, using two objective quantitative assays. We

found that Kinetin increased Myog transcript levels at 1μM and 10μM concentrations (Fig

6A), while 0.1μM Kinetin did not show a significant increase. MCK activity was also signifi-

cantly stimulated at 1μM and 10μM concentrations of Kinetin only (Fig 6B). We also found

that Kinetin by itself, without MyoD expression, was not able to stimulate conversion of 10T1/
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2 fibroblasts into myotubes: there was no increase of either MCK activity or Myog mRNA lev-

els (Fig 6). In addition, Kinetin did not enhance MyoD expression from the plasmid used for

the transient transfection (S2 Fig).

Fig 3. Effect of Kinetin on C2C12 myoblast differentiation in the mitogen enriched medium. A) Fusion index of

C2C12 cells increased significantly in the presence of Kinetin at the 0.1μM, 1μM, 10μM and 100μM concentrations, in

comparison to cells grown in the presence of GM and DMSO. B) MCK activity and C) Myog transcript levels were

significantly higher in the presence of Kinetin at the 0.1μM, 1μM, 10μM and 100μM concentrations, in comparison to

cells grown in the presence of GM and DMSO. Error bars are ± SEM (n = 6). One-way Anova with Bonferroni post hoc
test: �p<0.05, ��p<0.01, ���p<0.001. Scale bar 100 μm. FCS (Foetal Calf Serum); DM (Differentiation medium); GM

(Growth medium); K (Kinetin); BA (N6-benzyladenine); MCK (Muscle Creatine Kinase); Myog (Myogenin).

https://doi.org/10.1371/journal.pone.0258419.g003
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In order to explore a potential mechanism for Kinetin stimulation of differentiation of

C2C12 myoblasts, we evaluated the potential efficacy of Kinetin to scavenge ROS. We found

that Kinetin (at 1μM, 10μM, 10μM concentrations) significantly reduced ROS levels after 12h

Fig 4. Kinetin riboside but not Kinetin is toxic in C2C12 cells. Kinetin but not Kinetin riboside supplement

increased significantly A) fusion index and B) MCK activity, in C2C12 cells grown in GM with 15% FCS, in

comparison to C2C12 myoblasts supplemented with DMSO only for 7 days. C) An MTT assay showed that Kinetin

riboside but not Kinetin was toxic in C2C12 cells, at the tested concentrations, after 3 days in culture. Error bars

are ± SEM (n = 6). One-way Anova with Bonferroni post hoc test: �p<0.05, ��p<0.01, ���p<0.001. FCS (Foetal Calf

Serum); DM (Differentiation medium); K (Kinetin); KR (Kinetin riboside); GM (Growth Medium); MCK (Muscle

Creatine Kinase).

https://doi.org/10.1371/journal.pone.0258419.g004
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and 24h incubation (S3 Fig). Overall, our study indicates that Kinetin is a potent small mole-

cule that efficiently stimulates the differentiation of myoblasts into myotubes. N6-benzylade-

nine was also able to stimulate myoblast differentiation, however with much lower efficacy and

only in GM growth medium, while trans-Zeatin did not stimulate this process at all. It appears

that the highest efficacy of Kinetin was reached between 1μM and 10μM concentrations, when

Kinetin was supplemented into both the growth and differentiation media. We also found that

Kinetin riboside but not Kinetin itself showed toxicity in C2C12 myoblasts. More importantly,

Kinetin was also able to stimulate MyoD-dependent conversion of fibroblasts into myotubes.

Taken together, our data clearly indicate that Kinetin should be recognised as a small molecule

with potential for promoting muscle regeneration.

Discussion

Although cytokinins were initially discovered as potent plant hormones (reviewed in [1]), evi-

dence has been mounting over the past 20 years over their abilities to alter biochemical pro-

cesses in mammalian cells, both in vitro and in vivo. More importantly, it has also been shown

that one of the cytokinin family members, Kinetin, is found in DNA extracts from human

fibroblasts [28] and in human urine from cancer patients [14]. The mechanism by which Kine-

tin is being formed in human DNA is based on the reaction of the amino group of adenine

with the aldehyde group of furfural [29], which is itself formed as primary product of oxidative

Fig 5. Time-dependent effect of Kinetin on C2C12 differentiation into myotubes. C2C12 cells were grown in GM

supplemented with DMSO (negative control) or with different concentrations of Kinetin at 0.1μM, 1μM and 10μM.

Myog transcript levels and MCK activity was validated at 3 days (A and B), 5 days (C and D) and 7 days (E and F) post

seeding C2C12 myoblasts. Error bars are ± SEM (n = 6). One-way Anova with Bonferroni post hoc test: �p<0.05,
��p<0.01, ���p<0.001. FCS (Foetal Calf Serum); HS (Horse Serum); DM (Differentiation medium); GM (Growth

medium);K (Kinetin); MCK (Muscle Creatine Kinase). Myog (Myogenin).

https://doi.org/10.1371/journal.pone.0258419.g005
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DNA damage [30]. However, probably the most spectacular features of Kinetin discovered so

far, including in mammalian cells, are its anti-aging properties. The latter have been shown in

fruit flies [8], Caenorhabditis elegans [10] and in human mammary skin fibroblasts [11]. Fur-

thermore, a number of studies showed that Kinetin can also regulate several critical biological

processes in mammalian cells including calcium signalling and Reactive Oxygen Species

(ROS) homeostasis (reviewed in [31]). Since these processes have been shown to be important

during muscle regeneration (reviewed in [32]), in this study we sought to investigate the pro-

myogenic effects of Kinetin and other two small molecules, N6-benzyladenine and trans-Zea-

tin, belonging also to the cytokinin family of plant hormones. Specifically, we employed an in
vitro model of myoblast differentiation into myotubes. C2C12 cells, derived from murine skel-

etal muscle cells, are a well-established model to study muscle regeneration and differentiation

Fig 6. Kinetin enhances MYOD-dependent conversion of 10T1/2 fibroblasts into myotubes. 10T1/2 fibroblasts

were transiently transfected with a full-length MyoD gene expression construct and were grown in DM supplemented

with 5% horse serum. 24 hours post transfection, cells were supplemented with either DMSO (negative control) or

Kinetin at 0.1μM, 1μM or 10μM concentration, and were grown for 6 days. Kinetin supplemented at the 1μM and

10μM concentrations significantly increased A) Myog transcript levels and B) MCK activity, which correlates with an

increased conversion of fibroblasts into myotubes. Error bars are ± SEM (n = 8). One-way Anova with Bonferroni post
hoc test: �p<0.05, ��p<0.01, ���p<0.001. K (Kinetin); MCK (Muscle Creatine Kinase); Myog (Myogenin); DM–

Differentiation Medium.

https://doi.org/10.1371/journal.pone.0258419.g006
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in vitro [33]. During differentiation of C2C12 cells, myoblasts undergo a complex remodelling

to form mature myotubes in parallel with the increased expression of a number of muscle-spe-

cific genes [34, 35]. In our study, in order to monitor the differentiation process in quantitative

way, we chose to assess the impact of cytokinins based on Fusion index, the level of Myogenin

(based on Taq-man qPCR assay) and Muscle Creatine Kinase (MCK) activity. It has been

shown that Myog transcript levels increase steadily during differentiation of myoblasts into

myotubes [36], and Myog knock-down leads to defective terminal muscle differentiation [37].

The other quantitative assay used in this report was based on MCK activity increases during

C2C12 differentiation [26].

We found that Kinetin, at 1μM and 10μM concentrations, stimulates myoblast differentia-

tion in both mitogen-rich and mitogen-poor media with the highest efficacy. The concentra-

tion of Kinetin established in our study is in line with previous studies in different mammalian

cell lines, where it has been reported that Kinetin shows biological activities at μM concentra-

tions (reviewed in [31]). N6-benzyladenine also significantly enhances formation of myotubes,

however we found that this effect was less potent than that of Kinetin and was restricted to the

mitogen-rich medium. Finally, we found that Zeatin did not affect myoblast differentiation.

This could be explained by a potential mechanism—yet to be discovered—in which Kinetin,

but not other cytokinins, stimulate myoblast differentiation in vitro. Firstly, it has been shown

that muscle differentiation is regulated by calcium signals. In fact, the expression of Myogenin

requires the activation of CaMKII and the rise of intracellular Ca2+ levels is a prerequisite for

the activation of the fusion process of myoblasts [38]. Kinetin and Zeatin, but not N6-benzyla-

denine, were found to stimulate Ca2+ influx in plants and induced bud formation, likely

through voltage-dependent DHP-sensitive Ca2+ channels on the plasma membrane [39].

Interestingly, Kinetin treatment led to increased expression of various differentiation markers

in keratinocytes exposed to high Ca2+ levels [40]. Furthermore, the increase of intracellular

calcium levels is responsible for ROS formation through the action of the mitochondrial respi-

ratory chain, which plays a critical role during myogenic differentiation [41]. In fact, treatment

of C2C12 cells with a ROS-trapping agent (phenyl-N-tert-butylnitrone, PBN) enhanced myo-

blasts differentiation, while addition of 25μM H2O2 to cells in 20% O2 dramatically slowed dif-

ferentiation down and lowered Myog transcript levels [19]. Perhaps crucially, Kinetin, but not

other cytokinins, was reported as a potent ROS scavenger. Using a biochemical assay, Kinetin

has been reported to protect DNA against Fenton reaction-mediated oxidative damage and

significantly reduced formation of 8-hydroxy-2-deoxyguanosine formation, which is fre-

quently used as a marker of oxidative DNA damage [13]. Furthermore, Kinetin was shown to

be neuroprotective in the HT22 cellular model of glutamate-induced oxidative toxicity. This

neuroprotection was due to suppression of intracellular ROS accumulation and increases of

intracellular calcium influx [16]. Similarly, we found that Kinetin lower ROS levels in the

C2C12 myoblasts and this could be one of many potential mechanisms that Kinetin utilizes to

stimulate muscle differentiation in vitro. We also found that the Kinetin derivative Kinetin

riboside is toxic in C2C12 myoblasts. It should be noted that a similar effect of Kinetin ribo-

side—but not Kinetin—has been previously reported in a number of cancer cell lines. Kinetin

riboside induces cell death and attenuates G1 to S transition in HepG2 cells [42]. Moreover,

Kinetin riboside induces apoptosis in HeLa and mouse melanoma B16F-10 cells, through a

mitochondrion-dependent apoptosis pathway [43]. Furthermore, Kinetin riboside inhibited

proliferation in HCT-15 human colon cancer cells, in a dose-dependent manner [44].

We also wanted to know whether supplying Kinetin enhances the recruitment of non-mus-

cle cells into the myogenic fate. This hypothesis was based on the assumption that the presence

of additional key regulatory factors might facilitate MyoD-mediated initiation of regulatory

circuits that drive myogenic differentiation. It is well-established that myogenic factors like
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MyoD are able to reprogram numerous cell types, including fibroblasts, so that they adopt a

muscle fate [45]. We found that Kinetin significantly enhanced MyoD-dependent conversion

of fibroblasts into myotubes. However, Kinetin alone did not give rise to such conversion. This

clearly demonstrates that Kinetin supplements the molecular repertoire of various key regula-

tory factors to facilitate MyoD-mediated myogenic differentiation.

Conclusions

Overall, our current study identified a novel biological activity of Kinetin in mammalian cells.

For the first time, we showed that Kinetin at micromolar concentrations robustly stimulates

C2C12 myoblast differentiation, in both mitogen-rich and mitogen-poor conditions. This may

potentially be achieved via a mechanism related to the ability of Kinetin to alter intracellular

calcium levels, as well its biological activity in ROS regulation. In addition, Kinetin proved to

be a potent enhancer of MyoD-dependent conversion of fibroblasts into myotubes. Taken

together, our findings suggest the existence of a new class of small molecules with potent pro-

myogenic activities. In the future, this may open new therapeutic avenues for diseases of skele-

tal muscle degeneration and potentially in age-related muscle wasting.

Supporting information

S1 Fig. Experimental workflow. Study time-frame for C2C12 myoblasts grown in (A) growth

media [related to Figs 1, 3–5], (B) differentiation media [related to Fig 2] and 10T1/2 fibro-

blasts conversion into myotubes assay [related to Fig 6] (C). GM (Grown Media); DM (Differ-

entiation Media).

(TIF)

S2 Fig. Kinetin does not enhance MyoD expression in 10T1/2 fibroblasts. 10T1/2 fibroblasts

were transiently transfected with a full-length MyoD gene expression construct and were

grown in DM supplemented with 5% horse serum. 24 hours post transfection, cells were sup-

plemented with either DMSO (negative control) or Kinetin at 0.1μM, 1μM or 10μM concen-

tration, and were grown for 24H. Kinetin supplemented at the 1μM and 10μM concentrations

did not increase MyoD transcript levels. Error bars are ± SEM (n = 6).

(TIF)

S3 Fig. Kinetin efficiently reduces ROS levels in C2C12 myoblasts. C2C12 cells were grown

in GM supplemented with DMSO (negative control) or with different concentrations of Kine-

tin at 1μM, 10μM and 10μM. ROS levels were assessed using a DCFDA / H2DCFDA fluores-

cent assay after (A) 12h and (B) 24h. Error bars are ± SEM (n = 10). One-way Anova with

Bonferroni post hoc test: ���p<0.001. ROS (Reactive Oxygen Species); GM (Growth medium);

K (Kinetin).

(TIF)
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