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Abstract

Colorectal tumors have characteristic genome-wide expression patterns that allow their
distinction from normal colon epithelia and facilitate clinical prognosis. The expression
heterogeneity within a primary colorectal tumor has not been studied on a genome scale yet. Here
we investigated three compartments of colorectal tumors, the invasion front, the inner tumor
mass, and surrounding normal epithelial tissue by microdissection and microarray-based
expression profiling. In both tumor compartments many genes were differentially expressed when
compared to normal epithelium. The sets of significantly deregulated genes in both compartments
overlapped to a large extent and revealed various interesting known and novel pathways that could
have contributed to tumorigenesis. Cells from the invasion front and inner tumor mass, however,
did not show significant differences in their expression profile, neither on the single gene level nor
on the pathway level. Instead, gene expression differences between individuals are more
pronounced as all patient-matched tumor samples clustered in close proximity to each other. With
respect to invasion front and inner tumor mass we conclude that the specific tumor cell micro-
environment does not have a strong influence on expression patterns: largely similar genome-wide
expression programs operate in the invasion front and interior compartment of a colorectal tumor.
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Background

Recent reports have highlighted differences between the
invasion front and interior compartments of colorectal
tumors. Tumor cell budding at the invasion front is
increasingly recognized as an adverse prognostic factor for
colorectal tumors [1,2]. Hypoxia in the inner tumor mass
is thought to induce angiogenesis through changes in
hypoxia inducible factor-regulated gene transcription [3]
and to induce epithelial-mesenchymal transition [4].
Downstream targets of the Wnt/beta-catenin pathway and
beta-catenin itself exhibit stronger protein expression at
the invasion front of colon tumors [5-8]. However, recent
success in the prediction of metastatic properties of
tumors from genome-wide expression profiles of whole
tumors [9,10] suggest that the capability to metastasize is
imprinted in the expression programs of the majority of
primary tumor cells, not only those at the invasion front.
It is not clear whether the reported enhanced protein
expression of some Wnt/beta-catenin pathway targets is
also reflected on the level of transcription. In general, little
is known about how similar the genomes of cells in differ-
ent tumor compartments are and even less is known
about the differences in their gene expression programs.

This motivated us to study the expression of the invasion
front, inner cells and surrounding normal epithelia of pri-
mary colorectal tumors by laser-capture microdissection
and genome-wide microarray expression analysis. To our
knowledge this is the first study of expression heterogene-
ity of a primary tumor on a genome scale. Cells from dis-
tinct tumor compartments were separated by laser-capture
microdissection (documented electronic images are avail-
able upon request). RNA amplification was necessary to
obtain sufficient starting material for hybridization of
Affymetrix U133A DNA chips. For methodological details
we refer to our previous work [11-13]. We investigated the
expression data by unsupervised multivariate data mining
techniques, statistical group testing and further explored
the results by the use of different pathway/gene group
analysis algorithms and databases.

Results and discussion

Much information about dominant trends in high-dimen-
sional gene expression data can be discovered by the
application of dimension reduction techniques. We
applied principal component analysis on the covariance
matrix to analyze major trends in our data (see Figure 1).
The first three principal components (Eigengenes) capture
>43% of the variance of all genes and therefore are sus-
pected to reflect major expression trends in the data set. In
the 3D plot of the first three principal components we
found that samples of normal epithelia clustered together
and were well separated from all tumor samples. Moreo-
ver the tumor samples tend to localize in pairs, with one
sample from the invasion front next to a matching sample
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Principal component analysis of tumor samples from the
invasion front (IT), the inner tumor mass (RT) and from
neighbored normal epithelium (N) based on the expression
patterns of 7433 genes. Note that normal epithelia cluster
closely together to the exclusion of all tumor samples.

from the inner tumor mass. This result was confirmed by
hierarchical clustering (see Figure 2) of the tumor samples
according to the similarity of their global gene expression
patterns. Matching tumor samples from the invasion front
and inner tumor compartments clustered as direct neigh-
bors whereas all samples from normal epithelia were sep-
arated from their matching tumors. We conclude that
genome-scale expression signals are different between
normal colorectal epithelia and carcinoma cells. But
expression differences between invasion front and inner
tumor mass are not strong enough to overcome the
expression variability associated with individual tumors.
In other words, with respect to the two analyzed compart-
ments the within-tumor gene expression variability is
lower than the between-tumors expression variability.

The analyses so far neither do reveal how strong gene
expression differences between tumor and normal cells
are, nor do they allow to conclude that there are any sig-
nificant expression changes between tumor compart-
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Figure 2

Two-way hierarchical clustering of tumor and normal epithelia samples based on expression profiles of 7433 genes. (A) The
heat map shows expression changes relative to the average signal in normal tissues. Red means up-regulation, green means
down-regulation (see expression ratio color bar at the bottom). (B) The dendrogram shows the hierarchical order of similari-
ties between patient samples. Note that all normal samples are separated from tumors and both samples of a patient that stem
from different tumor compartments clustered as neighbors.
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ments at all. To investigate the strengths of expression
differences among sample groups we performed statistical
tests. In comparisons of the normal epithelium with inte-
rior tumor cells we found 1528 of 7433 genes under inves-
tigation (see Additional files 1 &2) to be differentially
expressed (by both, unpaired Welch t-tests and paired t-
tests at an FDR threshold of Q<0.1 according to the Ben-
jaminin-Hochberg method). When comparing the nor-
mal epithelium with matching tumor invasion fronts we
found 1128 genes to be differentially expressed according
to both tests. The lists of differentially expressed genes are
strongly overlapping: 923 genes (>80% of the smaller list)
are differentially regulated in both tumor compartments
(a full list of all genes, their expression data and annota-
tions, and their statistical test results is available in Addi-
tional files 1 &2). This analysis proves that there are
enormous differences in mRNA expression between color-
ectal carcinoma cells and their matching epithelia with
more than 10% of all expressed genes being affected. The
majority of these genes are deregulated in both compart-
ments of colorectal tumors, the invasion front and the
inner cell mass.

Does the functional annotation of the 923 commonly
deregulated genes tell us something about cellular proc-
esses involved in colorectal tumor development? We clus-
tered all differential genes (k-means; Euclidean distance; k
= 2) into two clusters containing 508 up-regulated and
415 down-regulated genes. Both sets of genes were tested
separately for significant overlap with gene sets from pub-
lic databases using Fisher's Exact test (see Additional file
3). These databases capture information on signaling
pathways and their downstream targets, clinical prognosis
gene sets, genomic cancer gene neighborhoods and cellu-
lar structures and mechanisms. We found that a very high
number of gene sets is over-represented among the 501
up-regulated genes (148 categories at p < 0.0004 and
Q<0.01). Among these are many categories linked to pro-
liferation or development of neoplastic processes, a func-
tional link that has been described before numerous times
[14]. Surprisingly, we found several gene groups linked to
proteasomal degradation to be over-represented among
the up-regulated genes. This highlights the important role
of the proteasome in cancer development that was
recently proven by the development of the proteasome
inhibitor Bortezomib [15]. Our results suggest that pro-
teasome inhibition could also be beneficial for the treat-
ment of colorectal cancer especially in patients with up-
regulated proteasomal genes. Furthermore, we found that
gene sets previously described to be down-regulated in
response to Rapamycin or HDAC inhibitors are over-rep-
resented among our 501 tumor up-regulated genes
[16,17]. This suggests that such drugs have the potential to
partially revert the gene expression patterns that emerge
during colorectal tumorigenesis. Also clinical prognosis-
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relevant gene sets were overrepresented among up-regu-
lated genes, e.g. the breast cancer prognosis signature of
van't Veer and coworkers that shares many genes with typ-
ical proliferation signatures [14,18]. The top scoring gene
group, however, was the coexpression neighborhood of
the cancer gene RAN in an expression atlas of human tis-
sues [19] which suggests a prominent role for this gene
group in our cancer patients. The functional annotation of
down-regulated genes in colorectal tumors resulted in a
smaller number of significant functional categories: only
20 categories were over-represented at a relaxed threshold
of p < 0.0006 (Q<0.05). Interestingly, in our set of color-
ectal tumors a similar set of genes is downregulated as that
found by Sansom and coworkers after induction of
mutant APC in a mouse model [20]. APC is a well known
component of the Wnt/beta-catenin pathway. The Wnt/
beta-catenin pathway is often hyper-activated by muta-
tion in colorectal cancers. This finding suggests that the
Wnt/beta-catenin pathway may also be deactivated in our
set of tumors. It raises the question whether loss rather
than gain of expression upon Wnt/beta-catenin pathway
activation is crucial for colorectal cancer development. In
summary, the investigation of functional annotations of
deregulated genes recovered some known functional
aspects of colorectal tumors and highlights several novel
routes to explore colorectal cancer biology and treatment.

The instructive comparison of gene expression patterns of
tumor and normal samples prompted us to investigate
gene expression differences between tumor cells from the
invasion front and inner tumor mass. However, neither
paired t-tests nor unpaired Welch t-tests resulted in single
genes with significant differences between samples of the
two compartments. Single top genes reached p-values of
0. 003 in the Welch t-test and 0.0005 in the paired t-test:
both results cannot be regarded as significant when one
considers the large number of tests (FDR>0.98 when
using these p-values as thresholds). In histograms show-
ing the distribution of p values (see Figure 3) we found
that the invasion front-inner tumor comparison yielded
much less low range p-values compared to the tumor-nor-
mal comparisons. Recently, novel statistical methods such
as Gene Set Enrichment Analysis (GSEA) were developed
to detect subtle expression changes in functionally-related
gene groups in the absence of positive test results for indi-
vidual genes: these methods led to the discovery of molec-
ular signatures for diabetic and aging muscle [21-23]. We
applied the Tian et al. variant of GSEA using gene groups
supplied by the GO, KEGG, GenMAPP and MSIGDB data-
bases. However, even this sensitive algorithm did not
deliver a single gene group that can be regarded as differ-
entially expressed. We therefore conclude that on the
genome scale there are no significant differences in mRNA
expression patterns between colorectal tumor invasion
front and inner tumor mass. It appears that cells from
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Figure 3

Histograms of p-value distributions for pair-wise compari-
sons between three tissue groups. Note that the p-value dis-
tributions for gene-wise comparisons between tumor
compartments (RT, IT) and normal epithelia (N) have a peak
at p-values approaching 0 that is typical for situations in
which multiple genes have highly significant p-values (like
tumor-normal comparisons). In contrast, the p-value distri-
bution of the invasion front (IT) vs. inner tumor (RT) com-
parison lacks this peak and p-values are uniformly distributed,
just as if one would have labeled the experiments randomly.
This means that there are no gross differences in gene
expression between the two tumor compartments.
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these compartments of a single primary colorectal tumor
are equipped with similar transcriptomes. This suggests
that they may also be equipped with largely similar
genomes. In the light of numerous reports on differen-
tially expressed proteins at the colorectal tumor invasion
front, in particular Wnt/beta-catenin pathway compo-
nents, we speculate that the abundance of such proteins is
primarily regulated on the posttranscriptional level, possi-
bly by stabilization of pathway components and pathway
downstream targets that are induced by interaction with
tumor cells and stroma at the invasion front.

Conclusion

We investigated the invasion front, the inner tumor mass,
and surrounding normal epithelial tissue of colorectal
tumors by laser-capture microdissection and microarray-
based expression profiling. In comparisons of both tumor
compartments with normal epithelium many genes were
differentially expressed. The lists of deregulated genes in
both compartments overlapped to a large extent. In con-
trast, cells from the invasion front and inner tumor mass
did not show significant differences in their expression
profile, neither on the single gene level nor on the path-
way level. We conclude that largely similar genome-wide
expression programs operate in the invasion front and
interior compartment of a colorectal tumor.

Methods

Sample acqusition

Unselected consecutive CRC patients undergoing elective
standard oncological resection at the Department of Gen-
eral, Vascular and Thoracic Surgery, Campus Benjamin
Franklin, Charite, were prospectively recruited. The study
was approved by the local ethical committee and
informed consent was obtained from all patients.

Laser-capture microdissection

Preprocessing of frozen tissue blocks by laser-capture
microdissection was essentially performed as described in
our previous publications [11-13]. Briefly described, all
cancer specimens were snap frozen within 20 min follow-
ing excision and snap frozen. During laser-capture micro-
dissection frozen tissue specimens were serially cut into
6-8-mm-thick sections which were mounted on a sterile
2.5 mm membrane. Slides were fixed in 70% ethanol. The
sections were briefly stained with haematoxylin and
eosin, dehydrated in ethanol and dried for 10-15 min
using an excicator. The membrane was turned around and
fixed with adhesive tape on the other sterile slide. First
slides served as a template on which the areas of tumour
or normal epithelium were marked. On the consecutive
section, these areas were microdissected using a laser
microdissection system (SL, Jena, Germany and P.A.L.M.
Microlaser Technologies AG Bernried, Germany) and cap-
ture transfer films (Arcturus GmbH, Moerfelden-Wall-
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dorf, Germany). For molecular analysis, up to 100,000
cells or approximately 30-60 mm?2 of tissue section areas
were pooled and collected in ice-cooled tubes containing
100 ml of 98% guanidine thiocyanate (GTC) buffer and
2% beta-mercaptoethanol. For molecular analysis, up to
100,000 cells were pooled. From each tumor we isolated
cell populations of the invasion front, the inner cell mass
and normal epithelium from the periphery.

Messenger RNA preparation and DNA chip hybridization
Poly AC RNA from the microdissected specimens was pre-
pared using the PolyA-tract 1000 kit (Promega, Heidel-
berg, Germany) according to the manufacturer's
recommendations. For each sample, the cDNA synthesis
and repetitive in vitro transcription were performed three
times. The total amount of prepared mRNA from each
sample was used. First strand cDNA synthesis was initi-
ated using the Affymetrix T7-oligo-dT promoter-primer
combination at 0.1 mM. The second strand cDNA synthe-
sis was generated by internal priming. In vitro transcrip-
tion was performed using Ambion's Megascript kit
(Ambion, Huntington, UK) as recommended by the man-
ufacturer. From the generated cRNA, a new first strand
synthesis was initiated using 0.025 mM of a random hex-
amer as primer. After completion, the second strand syn-
thesis was performed using the Affymetrix T7-oligo-dT
promoter-primer combination. A second in vitro tran-
scription was performed and then the procedure was
repeated one additional time. During the last in vitro tran-
scription, biotin-labelled ribonucleotides were incorpo-
rated into the aRNA, as recommended by the Affymetrix
protocol. Hybridisation and detection of the labelled
cRNA on the Affymetrix Chip were performed according
to Affymetrix standard protocol.

Microarray data preprocessing

Raw expression data was condensed to probe set-wise
intensity values using the GC-RMA algorithm. Present/
absent calls for each data point were calculated with the
Affymetrix standard algorithm. Only genes with signifi-
cant expression signals (Affymetrix "present calls" at alpha
= 0.04) in a minimum of 30% of experiments were con-
sidered for subsequent analyses. For experiment normali-
zation data were rescaled to have equal median expression
intensities for all experiments, then intensities for each
gene were divided by the average over all experiments
with normal tissues and the logarithm of this ratio was
calculated. Probe set annotation for U133A chips were
retrieved from the Affymetrix web site (version 22). Gene-
wise expression data were obtained by averaging intensi-
ties of all probe sets associated with a gene symbol, finally
resulting in log ratio expression data for 7433 genes.

http://www.molecular-cancer.com/content/6/1/79

Expression data analysis

The preprocessed data were subjected to a principal com-
ponent analysis (PCA) of the covariance matrix of the data
to investigate and visualize global trends in the data. Hier-
archical clustering using the complete linkage algorithm
and Euclidean distances was used as a complementary
method to analyze the grouping of samples. These algo-
rithms were used as implemented in the Expressionist
Analyst software (Version 4.1, Genedata, Basel). Pairwise
Welch t-tests were performed for each gene to compare
expression levels in the the sample groups invasion front
(IT), inner tumor mass (RT) and normal epithelial tissue
(N). Histograms of all resulting p values for each compar-
ison were plotted using the statistical software R. The p
value distributions helped to assess whether there are dif-
ferences in expression on the genome level between the
three sample groups. If there are no significant differences
in expression (comparable to a situation when the data
are randomized) the p value distribution resembles a uni-
form distribution.
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Additional material

Additional File 1

Microarray expression data of 7433 genes. The pre-processed expression
data for all 7433 genes that were considered for subsequent analysis. The
data are logarithms (base e) of expression ratios between each measure-
ment and the mean value over all experiments with normal epithelia.
Therefore, these log ratios indicate relative changes compared to normal
epithelia. Positive values indicate up-regulation compared to normal epi-
thelia. For further preprocessing steps see legend of Figure 1 in the manu-
script.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-6-79-S1.xls]
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Additional File 2

Results from statistical tests for differential expression. These tables com-
prise results from statistical testing for differential gene expression and the
annotations for all 7433 genes. The gene-wise p-values and Q-values of
unpaired Welch test or the paired t-test (Benjamini-Hochberg method) for
each sample group comparison are listed. The gene group memberships of

each gene are separated by a colon in the respective column. KEGG, Gen-

MAPP and GO categories for all genes were taken from the Affymetrix
U133A DNA chip annotation http://netaffx.com. All other gene groups

were taken from the MSIGDB database http://www.broad.mit.edu/gsea/

msigdb/msigdb_index.html.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-6-79-S2.xls|

Additional File 3

Significantly deregulated gene groups. Here we show the results of Fisher's
Exact test for the over-representation of functional gene groups among up-
or down-regulated genes in colorectal tumors of our study. To correct for
multiple testing Q-values were calculated using the Benjamini-Hochberg
method.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-6-79-S3 xls|
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