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Abstract

In mammalian and bacterial cells simple phosphorylation circuits play an important role in signaling. Bacteria have hundreds
of two-component signaling systems that involve phosphotransfer between a receptor and a response regulator. In
mammalian cells a similar pathway is the TGF-beta pathway, where extracellular TGF-beta ligands activate cell surface
receptors that phosphorylate Smad proteins, which in turn activate many genes. In TGF-beta signaling the multiplicity of
ligands begs the question as to whether cells can distinguish signals coming from different ligands, but transduced through
a small set of Smads. Here we use information theory with stochastic simulations of networks to address this question. We
find that when signals are transduced through only one Smad, the cell cannot distinguish between different levels of the
external ligands. Increasing the number of Smads from one to two significantly improves information transmission as well as
the ability to discriminate between ligands. Surprisingly, both total information transmitted and the capacity to discriminate
between ligands are quite insensitive to high levels of cross-talk between the two Smads. Robustness against cross-talk
requires that the average amplitude of the signals are large. We find that smaller systems, as exemplified by some two-
component systems in bacteria, are significantly much less robust against cross-talk. For such system sizes phosphotransfer
is also less robust against cross-talk than phosphorylation. This suggests that mammalian signal transduction can tolerate a
high amount of cross-talk without degrading information content. This may have played a role in the evolution of new
functionalities from small mutations in signaling pathways, allowed for the development of cross-regulation and led to
increased overall robustness due to redundancy in signaling pathways. On the other hand the lack of cross-regulation
observed in many bacterial two-component systems may partly be due to the loss of information content due to cross-talk.
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Introduction

Phosphorylation reactions make up a large part of signal

transduction processes. However there are many different

topologies of phosphorylation-based signal transduction systems.

In mammalian cells one of the simplest signal transduction

networks is TGF-b signaling. TGF-b family members constitute a

large class of related secreted polypeptides that are very important,

especially during growth and development processes [1]. These

proteins have been classified into several sub-families, of which the

TGF-b subfamily of TGF-b’s 1, 2 and 3 and the BMP sub-family,

consisting of BMPs 2, 4, 5, 6, 8 and 9, is the most important. TGF-

b family proteins signal through trans-membrane serine/threonine

kinases known as Type I and Type II receptors. The TGF-b
subfamily promotes the formation of a Type I/Type II complex

after binding, while the BMP subfamily is believed to bind to a

preformed complex of Type I/Type II receptors [2]. In either

case, binding leads to phosphorylation of the cytoplasmic tail of

the Type I receptor by the Type II receptor. The phosphorylated

Type I receptor then recruits a subfamily of Smad proteins, called

receptor Smads (or RSmads), that are phosphorylated by the

Type I receptor. The 5 RSmads are the only known direct

effectors of the TGF-b family of proteins and of them, Smad 1, 5

and 8 are preferentially used by BMP sub-family signaling and

Smad 2 and 3 by the TGF-b subfamily. Smad 4 is called a

CoSmad and it binds with the phosphorylated RSmads and

facilitates nuclear import. Smads 6 and 7 are a class of Smads

called inhibitory Smads, or ISmads, and they negatively regulate

Smad signaling [1].

Since the TGF-b proteins are involved in diverse cellular and

developmental processes, and the many proteins play non-

redundant functions in vivo, the simple topology of the signaling

pathway begs the question as to how specificity of signaling is

maintained. The BMP subfamily, for example, can be divided

further into two smaller families based on amino acid similarity,

one containing BMP2 and BMP4 and the other the remaining

BMPs. There is significant amino acid similarity within the BMP

subfamily members, and even between subfamilies, but evidence

suggests that they play non-redundant roles in vivo [3,4],

suggesting that the cell must be able to distinguish between the

signals emanating from different BMP ligands.

Ligands in the extra-cellular space appear to preferentially bind

different classes of receptors, and in particular it has been shown

that BMPs 2/4 preferentially utilize the Type I receptor BMPR1A

and the Type II receptor BMPR2 while BMPs 6/7 preferentially

utilize ACVR1A and ACVR2A [5], but as far as is known they
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both signal through the same set of receptor Smads. It is therefore

not clear whether the cell can distinguish between different signals

carried by the same Smad given noisy chemical reactions. Since

the number of TGF-b family ligands are much larger than the

number of receptor Smads, it is also not clear whether the cell can

discriminate between signals carried by different Smads in the

presence of significant cross-talk between them.

Other signaling pathways share a similar topology as the TGFb
– BMP – Smad pathway discussed here, such as the Jak-Stat

pathway [6]. In fact they constitute what can be called the bow-tie

network topology [7], wherein a large number of ligands activate a

large number of genes through a smaller number of intermediary

proteins. Thus cross-talk is hardwired into the structure of many

mammalian signaling pathways.

In bacterial cells, a similar phosphorylation-based signal

transduction motif is the two-component system. Here a cell

surface receptor, usually a histidine kinase (HK), autophosphor-

ylates when bound by a cognate ligand. The phosphate group is

transferred to another protein called the response regulator (RR)

which now becomes a transcription factor. One key difference

between the bacterial and the mammalian systems is that the cell

surface receptor in the latter is an enzyme for phosphorylation of

the receptor Smad that carries the signal to the nucleus, and

therefore one receptor molecule can phosphorylate many receptor

Smads. In bacterial systems on the other hand, basically a single

phosphate group is transferred, as in a relay race, from the cell

surface receptor to the DNA. Bacterial systems also typically

involve a smaller number of signaling proteins, i.e. their system

size is smaller [8,9].

Two component systems are found in nearly every bacteria and

control myriad processes from nutrient sensing, chemotaxis,

osmolarity control, quorum sensing and many others [10–12].

Most bacteria have many two component systems, and some are

reported to have hundreds of them. Both the HK and the RR are

paralogous gene families and they share significant amino acid and

structural similarity within themselves [12]. It is possible therefore

to imagine making use of cross-talk between pathways with similar

structures to integrate signals into the final cellular decision.

However despite a lot of research trying to look for examples of

such cross-regulation, very few have been found [12]. The

biochemical basis for cross-talk in vivo does exist with overex-

pression studies demonstrating that phosphotransfer between a

HK and its noncognate RR is possible in vivo. However bacteria

appear to use many methods to explicitly suppress cross-talk

between two component systems. The known mechanisms of

cross-talk suppression include: (i) bifunctional histidine kinases that

act as a phosphatase for response regulators (ii) competition by the

cognate RR that phosphotransfers with greater efficiency due to

biochemical specificity and (iii) relatively low concentration of the

HK to optimize the competition by the cognate RR [12].

There are also a few examples of situations where more than

one HK signals through the same RR. For example, in the

sporulation pathway of B. subtilis, four HK’s can signal through a

single response regulator, Spo0F [13]. Similarly, in the quorum

sensing pathway of V. harveyi, three histidine kinases, LuxN, LuxQ

and CqsS can phosphotransfer with the response regulator LuxU

[14,15]. These many-to-one branched pathways beg the question

as to how bacteria can distinguish between signals originating from

different HK’s. The V. harveyi quorum sensing signal was studied in

Ref. [15] which concluded that the bacteria could not distinguish

between signals originating from the different HKs based on

steady state values of a single phosphorylated RR alone. However

the effects of cross-talk on the ability to distinguish between signals

originating from different two-component systems have not yet

been studied. This question gains significance given that bacteria

appear to minimize cross-talk and do not appear to make use of it

for cross-regulation [12].

To gain some insight into these issues, we turned to information

theory. Information theory was developed in the late 1940s to ask

abstract questions about general communication channels and has

been used to gain insights about biological communication in the

cell [16–18]. Information theory can be regarded as an application

of probability theory to the problems of determining limits of

information transmission in any communication channel, and it

allows us to quantify the quantity of information that a network

carries.

Methods

From the point of view of information theory, a signal

transduction network that takes an extra-cellular signal and

converts it into a concentration of a transcription factor is a noisy

communication channel whose task is to convey information about

the extra-cellular signals to the decoding and the decision making

apparatus in the nucleus of the cell [17,19]. If the distribution of

the extra-cellular signal is given by a joint probability distribution

function p(X ,Y ), where X and Y are the levels of the extra-

cellular signals, the total uncertainty of p(X ,Y ) is measured by the

Shannon entropy of their joint probability distribution function,

H(X ,Y )~{
X

i,j

p(xi,yj) log p(xi,yj): ð1Þ

Here we follow the convention that the random variable is

denoted by the capital letter, as in X , while the specific values it

takes is the respective lower case letter, such as xi. The information

about the value of (X ,Y ) on the surface is encoded into the

concentration of the output Z, which in our case is the

concentration of an activated transcription factor. This is decoded

by the genetic architecture and the appropriate response

determined. We assume here that the cell has developed optimal

decoding methods over millions of years of evolution and

concentrate only on the information present in the output signal,

Z. The information contained in Z about the value of (X ,Y ) can

be thought of as the reduction in uncertainty about (X ,Y ) by

knowledge of Z. This is measured by a quantity called the mutual

information between (X ,Y ) and Z [20], denoted I(X ,Y ; Z), which

is given by,

I(X ,Y ; Z)~H(X ,Y )zH(Z){H(X ,Y ,Z): ð2Þ

Now we can ask to what extent the cell can discriminate

between the signals it receives from the two external ligands.

Following Ref. [15], this is equivalent to asking how much the

uncertainty in X is decreased by knowledge of Z, independent of

the value of Y , and can be estimated by the mutual information

between X and Z independently of Y , denoted I(X ; Z). A similar

calculation can be performed for I(Y ; Z).

The mutual information is usually calculated using logarithms

to base 2 and measured in bits. One bit corresponds to knowledge

about the state of a 2-state system. The information content is

therefore an absolute measure and can be given a physical

meaning. In general, if the mutual information between X and Z
is N bits, the cell should be able to distinguish upto 2N distinct

states of X from knowledge of Z, under the assumption of efficient

decoding.

Cross-Talk and Information Transfer in Signaling
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The physiological probability distribution function for the

external input, the (X ,Y ) vector, is unknown. However since we

are exploring the information processing capabilities of the

networks in question, we can construct an arbitrary probability

distribution function of the inputs. The simplest assumption is to

start with a discrete distribution of (X ,Y ) with equal probabilities,

i.e. a discrete uniform distribution over a two-dimensional range.

In physiological conditions it is certainly likely that the cell needs

to distinguish between coarsely positioned discrete values or ranges

of the external ligands than very small differences (though the

latter may be appropriate for some sensory cells), hence we chose a

26|26 grid of X and Y values spaced by 10 molecules from 0 to

250. The probability of seeing any of the combinations of (X ,Y ) is

therefore,

p(xi,yj)~
1

676
: ð3Þ

We keep this number fixed throughout this paper. This also sets

the total uncertainty in the external distribution to be 9:4 bits. We

use this number to calculate the efficiency of information transfer

later in the paper. Note that this exercise is equivalent to

performing an experiment where the cell is exposed to each of the

676 different combinations of the external ligands many times, and

a histogram of responses constructed. Thus assuming a uniform

distribution of the external ligands is the most appropriate

assumption from the point of view of an in vitro experiment on

the lines of Ref. [21].

In terms of probability distribution functions of the output and

the input, the mutual information can be written as,

I(X ,Y ; Z)~
X

k

X
i

X
j

p(xi,yj ,zk) log
p(xi,yj ,zk)

p(zk)p(xi,yj)

� �
: ð4Þ

I(X ,Z)~
Xn

i~1

Xm

j~1

p(xi,zj) log
p(xi,zj)

p(zj)p(xi)

� �
ð5Þ

where the joint probability distributions are defined in the usual

way as,

p(xi,yj ,zk)~p(zk Dxi,yj)p(xi,yj) ð6Þ

p(xi,zk)~
X

j

p(zk Dxi,yj)p(xi,yj) ð7Þ

To estimate these probabilities, we perform stochastic simula-

tions of the signal transduction network using the Gillespie

algorithm. For each one of the possible 676 inputs we carry out

100 stochastic simulations of each network we consider using the

Gillespie algorithm [22]. The Gillespie algorithm is an exact

Monte Carlo simulation of the chemical Master equation that

governs the stochastic evolution of the system. The models that we

study are shown in Fig. 1 and are described as follows: (i) Fig. 1A

shows the simplest model where two ligands operating through

two surface receptors phosphorylate a single Smad. The output

signal is the maximum accumulation of phosphorylated Smad. (ii)

Fig. 1B shows the case where a protein called a Co-Smad binds to

the activated Smad molecule. The signal at the nucleus then

consists of a phosphorylated Smad and a heterodimer of a Smad

with a Co-Smad, i.e. the output is bivariate. (iii) Fig. 1C shows the

model with two Smads that are specific to the different receptors,

and transduce the information to the nucleus. The output signal in

this case are the maximum accumulations of the two phosphor-

ylated Smads. (iv) Finally, Fig. 2 shows the network diagram of two

bacterial two-component signaling systems. Here the receptor

molecule, usually a histidine kinase, autophosphorylates on ligand

binding, and the phosphate group is transferred to another protein

called a response regulator. The output signal at the nucleus are

the levels of the activated response regulator. The development of

the Smad models is detailed in Table S1, Table S2 and Text S1.

Development of the two-component model is detailed in Table S3

and Table S4.

The parameters for the simulations are mainly taken from

previously published work on Smad signaling and bacterial

signaling and are listed and discussed in Table S2 and Table S4.

The stochastic simulations allow us to construct a distribution of

output concentrations by binning at specified times. Previous work

on Smad signaling indicates that it is not the temporal pattern of

Smad accumulation but the accumulation in the nucleus that is the

relevant physiological concentration [23,24]. For the simple Smad

model of Fig. 1A we therefore choose the maximum accumulation

of the activated proteins as the output variable, or the Z variable,

and calculate the mean and the standard deviation of the

maximum accumulation from the stochastic simulations. We then

assume then that Z is normally distributed with the same mean

and standard deviation. This is justified since the distribution of Z
is the distribution of the mean of some other distribution, probably

related to the extreme value distributions, and therefore by the

Central Limit Theorem should be approximately normal.

The relevant distribution for each input combination is then

binned to transform the normal distribution into a discrete

distribution of Z-values. Since the information transfer naturally

depends upon the bin size chosen to discretize Z, we decided to

choose a bin size of 1. This is because due to discreteness of

molecules this is the smallest relevant bin size. In effect we are

assuming that the nucleus can make out differences of even one

molecule of Z, which is undoubtedly an overestimate of cellular

information processing quantities. Thus the values of the mutual

information we calculate should be considered as upper bounds of

the information transfer with uniformly distributed inputs. After

the binning the conditional probability distribution of Z becomes:

P(zDxi,yi)~

ðzzD

z{D

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

x,y,z

q exp {
½z{mx,y,z�2

2s2
x,y,z

 !
dz ð8Þ

where 2D~1 is the bin size. The values of the other probabilities

required can be obtained from this equation by standard means

using Eq. (7). These probabilities are then inserted into Eq. (4) and

Eq. (5) to calculate the total and partial mutual information.

Note that the parameters are chosen so that the signal saturates

above 250 molecules of each ligand, as shown in Fig. S1.

Therefore the ligand concentration covers the dynamic range of

the signaling network.

Incorporation of the Co-Smad as in Fig. 1B converts the output

from a scalar into a vector, Z~(Z1,Z2), where Z1 is the level of

the activated Smad and Z2 the level of the heterodimer. The

probability distribution function of the output vector is therefore

the joint probability distribution function of (Z1,Z2). In

accordance with our previous assumption we assume that this is

given by the appropriately binned bivariate normal distribution,

Cross-Talk and Information Transfer in Signaling
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i.e.

P(z1,z2jxi,xj)~

ðz1zD

z1{D

ðz2zD

z2{D

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

pq

exp {
1

2(1{r2)

(z1{mx,y,z1
)2

2s2
x,y,z1

" 
z

(zx,y,z2
{m2)2

2s2
x,y,z2

{
2r(zx,y,z1

{mx,y,z1
)(zx,y,z2

{mx,y,z2
)

sx,y,z1
sx,y,z2

#!
ð9Þ

where mx,y,z1
,sx,y,z1

and mx,y,z2
,sx,y,z2

are the means and standard

deviations of Z1 and Z2, r is the correlation coefficient and 2D is

the bin size. Here we take the bin size to be 10 molecules to

decrease the number of summations to be performed. As before

the mean, standard deviation and correlation coefficients of the

output is measured from the stochastic simulations. The mutual

information between Z and the inputs (X ,Y ) jointly or singly is

given by Eq. (4) and Eq. (5) as before with the joint probability

distribution function of Z used in place of the univariate

probability distribution function.

When we have two Smad proteins as in the model of Fig. 1C,

we assume that the nucleus is only reading the levels of the

phosphorylated RSmad and ignore dimerization, since our results

show, as discussed later, that binding by the Co-Smad and

dimerization or oligomerization are not likely to affect the

information transfer. The input as before is the matrix of values

(X ,Y ) and the output now is the level of two phosphorylated

Smad proteins, (Z1,Z2). We again perform stochastic simulations

to determine the mean and standard deviation and the correlation

matrix of (Z1,Z2) and use those values and the bivariate normal

distribution Eq. (9) above to calculate the probabilities of (Z1,Z2)
lying in discrete bins. These probabilities are then used to calculate

the mutual information between the input signal and the output

signal.

Bacterial two-component systems were modeled following Ref.

[8], and the parameter values were mostly taken from the same

reference. The system is schematically shown in Fig. 2, the

reactions and parameter values are detailed in Table S3 and

Table S4 and the dynamic range of the signal at these parameter

values is shown in Fig. S2. As before stochastic simulations of the

reactions were carried out to determine the mean and the standard

deviation of the signal, which is here taken to be the steady state

value of the phosphorylated response regulator. The signal itself is

assumed to be distributed according to a bivariate normal

distribution as above (Eq. 9), and the information measures are

calculated as before. All the calculations performed for the case

when the output was bivariate used the same bin-size 2D~10.

Results

Two ligands and a single Smad
We begin from the simplest possible model of Smad signaling

shown in Fig. 1A. In this model, two extracellular ligands can bind

to their cognate receptor heterodimer. The bound complex can

Figure 1. Smad signaling pathway network models. (Model A) A single channel of one RSmad with a single output. (Model B) A single
channel with two outputs, the phosphorylated RSmad and the RSmad:Co-Smad heterodimer. (Model C) The dual channel with two distinct RSmads
and two outputs. The insets diagram the information transmission topology of signal (ligand), channel, and output (complexes). Note that this
diagram represents a phosphorylation reaction by the receptors, not a phosphotransfer.
doi:10.1371/journal.pone.0034488.g001

Figure 2. Bacterial two component system schematic model.
Note that unlike the mammalian system a single phosphate group is
transferred from the cell surface histidine kinase receptor to the
response regulator.
doi:10.1371/journal.pone.0034488.g002
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then recruit and phosphorylate Smad proteins which then become

transcription factors. We assume that each BMP ligand does not

interact with the other receptor pair; in other words, there is

perfect specificity at the receptor level, but both receptors signal

through a single phosphorylated Smad protein. The detailed

reactions and the parameter values chosen are shown in Table S1

and Table S2. We ignore the role of the Co-Smad and

oligomerization of the Smads initially (see below).

The results of our calculations are shown in Fig. 3 and in

Table 1. We find that this simple network, which we call Model A,

is not efficient in information transfer from the external ligand

concentration vector (X ,Y ) to the input Z. In fact as we show in

Table 1, only about 3.6 bits of information about the vector (X ,Y )
are contained in Z, which corresponds to the ability to distinguish

between only about 12 states of concentration values of the

external ligand. This corresponds to about 40% information

transfer efficiency about the external distribution of (X ,Y ).

However the ability of the cell to discriminate between X signals

and Y signals is even poorer. At our basal parameter values we

find that about 0:7 bits of information about X or Y alone is

contained in the level of Z, which implies that the cell cannot even

tell if X is high or low, since that requires one bit of information.

This result is expected since both X and Y are activated in a

completely symmetric way, so it is to be expected that the cell

cannot distinguish between different levels of X when the effects of

Y are potentially confounding. A possible way out for the cell to

distinguish between ligands would be to increase the asymmetry in

the kinetic responses elicited by the two ligands by, for example,

making the phosphorylation rate of the RSmad by the receptor for

X much higher than the other receptor. As shown in Fig. 4A we

find that while this does lead to small increases in the information

transmitted about X , it is at the cost of information about Y .

Thus, maximizing information transfer about both stimuli is only

possible when all rates are symmetric, i.e. at the cost of the ability

to discriminate. This is the same as in two-component signal

transduction systems in bacteria [15].

Mutual information turned out to be rather insensitive to the

parameter values that we choose for the simulation, as shown in

Fig. 4B and C. Our parameter sensitivity analysis (Text S1,

Fig. S3, Fig. S4, Table S5, Table S6) shows that most parameters

had marginal effects on information transfer. The few parameters

that could affect information transfer significantly are shown in

Fig. 4. If the rate of receptor degradation is increased, it can

decrease information transfer significantly, since the receptors

degrade before a steady state binding equilibrium between the

ligand and the receptors have been reached. However slowing the

rate of degradation does not significantly increase information

transfer, which plateaus at about 50% efficiency. Similarly,

decreasing the equilibrium constant of binding between the ligand

and the receptor leads to a decline in information transfer.

However increasing the equilibrium constant beyond a point has

no effect as information transfer again appears to plateau again at

around 50%. Note that the rate of increase of information transfer

is at best logarithmic.

What determines where the curve plateaus? The cell cannot

really distinguish accurately between a signal from X and a signal

from Y . The level of Z depends in fact on (XzY ) since both

ligands feed into the signaling machinery that determines the level

of Z. Therefore the best that the cell, or any decoding algorithm

can do is to distinguish between different levels of (XzY ). The

curve plateau is therefore related to the best possible discrimina-

tion between different levels of (XzY ) that is possible at the

parameter values of the simulation.

The Co-Smad does not increase information transfer
We then addressed the possible role of the Co-Smad in this

network. In the biological network, the phosphorylated RSmad

binds to a Smad protein called a Co-Smad and the heterodimer

translocates to the nucleus and acts as a transcription factor. We

wondered if the Co-Smad could help in translating small

differences in the rate of phosphorylation of the RSmad by the

two receptors into larger differences in the nucleus.

When we incorporate the Co-Smad (denoted as Model B), the

output variable Z becomes a vector, Z~(Z1,Z2), where Z1 is the

level of phosphorylated Rsmad and Z2 is the level of Rsmad:Co-

Smad heterodimers. A diagram of this model is shown in Fig. 1B.

Our calculations, summarized in Fig. 3 and Table 1, show that the

coSmad heterodimer in fact does not contribute to the information

transfer in the signaling network. This is not completely obvious

since it could be imagined that at a given level of efficiency, adding

Z2 should increase total information transfer. As the data shows,

efficiency at our basal parameter values is quite low, indicating

that significant improvement is possible. However this cannot be

achieved by adding a coSmad. The full details of this model can be

found in Table S7.

Note that by the information processing inequality [20],

information processing at an intermediate step in a Markov chain

cannot increase the mutual information between the first step in

the chain and the last. Therefore this inequality would predict that

adding a Co-Smad should not be able to increase I(X ,Y ; Z).
However adding a Co-Smad cannot increase I(X ; Z) either since

it acts symmetrically with respect to both channels since they

transduce through a single Smad. Note that this implies that

multimerization of the Co-Smad:RSmad complex cannot increase

information transfer or signal discrimination either.

Multiple Smad pathways
We now ask what the effect would be if we had two Smad

proteins instead of one. In other words, if each ligand had, along

with a preferred receptor, a preferred Smad protein. A diagram of

the model is shown in Fig. 1C, and the reactions are detailed in

Table S1 and the parameter values in Table S2. We refer to this

model as Model C. We assume as before that each ligand binds

only to its cognate receptor. However now each receptor has a

preferred Smad that it phosphorylates, which we assume is

identical with the rate for the case of the single Smad. The

catalytic rate by which each receptor phosphorylates its non-

cognate Smad protein can be varied. We call this rate the level of

cross-talk between the two pathways.

When the level of cross-talk is zero, each ligand has its own

dedicated Smad protein. Therefore, as expected, the total

information transferred approximately doubles, at base parameter

values, to about 6.7 bits (see Fig. 3 and Table 1). That is equivalent

to the capacity to distinguish between about 104 states of the input

signal (X ,Y ), which is quite a large number of states. The absolute

efficiency of information transfer at basal parameter values has

now reached a respectable value, and is about 71%. These results

indicate that it is quite possible for signaling transduction networks

to respond to relatively small changes in the levels of external

ligands, and distinguish between many different states of these

ligands merely by increasing the number of output proteins.

The ability to discriminate is as before measured by the mutual

information between the output (Z1,Z2) and the input signal X (or

Y ) by summing up over all Y (or X ). As shown in Fig. 3, we find a

significant increase in the ability to discriminate with the mutual

information I(X ; Z)~3:35 bits at basal parameter values, which

corresponds to about 10 states of the ligand concentration X . By

using two Smads the cell has also restored the symmetry between

Cross-Talk and Information Transfer in Signaling
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the cell’s ability to distinguish different levels of X and different

levels of (X ,Y ) since the latter is approximately corresponds to 10

values of X and 10 values of Y , i.e. a total of 102 levels of (X ,Y ).

Cross-talk between Smad pathways
The above results are based on our calculations when the level

of cross-talk is zero, i.e. each receptor talks with only its own

cognate Smad. However most biological signaling pathways with

multiple proteins usually have some cross-talk between proteins.

Cross-talk between different proteins can be expected to decrease

the efficiency of the information transmitted. To test what happens

when the level of cross-talk increases, we then let each receptor

phosphorylate the noncognate Smad at a fraction of the rate at

which it phosphorylates its cognate Smad. This is implemented by

changing the on-rate of binding of the non-cognate Smad with its

non-cognate receptor from zero to some positive value, while the

catalytic phosphorylation rate remains the same for all the cognate

and non-cognate pairs. The ratio between the binding on-rate of

the non-cognate pair with that of the cognate pair is thus a

measure of the level of cross-talk, which can be varied both

symmetrically, i.e. each receptor has the same amount of cross-talk

as the other, or asymmetrically.

We find surprisingly that a significant level of cross-talk is

tolerated before the information transmission efficiency decreases.

As we show in Fig. 5, even when the effective phosphorylation of

each receptor with the non-cognate Smad is 70% what it is with its

cognate Smad, the total mutual information I(X ,Y ; Z) as well as

the partial mutual information I(Y ; Z) only marginally decreases

compared to the case with no cross-talk. A significant decrease in

the capacity of the channel requires that the cross-talk is greater

than 80%. When the cross-talk is 100%, then as expected, both the

Smad proteins are effectively the same, and the cell cannot do

better than with a single channel. We find in fact that for total

mutual information, it does a little worse, probably due to

interference between the two pathways.

In Fig. 6 we show what happens when the cross-talk between

one receptor-non-cognate Smad pair is kept fixed at either zero or

one while the other varies. Here we see that if one receptor does

not talk at all to its non-cognate Smad, it does not matter even if

the cross-talk of the other receptor for the non-cognate Smad is 1;

the mutual information is completely unaffected. If on the other

hand the cross-talk between one receptor-non-cognate Smad pair

is kept at 1, increasing the cross-talk of the other pair up from zero

begins to adversely affect the information content of the channel

only when the cross-talk crosses about 70%. Therefore information

content suffers only when the cross-talk efficiencies are symmet-

rically high.

This scenario has some interesting implications for protein

evolution and information transfer. Due to this relation between

cross-talk and I(X ,Y ; Z) for both the symmetrical and the

asymmetrical cases discussed above, there does not appear to be a

strong tendency for minimization of cross-talk on the basis of

information transfer alone. However if signaling is relatively robust

against high levels of cross-talk, it is robust against having

overlapping or partially redundant pathways. Redundancy has

many protective advantages in biology, and in mammalian

signaling for example, partially redundant pathways can compen-

sate for defects in other pathways [25]. It also becomes possible to

Figure 3. Summary of calculations of I(X,Y; Z), I(X; Z) and I(Y; Z) for the three Smad pathway network topologies
considered in this paper. Information transfer efficiency as a percentage of the total uncertainly in the external distribution of ligands is shown
in the y-axis. Model A is the model with a single Smad (Z), Model B is the model with a RSmad (Z1) and a RSmad:Co-Smad heterodimer (Z2) while
Model C refers to the model with two RSmad proteins (Z1 and Z2). Information was calculated using either an individual output or both outputs (as is
represented by Z1, Z2).
doi:10.1371/journal.pone.0034488.g003

Table 1. Mutual Information Values.

Model I(X ,Y; Z) I(X; Z)

Model A 3.63 0.68

Model B 3.57 0.68

Model C 6.7 3.35

The mutual information is shown for each model at basal parameter values.
Model A has only one phosphorylated protein, i.e. a single Smad as an output.
Model B’s output consists of the phosphorylated Smad as well as a Smad:Co-
Smad dimer, and Model C’s output consists of two different Smad proteins.
doi:10.1371/journal.pone.0034488.t001
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imagine the development of new functionalities from small

mutations in signaling proteins as well as the development of

cross-regulation wherein cross-talk is exploited to integrate signals

coming from many external stimuli.

Cross-talk in bacterial two component systems
We now turn to bacterial two component systems. The basic

structure of a bacterial two component system is shown in Fig. 2.

This consists of a cell surface receptor, usually a histidine kinase

(HK) that can autophosphorylate when bound with its cognate

ligand. The phosphate group can then be transferred to another

protein molecule, generically called a response regulator (RR).

The phosphorylated RR then turns on specific genes in the

bacterial DNA [10,11].

The main differences between the mammalian system and the

bacterial system are the system size and the difference in the

method of enzymatic activity i.e. the receptor molecules in

bacteria autophosphorylate followed by a phosphotransfer to the

response regulator. Mammalian cells on the other hand have

receptor molecules that phosphorylate the cognate signaling

protein, transferring a phosphate group usually present in excess

in solution to the protein in question. It turns out that these

differences do not necessarily lead to a change in total information

transfer in the absence of cross-talk. Our calculations based on

parameter values from [8] and ligand concentrations that almost

cover the dynamic range of the system response show that two

separate response regulators can transduce, in the absence of

cross-talk, about 6:9 bits of information when taken together,

which is about the same as the Smad system. The bacterial system

size with these parameter values is about an order of magnitude

smaller than the Smad system size as shown in Fig. S2. This is

consistent with measured protein concentrations in many two

component systems [8,9].

However when cross-talk is added to the system it shows a very

different behavior. The mutual information I(X ,Y ; Z), between

the external ligands (X ,Y ) and the level of phosphorylated

response regulators Z~(Z1,Z2) begins declining monotonically as

cross-talk between the two HK’s is symmetrically increased from

zero as shown in Fig. 7. The mutual information between one

external ligand and the output Z also declines in a similar manner.

This is in sharp contrast with the behavior of the mammalian

system as discussed above. The bacterial cell is more robust to

cross-talk when it is only one-sided, i.e. only one HK can

phosphotransfer to both RRs. In this case, as we see in Fig. 8A the

decline in I(X ,Y ; Z) and the decline in I(X ; Z) is much slower.

However if one HK is already promiscuous then increasing the

cross-talk of the other leads to an even sharper decline in both total

mutual information as well as partial mutual information (Fig. 8B).

Modeling studies have argued that phosphatase activity of a HK

with respect to its RR can buffer the system against cross-talk by

dephosphorylation of weak signals from a non-cognate HK.

However this method is probably unlikely to be very efficient when

both external ligands are present and therefore both HKs are

being activated. We tested this by simulating the system when the

phosphatase activity of the HK was kept at a maximum regardless

of cross-talk (black line), when the phosphatase activity for the

non-cognate RR varies proportionately with level of cross-talk (red

Figure 4. Parameter effects on information transmission for Model A. (A) Information transfer efficiency (as a percentage of the total
uncertainly in the external distribution of ligands) vs. the ratio of the rates of association of the RSmad to the X and Y receptors. (B) Information
transfer efficiency vs. symmetrical increase/decrease of receptor degradation rate from the standard parameter rate. (C) Information transfer
efficiency vs. symmetrical increase/decrease of ligand binding rate from the standard parameter rate.
doi:10.1371/journal.pone.0034488.g004

Figure 5. Information in bits vs fraction of cross-talk for the
Smad Model C, with equal cross talk. Note that cross-talk is
defined as the ratio of the on-rate of a Smad protein for the non-
cognate receptor to the on-rate for its cognate receptor. When cross-
talk is zero, only the cognate receptor can phosphorylate the Smad;
when cross-talk is one, both receptors are equally efficient in
phosphorylation of that Smad. In this plot the cross-talk between the
receptor for X and output Z2 is the same as that between the receptor
for Y with output Z1 . (A) Partial mutual information. (B) Total mutual
information.
doi:10.1371/journal.pone.0034488.g005
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line), and when the HKs have no phosphatase activity (blue line)

Fig. 7. As shown in Fig. 7 the phosphatase activity of the HK has

no impact on cross-talk when both external ligands are present

and the mutual information measures I(X ,Y ; Z) and I(X ; Z)
decrease monotonically. In the case of maximum phosphatase

activity a sharper decline is seen, which may be a consequence of

suppression of the signal to the cognate RR due to the high

phosphatase activity.

In order to understand whether the degradation of information

content was due to the difference in system size or due to the

kinetic differences between the two pathways, we took the two-

component model and changed parameters (Table S8 and

Fig. S9) until we obtained a dynamic range that was approxi-

mately equivalent to the Smad model. Similarly, we took the Smad

signaling model and changed parameters to obtain a model that

yielded protein numbers that were of the same order as that of the

two-component model (Fig. S10). Results of the two large-protein-

number models are are shown in Fig. 9A, and they indicate that in

fact at high protein numbers the two modes of signal transduction

are identical. The results from the two small-protein-number

models, shown in Fig. 9B, suggest that at small protein numbers

there is still some difference between the two cases, that could be

due to the small remaining difference in protein numbers, the

higher level of noise of the two-component circuit, or the mode of

receptor action.

Why do the smaller system sizes that we simulate in this work

show a greater degradation of information with increasing cross-

talk? Smaller protein numbers are associated with larger relative

fluctuations due to the intrinsic stochasticity of signaling networks.

Symmetric crosstalk not only increases the total noise in the

system, it also leads to decrease in the absolute number of useful

molecules for each signaling channel, thereby further decreasing

the signal to noise ratio of each channel. This could very well be

the reason why we see increasing sensitivity to cross-talk with a

smaller system size.

The monotonic decline in information transfer with increasing

cross-talk seen in our calculations suggest that small signaling

systems, such as those characteristic of some bacterial two-

component networks, cannot function efficiently in the presence of

cross-talk without increasing the number of signaling proteins by

an order of magnitude or so. Energetically it is cheaper to use two

independent signaling pathways for transducing information, as

they can transfer as much information with a smaller number of

proteins. This suggests that evolution should have led to two

component systems evolving to be relatively insulated from each

other, as cross-talk would lead to a decline in fitness. This could be

one reason why we do not find much cross-regulation between

different two-component pathways. We can also predict, based on

these arguments, that if cross-talk is introduced between two two-

component pathways (by say a lateral gene transfer event), we

should initially see a decline in fitness, and evolution should

eventually drive the system to eliminate cross-talk between these

pathways altogether.

Discussion

We have used information theoretic methods to study the

transmission of information in simple signaling networks based on

the Smad signaling pathway of the TGF-b proteins in mammalian

cells and two-component systems in bacteria. It is often assumed

that what is important in gene circuits or the cell in general is

bistability, i.e. having two states – ‘on’ and ‘off’. However in

principle the information transmitted by a simple signaling

pathway like the Smad signaling pathway can allow the cell to

perform much more sophisticated information processing than

simple binary decisions [26].

It is not clear whether signal transduction networks in cells

actually transduce more than one bit of information. Recent

experimental studies on Tumor Necrosis Factor Alpha signaling

have claimed that only one bit of information is carried in several

important signaling networks [21]. However in principle many

signal transduction networks appear to have the ability to

distinguish more than binary levels of extra-cellular signals. Some

sensory cells like neurons and hair cells in the ears have extremely

accurate sensing capabilities, that have been optimized over

Figure 6. Mutual information as a function of cross-talk for
Smad Model C when the cross-talk is varied asymmetrically. (A
and C) Cross talk for the receptor for X with its non-cognate Smad held
at 1. (B and D) Cross talk for the receptor for X with its non-cognate
Smad held at 0. (A and B) Partial mutual information. (C and D) Total
mutual information.
doi:10.1371/journal.pone.0034488.g006

Figure 7. Information in bits vs. cross-talk for the two-
component model, with equal cross talk and various HK
phosphatase activities. (A) Partial mutual information and (B) total
mutual information. The red line shows the default phosphatase activity
where strength of phosphatase activity toward the non-cognate RR
varies with level of cross talk. The blue line shows a system where the
HK has no phosphatase activity. The black line shows where the
strength of phosphatase activity toward the non-cognate RR is
maximum regardless of the level of cross-talk.
doi:10.1371/journal.pone.0034488.g007
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millions of years of evolution. It has therefore also been argued

that evolution should have optimized the information transmission

capabilities of signal transduction networks [17]. In this paper

however we do not use the optimality assumption but rather ask

whether the information transmitted to the nucleus could

potentially allow the cell to reconstruct the distribution of the

external signals that led to the signal. In particular we ask whether

these signaling pathways have the capacity to allow the cell to

distinguish between signals received by two external ligands.

Our results are based on calculations of two measures, the total

mutual information I(X ,Y ; Z) and the partial mutual information

I(X ; Z). The total mutual information I(X ,Y ; Z) tells us the

maximum number of states of the external ligand concentration

(X ,Y ) that the cell could in principle distinguish, assuming

efficient decoding mechanisms exist. Similarly, I(X ; Z) tells us the

number of states of the ligand concentration X that the cell could

distinguish from knowledge of Z alone. Both of these measures

depend upon parameter values and concentrations, as well as

upon the topology of the network. In this study we assume

reasonable parameters and calculate the information transmission

measures at these parameter values. We then vary all parameters

by large amounts to see whether the qualitative results are sensitive

to the choice of parameter values. We find that our qualitative

results are very robust against wide variations in most parameter

values. Parameters adjusted are shown in Table S5, Table S6 and

Table S7 and the results are shown in Fig. S5, Fig. S6, Fig. S7

and Fig. S8.

We find, in agreement with previous results [15] that the cell

cannot distinguish between different levels of the external ligands

X or Y based on the level of phosphorylated Smad protein if the

receptors for the two external ligands are symmetric in terms of

their effective rates of phosphorylation of the Smads. While some

specificity can be introduced by making the receptors asymmetric,

this is at the cost of one of the two external signals. The ability to

discriminate is not helped by addition of a Co-Smad to the system.

However we find that addition of another output protein, i.e.

another R-Smad, increases both the total information carried as

well as dramatically increases the cell’s ability to distinguish

between different levels of the external ligands. While in the case of

a single Smad, the cell could not distinguish even between high

and low levels of a single external ligand, with two Smads the cell

can, in principle, distinguish between 10 different levels. The

multiplicity of signaling proteins that carry information to the

nucleus in pathways like the Smad signaling pathway are probably

a direct consequence of this dramatic increase in information

transmission.

It should be expected that as the cross-talk between the

receptors of the two output proteins, (Z1,Z2) increases, it leads to

a decrease in the ability of the cell to discriminate and in the total

information carried by the channel. When cross-talk is 100% in

both directions, effectively both Z1 and Z2 are indistinguishable

from each other and we find, as expected, that no additional

information is carried by the communication channel compared to

a single Z protein. However as the level of cross-talk is decreased

below 100%, we find a relatively steep increase in both measures

that almost reach a plateau by the time the cross-talk drops to

below 70%. In other words we find that contrary to intuition, a

high level of cross-talk is not very deleterious to information

transmission by the Smad pathway, or other similar pathways, in

mammalian cells.

This result has potentially significant implications. Consider the

situation where a single signaling pathway is altered by a

heterozygous mutation in one allele of the gene corresponding

to a Smad-like protein. If the heterozygous mutation is in an

important residue and it leads to one of these proteins becoming

preferred for a previously existing function, or acquiring a new

function, it would result in a significant increase in information

transfer, possibly conferring an evolutionary advantage that could

lead to the mutation being fixed in the population. For example

sequence analysis shows that the human Smad proteins cluster into

two groups, one associated with BMP signaling and the other

associated with TGF-b signaling [27] and both clusters share

significant sequence similarity. It is possible therefore that each

cluster arose by mutations in a single protein that was beneficial

because of the resulting increase in information transfer despite the

high level of cross-talk. Similarly BMP2 and BMP4 share 92%
sequence similarity but play some non-redundant roles in cellular

signaling. It is possible therefore that BMP 2 and 4 could have

originated by mutations in a single BMP protein that created ‘new’

extra-cellular ligands with different receptor specificity and

v100% cross-talk with each other, leading to a significant

increase in information transmission. Increases in information

transmission due to such mutations could be one of the important

sources of positive selection of mutations in signal transduction.

Another very common scenario is duplicate genes that are

ubiquitous in human and other genomes. About 15% of the

human genome consists of duplicate genes, many of which have

diverged in function [28]. The creation of a duplicate gene would

pave the way for gradual divergence of each gene [25]. The

acquisition of new functions again would be crucially helped by

the fact that the cell can deconstruct signals coming from each

protein despite cross-talk. It is possible that signaling pathways

depending upon closely related sets of genes diverged from each

other due to such processes. As long as the cross-talk between these

pathways is not close to one, there are no deleterious effects on the

original pathway. Furthermore, the existence of overlapping

pathways does provide protection due to development of

redundancy in the cell, and leads to the possibility of cross-

regulation, i.e. integration of multiple signals into the same

decision process [25]. These results are not exclusive to the Smad

pathway as there are a number of mammalian pathways with

similar topology, such as the Jak-Stat pathway [6], where

robustness against cross-talk when surface receptors are efficient

Figure 8. Information in bits vs. cross-talk for the two-
component model, with asymmetric cross talk. (A and C) Cross
talk for the receptor for X with its non-cognate Smad held at 1. (B and
D) Cross talk for the receptor for X with its non-cognate Smad held at 0.
(A and B) Partial mutual information. (C and D) Total mutual
information.
doi:10.1371/journal.pone.0034488.g008

Cross-Talk and Information Transfer in Signaling

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e34488



kinases for transcription factor molecules may have played a role

in the development of complexity in signaling networks.

The dominant cause of the relative insensitivity of the system

towards increasing cross-talk appears to be the system size. In

smaller systems such as bacterial two-component systems, we see

an almost monotonic decline of total mutual information and

partial mutual information when cross-talk exists between two

HKs for their non-cognate RRs. The sensitivity to cross-talk in

smaller two-component systems may be one reason why bacteria,

who can have hundreds of such systems, expend considerable

effort to avoid cross-talk and keep them insulated from each other.

It is interesting to note that many researchers had assumed that

two-component signaling should naturally allow for cross-regula-

tion between different pathways; however despite significant

efforts, few examples of cross-regulation have been found [12].

Cross-regulation is not possible between systems where interfer-

ence between two pathways leads to attenuation of information

transfer. Our calculations would therefore predict that if cross-talk

were introduced in a bacterium due to either lateral gene transfer

or artificially, evolution would again tend to minimize the cross-

talk between these two systems in order to overcome the fitness loss

due to aberrant information transfer. Of course some bacterial

signaling systems also involve thousands of proteins and are

therefore large in the sense implied in this paper. Our analysis

would predict that these larger systems are more likely to be

insensitive to cross-talk, or to exploit it, compared to the smaller

two-component systems.

We have not studied the effect that different input distributions

may have on cross-talk between related signaling pathways,

though we believe that they are unlikely to change our qualitative

results. This is in accordance with Mehta et. al. [15] who found

that different distributions of the ligand did not affect their results

for a single transcription factor. It is possible that the efficiency of

information transfer increases when the distribution of the extra-

cellular ligand is different from the uniform distribution. The

uniform distribution also has the maximum amount of uncertain-

ty. Our results however easily translate into an experiment where a

cell is exposed to different concentrations of two extracellular

ligands repeatedly and the levels of the activated transcription

factor measured. The histogram of these levels for each input

combination is precisely the conditional probability distribution,

p(zDxi,yj).

The dependence of our results on system size may be because

smaller systems have a higher noise to signal ratio due to the

intrinsic stochasticity of chemical reactions. We are currently

studying this relationship with the aim of uncovering a more

precise quantitative relation between system size and the effect of

cross-talk. Further work is also needed to understand how gene

transcription networks can interpret signals coming from systems

with an innately high level of cross-talk. Moreover, in future work

we also need to understand what happens when there is cross-talk

between more than two pathways at the same time. This is

particularly relevant for TGFb signaling and BMP signaling, since

both of them have at least three Smad homolog’s that are involved

in information transfer from the receptor to the nucleus. Finally

our analysis also leads to the design of experiments to be

performed that can confirm or falsify our predictions and uncover

how cells make sense of the world in the presence of cross-talk.

Supporting Information

Figure S1 Standard Output for Two Output R and RC.
The x- and y-axes correspond to the initial ligand amount of

ligand X and Y respectively. The z-axis is the average maximum

accumulation of the outputs: phosphorylated RSmad and the

RSmad:Co-Smad heterodimer. Note that the outputs saturate at

maximum initial ligand amounts.

(TIF)

Figure S2 Standard Output for Phosphorylated Re-
sponse Regulator. The x- and y-axes correspond to the initial

ligand amount of ligand X and Y respectively. The z-axis is the

average maximum accumulation of the output: phosphorylated

response regulator. Note that the outputs saturate at maximum

initial ligand amounts. This was done with 100% cross talk and

shows response regulator 1.

(TIF)

Figure S3 Dynamic Range of Maximal R-Smad Accu-
mulation for Bilateral Fold Changes of Kx fKy and
dR1 fdR2. This figure demonstrates the effect of symmetrically

varying the rates of receptor degradation and ligand binding. Note

that the panels increase/decrease symmetrically. The x- and y-

axes correspond to the initial ligand amount of ligand X and Y

Figure 9. Information in bits vs. symmetrically varying cross-talk, a comparison of the effects of system size and the mode of
phosphotransfer. (A) The Smad system and the two-component system for large system sizes (B) the Smad systems and the two-component
system for small system sizes.
doi:10.1371/journal.pone.0034488.g009
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respectively. The z-axis is the average maximum accumulation of

the output, phosphorylated RSmad.

(TIF)

Figure S4 Dynamic Range of Maximal R-Smad Accu-
mulation for Unilateral Fold Changes of Kx Ky and
dR1 dR2. This figure demonstrates the effect of asymmetrically

varying the rates of receptor degradation and ligand binding. Note

that the panels become skewed as the rates are increased/

decreased asymmetrically for X and Y. The x- and y-axes

correspond to the initial ligand amount of ligand X and Y

respectively. The z-axis is the average maximum accumulation of

the output, phosphorylated RSmad.

(TIF)

Figure S5 Effect of the Ligand On rate, Kx,Ky on
information transfer. The ligand on rate was increased or

decreased 10-fold and 1000-fold and tested across a range of cross-

talk values.

(TIF)

Figure S6 Effect of the Ligand Off rate, dx,dy on
information transfer. The ligand off rate was increased or

decreased 10-fold and 1000-fold and tested across a range of cross-

talk values.

(TIF)

Figure S7 Effect of the Ligand On rate, Kx,Ky on
information transfer. The ligand on rate was increased or

decreased 10-fold and 1000-fold and tested across a range of cross-

talk values.

(TIF)

Figure S8 Effect of the Ligand Off rate, dx,dy on
information transfer. The ligand off rate was increased or

decreased 10-fold and 1000-fold and tested across a range of cross-

talk values.

(TIF)

Figure S9 The Dynamic Range of the Large Two-
Component Model. Falls within the dynamic range of the

small smad model.

(TIF)

Figure S10 The Dynamic Range of the Small SMAD
Model. Is of the same order of magnitude as the two-component

model.

(TIF)

Table S1 Smad Model Reactions.
(DOCX)

Table S2 Parameters and Initial Amounts for Smad
Model.
(DOCX)

Table S3 Two-Component Model Reactions.
(DOCX)

Table S4 Parameters and Initial Values for Two-
Component Model.
(DOCX)

Table S5 Effect of Symmetric Parameter Change.
(DOCX)

Table S6 Effect of Asymmetric Parameter Change.
(DOCX)

Table S7 Model 1 Information and Entropy.
(DOCX)

Table S8 Parameters and Initial Values for Large
Dynamic Range Two-Component Model.
(DOCX)

Text S1 Supplementary Information and Detailed Mod-
el Development.
(DOCX)
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