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Abstract

Previously, many different types of NTS barosensitive neurons were identified. However,

the time course of NTS barosensitive neuronal activity (NA) in response to arterial pressure

(AP) changes, and the relationship of NA-AP changes, have not yet been fully quantified. In

this study, we made extracellular recordings of single NTS neurons firing in response to AP

elevation induced by occlusion of the descending aorta in anesthetized rats. Our findings

were that: 1) Thirty-five neurons (from 46 neurons) increased firing, whereas others neurons

either decreased firing upon AP elevation, or were biphasic: first decreased firing upon AP

elevation and then increased firing during AP decrease. 2) Fourteen neurons with excitatory

responses were activated and rapidly increased their firing during the early phase of AP

increase (early neurons); whereas 21 neurons did not increase firing until the mean arterial

pressure changes (ΔMAP) reached near/after the peak (late neurons). 3) The early neurons

had a significantly higher firing rate than late neurons during AP elevation at a similar rate. 4)

Early neuron NA-ΔMAP relationship could be well fitted and characterized by the sigmoid

logistic function with the maximal gain of 29.3. 5) The increase of early NA correlated linearly

with the initial heart rate (HR) reduction. 6) The late neurons did not contribute to the initial

HR reduction. However, the late NA could be well correlated with HR reduction during the

late phase. Altogether, our study demonstrated that the NTS excitatory neurons could be

grouped into early and late neurons based on their firing patterns. The early neurons could

be characterized by the sigmoid logistic function, and different neurons may differently con-

tribute to HR regulation. Importantly, the grouping and quantitative methods used in this

study may provide a useful tool for future assessment of functional changes of early and late

neurons in disease models.
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Introduction

The nucleus tractus solitarius (NTS) barosensitive neurons receive direct synaptic inputs from

primary baroreceptor afferent fibers that convey arterial pressure (AP) information for cardio-

vascular regulation [1]. Baroreceptor afferent inputs are integrated in the NTS, which contains

secondary, higher order and output neurons [2]. The output neurons relay the processed input

to other central sites involved in regulation of cardiovascular function. NTS output neurons

send axons to the nucleus ambiguus as well as caudal and rostral ventrolateral medulla to regu-

late cardiac function and AP [1, 3–7].

Previously, numerous different types of NTS barosensitive neurons have been identified.

Seagard et al. found two functional types of NTS neurons in mongrel dogs responding to pres-

sure ramp increase: sudden-onset rapid-adapting neurons and slow onset non-adapting neu-

rons [8]. Paton et al. identified the adaptive, non-adaptive neurons, and prolonged excitation

NTS neurons responding to AP changes in rats [9]. Rogers et al. reported that NTS neurons

not only encode mean arterial blood pressure (MAP), but are sensitive to the rate of AP change

[10]. It was later confirmed by Zhang and Mifflin that different rates of AP change may result

in different neuronal responses in the same NTS neurons [11]: a fast AP increase rate may lead

to a higher response compared to a slow rate increase even though the peak of AP elevation is

the similar. Deuchars et al. found that NTS barosensitive neurons are both physiologically and

morphologically heterogeneous [12]. Interestingly, NTS subthreshold neurons which can only

be activated by aortic nerve stimulation after excitatory amino acid application [13]. These

neurons are in the “reserved state” and can be activated under certain conditions [13–14] Thus

far, a variety of heterogeneous NTS barosensitive neurons have been identified and their prop-

erties have been described.

NTS barosensitive neurons vary considerably in terms of their basal activities and their

peak discharge response to AP changes relative to basal activity (ranging from 5 to 80 Hz, see

Fig 2 in [11]), the firing patterns, and time course of the response. Under different experimen-

tal conditions, NTS barosensitive neurons may vary in their responses. For example, the peak

discharge of NTS neurons in response to AP changes depends on the rising rate of the AP ele-

vation [10–11]. Therefore, in order to study the functional changes of different populations of

barosensitive NTS neurons in disease models, it is critically important to first define the sub-

populations of NTS neurons according to their firing properties, and then to quantify their fir-

ing activity-AP relationship, and finally to examine the time-course of their activity upon AP

changes at the same rate. In this study, we made extracellular recordings of the changes in

activity of single NTS neurons in response to AP changes that were increased to the AP pla-

teaus at the similar rate and maintained at these plateaus for 5–7 seconds by partial occlusion of

the descending aorta in anesthetized rats. The goal was to first classify the neurons which have

similar firing properties, and then establish a method by which the discharge in response to AP

changes can be quantified. In addition to the discharge peak, we also measured the time course

of discharges relative to AP changes. Since the sigmodal logistic function curve has previously

been effectively used in characterizing baroreceptor afferent nerve activity [15–16], we also

attempted to use the sigmoid logistic function curve and quantify NTS neurons’ discharges in

response to AP changes. NTS neurons with different characteristic firing properties in response

to AP changes were identified: excitatory (majority), inhibitory or biphasic (minority). In the

excitatory group, the neurons were further divided into early and late neuron subgroups accord-

ing to their response time course. The early neurons rapidly increased their firing during the

early phase of MAP rising, whereas late neurons did not increase their firing until the ΔMAP

reached near/after the peak. We found that the early neurons have a significantly higher firing

rate in response to AP elevation than the late neurons. The early NA-MAP relationship, but not
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the late NA, could be quantitatively characterized by six parameters in the logistic function

curve. Finally, we correlated early and late neurons firing activity with heart rate (HR) reduction

and suggested that early and late neurons may differently contribute to HR regulation.

Materials and methods

Animals

Fischer 344 (F344; 3–4 month) male rats from Harlan were used. 2–3 Rats were housed in a

cage upon arrival at University of Central Florida animal facility. The room light and dark

cycles were set at 12:12 h (6:00 AM to 6:00 PM). Temperature was kept at 22–24˚C. Water and

chow were freely accessible (24 hours/day/ 7 day per week). At the end of the experiments, rats

were euthanized by an injection of a lethal dose of pentobarbital (100mg/kg). Tissues including

the heart and brain and were removed after the animals’ heart beats had completely stopped.

Procedures were approved by the University of Central Florida Animal Care and Use Commit-

tee and followed the guidelines established by the National Institutes of Health.

Surgical procedure

The surgical procedure was similar to what has been previously described [16–20]. Briefly, rats

were initially anesthetized with sodium pentobarbital (50 mg/kg i.p.). Body temperature was

monitored and controlled by a rectal probe and maintained at 37 ± 1˚C with a homeostatic

blanket (Harvard, Holliston, MA). Supplemental doses (5 mg/kg i.v.) of sodium pentobarbital

were administered as needed to prevent eye blink and withdrawal reflexes to toe-pinch as

needed. When the animals were no longer responsive to toe-pinch, we performed the follow-

ing surgical procedures. Animals were given a tracheal intubation and oxygen-enriched room

air was provided through ventilation. The femoral vein was cannulated for intravenous injec-

tions of the anesthetic agent. The left common carotid artery was cannulated for AP and HR

measurement. A circular arterial balloon-occluder (Fine Science Tools, Vascular Occluder-

VO-1.5N/3.5 mm x1.5 mm) was secured around the descending thoracic aorta which was

used to manually elevate AP as needed. After practice, the level of MAP increase and the rate

of increase could be controlled at a constant level. Animals were placed in a stereotaxic instru-

ment equipped with a head holder adapted to permit the neck to be sharply flexed. A dorsal

incision was made over the neck muscles, which were retracted to expose the atlantooccipital

membrane. This membrane was opened with an incision, exposing the cisterna magna and the

dorsal medulla. The rostral end of the area postrema was used as a rostrocaudal reference for

stereotaxic coordinates [17–19].

AP and heart rate

The blood pressure catheter in the left common carotid artery was connected to a blood pres-

sure transducer (iWorx/CB Sciences, BP-100). The transducer was positioned at the heart

level. AP was measured using a Powerlab Data Acquisition System (AD Instruments, Power-

Lab 8/30, Chart 5.3 software) and displayed on the first channel (Fig 1A, PAP). The HR was

calculated from pulse pressure in the first channel using the Ratemeter function and displayed

on the second channel (Fig 1A, HR). Basal MAP and HR were recorded by averaging AP val-

ues and pulses for 2 min before elevation of AP.

Extracellular recording of the NTS neurons

Extracellular recording of the NTS neurons was similar to what has been described in previous

studies [17–19, 21, 22]. Briefly, a single-unit extracellular recording was obtained using a
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Fig 1. NTS putative barosensitive NA in response to AP changes. A) A representative excitatory neuron increased discharge rate in

response to AP elevation. HR decreases in response to AP elevation. B) A pulmonary-related neuron. A representative excitatory neuron

increased discharge rate during AP elevation. B’) The same neuron as in panel B. The basal burst discharge of this neuron had a firing

pattern which was synchronized with the rhythmic ventilation. When the ventilator was turned off for 3 s, this neuron lost the burst activity
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beveled glass micropipette (resistance 5–12 MO) filled with KCl (1M) as used before [21, 22].

With respect to calamus scriptorius, the right dorsal medial NTS was located 300 μm–600 μm

rostral, 300 μm–500 μm lateral, and 300 μm–600 μm ventral. Using a Microdrive, the electrode

was advanced into the dorsal medial NTS at a speed of 2 μm/s until spontaneous action poten-

tials from a single unit were recorded. When action potentials were recorded, the electrode

was maintained at the position for a couple of minutes, then the electrode was withdrawn at a

speed of 2 μm/s for several μm to reduce possible contacts of the electrode with the neurons

during AP elevation. The action potentials (APs) were amplified using a high impedance pre-

amplifier (band pass 100–3,000 Hz) and fed into a window discriminator that generated a stan-

dard pulse for each spike. Potentials were visualized on an oscilloscope. The pulse output of

the discriminator was then fed into a rate/interval monitor (HFC) whose analog output is pro-

portional to the number of spikes per unit time. These signals were displayed online on the

computer and recorded on the data acquisition system. The sampling rate was 10,000 measure-

ments per second [17–19].

Baroreceptors were activated by the partial occlusion of the descending thoracic aorta to

evoke responses from NTS barosensitive neurons [17–19]. The putative NTS barosensitive

neurons were identified by their increased or decreased activity (frequency of action potential

or discharge rate) relative to the basal activity in response to transient AP elevation by occlu-

sion for 12 s. For each neuron tested, we repeated AP elevation procedure and measured the

response again to ensure that the responses could be replicated. We did not analyze the data if

we recorded a second unit. In addition, we did not analyze the neurons in which the amplitude

of the action potential became abnormally larger, but a minimal variation of amplitude was

acceptable [11]. Some neurons that were inhibited by aortic occlusion were also encountered

in the present study. Since our goal is mainly to study the barosensitive neurons with excit-

atory response to AP elevation, we did not further analyze the neurons with inhibitory or

biphasic responses. As a note, we will discuss the technical concerns regarding whether the

recorded NTS neurons in response to descending aortic partial occlusion-induced AP changes

are barosensitive neurons in Discussion section.

Sigmoid logistic function curve

During aortic occlusion, MAP, HR and NTS neuronal activity (NA) changes relative to the basal

activity (% baseline) were measured. The NTS barosensitive neurons’ activity (NA)-ΔMAP rela-

tionship curve was fitted by logistic function [15–16, 23]. NA in response to MAP elevation was

plotted as the percent change relative to basal discharge using SigmaPlot 11: Y = A/{1 + exp[-B

(X—X50)]} + Ymin, where Ymin is the minimum value of % NTS NA relative to the basal activity,

A is the range of % NTS NA (Maximum- Minimum), X50 is the pressure at the midpoint of the

range, and B is the slope coefficient. The peak slope [or Max gain (Gainmax)] was determined by:

Gainmax = (A)(B)/4 (%/mmHg) and was used to evaluate the sensitivity of the NTS neuronal

response to changes in MAP. Pressure threshold Pth was calculated as X50 - (1.317/B), and pres-

sure saturation Psat was calculated as X50 + (1.317/B), respectively. For late neurons, HR reduc-

tion-NA relationship was fitting by the logistic function: Y = A/{1 + exp[-B(X—X50)]} + Ymax,

where Ymax is the maximum reduction of the HR (bpm), A is the range of HR response (Mini-

mum-Maximum), X50 is the % NA at the midpoint of the curve, and B is the slope coefficient.

and instead spontaneous activity appeared. The burst activity reappeared as the ventilator was turned on again. C) A representative NTS

neuron decreased discharge rate during AP elevation. D) A representative NTS neuron had a bi-phasic response: first a decrease in

discharge rate during AP elevation, then an increase in discharge rate during the descending phase of AP. PAP: pulse arterial pressure;

HR: heart rate. S1 Fig.

https://doi.org/10.1371/journal.pone.0169529.g001
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Max gain Gainmax = (A)(B)/4 and was used to evaluate the sensitivity of the HR reduction to NA

changes. HR reduction threshold Pth was calculated as X50 + (1.317/B) and HR reduction satura-

tion Psat was calculated as X50 - (1.317/B), respectively.

Statistical analysis

The average of MAP, HR, firing rate and the parameters in the logistic function were calcu-

lated. The data were presented as mean ± SE. Comparisons between groups were made using

Student’s t-test or Two-way ANOVA repeated measures, Newman-Keuls post hoc analysis.

p< 0.05 was considered significant.

Results

Putative NTS barosensitive neurons

Data were collected from 18 animals. The baseline level of MAP and HR were measured before

occlusion. They were 99.6 ± 2.2 mmHg and 397.2 ± 6.4 bpm, respectively. Forty six NTS putative

barosensitive neurons were analyzed. Thirty five of them increased firing upon MAP increase, and

were thus considered excitatory (Fig 1A and 1B). Four excitatory neurons were pulmonary-related

barosensitive neurons. These neurons had regular basal burst activity before the AP increase, which

was synchronized with the artificial ventilation (Fig 1B). The regular basal burst activity was seen

more clearly in Fig 1B’. When we suspended ventilation for 3 s, the neuron in Fig 1B’ stopped

exhibiting a respiratory pattern, and irregular spontaneous firing appeared. After ventilation was

resumed, the regular basal burst activity reappeared, which indicates the respiratory nature of the

neuron. Seven other neurons decreased firing upon MAP increases and returned to basal firing rate

when MAP was reduced to the baseline levels, and were thus described as inhibitory (Fig 1C). Four

additional neurons were biphasic: they decreased firing upon MAP increases, but then their firing

rate increased as MAP decreased (Fig 1D).

ΔMAP, ΔHR and firing rate of the excitatory neurons

The 35 excitatory neurons that responded to AP elevation were characterized. The mean MAP

increase in these neurons was 37.5 ± 0.9 mmHg at a rate of 8.4 ± 0.3 mmHg/s and mean baror-

eflex bradycardia was 22.3 ± 2.6 bpm. The baroreflex sensitivity was 0.60 ± 0.07 bpm/mmHg

(ΔHR/ΔMAP). Mean baseline firing activity was 7.1 ± 0.8 spikes/s and NA had a mean peak

increase of 295.6 ± 35.3% relative to baseline.

Early and late activation of excitatory neurons

The majority of NTS excitatory neurons did not increase firing rates simultaneously with

MAP increases. Fourteen neurons increased discharge rate during the early phase of the MAP

ramp increase that ranged about 3–5 s (Fig 2A), However, 21 other neurons did not signifi-

cantly increase discharge rate until the MAP reached near/after its peak plateau which lasted

for about 5–7 seconds (Fig 2D). For the early neurons, the NA-ΔMAP relationship could be

well fitted by logistic function curve (R2 > 0.90) (Table 1). The neurons that increased firing at

the later stage and could not be fitted by logistic function curve were called the late neurons.

All these neurons decreased firing rate during the release of the occlusion of the descending

aorta.

Excitatory neurons increased their firing rates in response to MAP increases at different

times. To measure the time course of the responses, 5% MAP increase relative to basal MAP

pressure was defined as the reference starting time point. A 30% increase of NTS neuron firing

rate relative to basal firing rate was defined as the ΔMAP-induced threshold response of NTS
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Fig 2. Activation and peak delays of NTS early and late NA. AP increase (%) relative to baseline and NA increase (%) relative to the basal activity

during AP elevation are superimposed on each other. 5% of MAP increase (ΔMAP) was defined as the MAP threshold. 30% of NA increase was defined

as the NA activation threshold. The time period from 5% of MAP increase to 30% of NA increase was defined as NA activation delay. The period from the

ΔMAP peak to NA peak increase was defined as the peak delay. A) A representative early NA. The NA activation delay for this neuron was 1.8 s and the

peak delay was 0.2 s. B) Distribution of the NA activation delay of early neurons. C) Distribution of the peak delay of early neurons. D) A representative

NTS late NA. The NA activation delay for this neuron was 3.6 s and the peak delay was 7.0 s. E) Distribution of the NA activation delay of late neurons. F)

Distribution of the peak delay of late neurons. The negative NA delay indicates the NA peak was before the ΔMAP peak. S2 Fig.

https://doi.org/10.1371/journal.pone.0169529.g002
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neuron [17]. For 14 early neurons, the mean ΔMAP threshold was 14.12 ± 1.65 mmHg which

evoked a 30% increase of NTS neuronal firing rate relative to basal rate. For 21 late neurons,

the mean ΔMAP threshold was 34.07 ± 1.72 mmHg.

Early neurons were activated during MAP increase ramps. Early neuron activation delay

was defined as from the time of 5% MAP increase to the time of 30% firing rate increase and

ranged 0–2.5 s (Fig 2B). In contrast, the late neurons had the activation delay between 4–14 s

(Fig 2E). The distribution of peak delays from the first MAP peak to the first NA peak firing

rate for the early neuron (range: -3 to 2 s) is shown in Fig 2C, whereas the distribution of peak

delay for the late neurons (range: 4 to 12 s) is shown in Fig 2F.

The time-course of early and late NA

To compare the differences of the NA in early and late neurons, we measured the time-course

of NA responses to ΔMAP. NA was calculated as the percent (%) change relative to basal dis-

charge. Change in MAP (ΔMAP) and NA were sampled every second for up to 12 seconds

during occlusion-induced MAP elevation. The seconds 1 and 2 were defined at the first data

points which were< 5% ΔMAP and> 5% ΔMAP, respectively. As shown in Fig 3A, ΔMAP

was very similar in early and late neurons within 12 s. The rate of ΔMAP to the peak was also

similar (early: 8.49 ± 0.6 mmHg/s, late: 8.48 ± 0.4 mmHg/s; p>0.05).

The basal neural activity (NA) of the early and late neurons was comparable (6.1 ± 1.3 vs

7.7 ± 1.1 spikes/s, p> 0.05). Since the rates of ΔMAP to the peak were also similar, we com-

pared NA increases (%) and found that the early neurons had a significantly higher increase of

NA than the late neurons at 3–10 s (p< 0.05). Noticeably, there was a trend for decline of NA

within 8–12 s, but was not significantly different (p> 0.05) during 12 s AP elevation. The max-

imum NA increases (%) of early and late neurons were significantly different [400.2 ± 63.3%

(early) and 225.8 ± 34.6% (late), p< 0.05].

Early NA– ΔMAP sigmoid relationship

To characterize the NA-ΔMAP relationship, we used the logistic function curve. For early neu-

rons, the NA increase-ΔMAP curve was well fitted by the logistic function curve (R2 > 0.90).

Fig 4A shows the original recording of an early NA in response to MAP elevation. Fig 4A’

shows a representative NA increase-ΔMAP curve of this neuron. The Table 1 included the

averaged parameters of the logistic function curve. Fig 4A” is the composite curve from the

averaged parameters in Table 1. The inset of Fig 4A” shows the gain distribution curve that

has a Gainmax of 29.3%/mmHg. For the late neurons, we could not construct a NA increase-

ΔMAP curve because the NA did not change until the ΔMAP reached near/after the peak (Fig

4B and 4B’). A 3-D plot in Fig 4C shows the difference of the characteristic firing pattern of

the two representative early and late neurons. The early neurons increased firing to 30% at 9

Table 1. Parameters defining the early NA (% baseline)-ΔMAP logistic function curve

R2 A (range) B (slope coficient) X50 Ymin Gainmax Pth Psat

0.90 ± 0.01 352.5 ± 55.4 0.39 ± 0.05 32.4 ± 3.5 5.7 ± 5.8 29.3 ± 3.7 28.2 ± 3.7 36.6 ± 3.4

Values are means ± SE.

n = 14.

R: correlation coefficient; A: maximum − minimum (range); B: slope coefficient; X50: MAP at 50% of neuronal activity range; Ymin: mininal neruonal activity;

Gmax: maximum early neuronal activity gain (slope); Pth: X50 − (1.317/ B); Psat: X50 + (1.317/ B). S2 File.

https://doi.org/10.1371/journal.pone.0169529.t001
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Fig 3. The time-course of NTS barosensitive NA increase (%, relative to baseline) in response to

ΔMAP. A) During 12 s descending aorta occlusion, ΔMAP were similar for early and late neurons (p > 0.05).

B) During 12 s descending aorta occlusion, NA increase of the early neurons had a significantly larger

response in response to MAP increase than that of the late neurons (*p < 0.01, #p < 0.05). S3 Fig.

https://doi.org/10.1371/journal.pone.0169529.g003
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Fig 4. NTS neurons activity andΔMAP relationship. A) Original recordings of a representative early NA during MAP

increase. A’) The early NA- ΔMAP relationship curve was fitted using the sigmoid logistic function. A”) The composite early

NA - ΔMAP relationship curve was reconstructed using the averaged parameters of the logistic function curves of the early

neurons as shown in Table 1. B) Original recordings of a representative late NA during MAP increase. B’) This late neuron

activity in reponse to MAP increase could not be fitted with the logistic function curve because it did not increase firing rate
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mmHg of ΔMAP at 2 s, but the late neurons increased firing to 30% at 30 mmHg of ΔMAP at

4 s.

Early and late NA–HR reduction relationship

For early neurons, the NA increase in the early phase of ΔMAP linearly correlated with the HR

reduction (Fig 5A and 5A’). Since this early neuron showed some adaption during the sus-

tained MAP elevation (Fig 5A), NA decreased during the late phase of ΔMAP, while the HR

continued to decrease (Fig 5A’). To show the HR reduction correlation with NA more clearly,

a 3-D plot in Fig 5B shows the HR reduction-NA relationships during a 12 s aortic occlusion

from the two representative early and late neurons used in Fig 4C. The early neuron correlated

to the HR reduction during 12 s occlusion, whereas HR reduction did not correlate with the

late NA in the initial phase of ΔMAP but correlated well with the HR decrease in the late phase

of ΔMAP (Fig 5B). Fig 5C was another late neuron which also shows that the HR decrease cor-

related with late NA. HR reduction-late NA relationship could be well fitted using the sigmoid

logistic function curve. The curve of this representative late neuron is shown in Fig 5C’. The

composite curve of the 21 late neurons is shown in Fig 5C” using the mean parameters in

Table 2. The inset of Fig 5C” shows the Gain distribution curve with a Gainmax of -0.23 ± 0.04.

Thus, both early and late neurons contribute to HR reduction, but in a different manner: the

early neurons may contribute to the HR reduction at the initial and later phase of 12 sec occlu-

sion, whereas the late neurons may contribute to the later phase HR reduction during sus-

tained MAP elevation.

Discussion

In this study different populations of putative NTS barosensitive neurons were identified. The

majority of the neurons increased their firing rates in response to AP elevations, whereas other

neurons decreased firing rates or had biphasic responses. The heterogeneous firing patterns

are consistent with other reports [8–12]. The neurons with the increased firing rates were fur-

ther classified into early and late neurons according to their increase of firing rates either dur-

ing the MAP elevation ramp (early) or near/after MAP reached peak (late). Using the time-

course comparison, we found that the early neurons had a significantly higher mean firing rate

than the late neurons. For the early neurons, but not for the late neurons, the NA-ΔMAP rela-

tionship curve could be well fitted and quantitatively characterized by six parameters of the

sigmoid logistic function curve. Finally, the relationship of early and late neurons activity with

HR reduction was characterized. Apparently, the early neurons contributed to HR reduction

overall in the period of AP elevation (< 12 s). In contrast, the late neurons activity did not con-

tribute to the initial HR reduction but was correlated to the sustained MAP elevation-induced

HR reduction. Therefore, both early and late neuron activity may contribute to HR reduction,

but differently.

Technical concerns

In the present study, we recorded NTS neurons in response to MAP elevations induced by par-

tial occlusion of the descending aorta in anesthetized rats. There were a couple concerns. First,

were these truly NTS baroreceptor-activated neurons? Partial occlusion of the descending

aorta may increase the MAP in the upper portion of the body as measured through the left

until ΔMAP reached the peak (about 35–40 mmHg). C) A 3-D plot shows the different charateristic firing patterns of these

two representative early and late neruons. S1 File.

https://doi.org/10.1371/journal.pone.0169529.g004
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Fig 5. HR and NTS neurons activity relationship. A) Original recordings of a representative early NA and the HR

reduction during MAP increase. A’) The initial HR reduction was linearly correlated with the increase of this early NA till the

peak firing (about 200% relative to the baseline). After the peak firing, this neuron activity declined while the HR was still

decreasing. B) A 3-D plot shows the difference of the HR reduction-NA between two representative early and late neurons

as shown in Fig 4C. Whereas the early neuron contributed to the initial HR reduction, the late neuron did not contribute to
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common carotid artery. Since arterial baroreceptors are localized predominately in carotid

sinus and aortic arch [24], the recorded NTS neurons with excitatory response were most

likely modulated by the arterial baroreceptors in carotid sinus and aortic arch. However, par-

tial occlusion of the descending aorta might have also changed the blood volume (pressure)

within the ventricles, atria and pulmonary vessels, thus activating cardiopulmonary stretch

receptors (cardiopulmonary mechanoreceptors). Previously, Hines et al. indeed showed that

NTS neurons could respond to bolus saline injection-induced intra-atrial pressure, but sponta-

neous activities of these neurons did not correlate with fluctuations in atrial pressure [25]. In

contrast, Seagard et al. reported another population of NTS neurons which all exhibited pulse-

synchronous activity and were driven by vagal afferent nerve rather than by aortic depressor

nerve and carotid nerves [26]. Presumably, these were cardiac mechanoreceptors [26]. These

neurons mildly increased their firing activities following an increase in MAP, possibly due to

the increase of pressure within the heart. Though upper body AP increase may potentially acti-

vate cardiopulmonary mechanoreceptors, the chances might be lower than the activation of

baroreceptors in the aortic arch and carotid sinus. Compared to the aortic arch, there are

much less vagal cardiac afferent mechanoreceptors (flower-sprays endings, end-nets and free

terminals) in the atria than those in the aortic arch [27–30]. In addition, we failed to find any

vagal afferent flower-sprays endings and end-nets in ventricles (unpublished observations).

Since the firing pattern of the neurons found in our present study were very similar to those

found in Zhang and Mifflin who used electrical stimulation of the aortic depressor nerve to

identify NTS barosensitive neurons and PE injection to activate baroreceptors [11] we believe

that the NTS neurons that we had recorded in this study were most likely activated by the

baroreceptors in the aortic arch and carotid sinus. Considering all these possibilities, we here

used “putative” NTS barosensitive neurons which may include all baroreceptors (stretch

receptors in nature) in the aortic arch and carotid sinus as well as mechanoreceptors in the

heart and lung which can be activated by blood volume or blood pressure changes.

The second question concerns whether the recorded putative NTS barosensitive neurons

were monosynaptic or polysynaptic neurons. Previously, direct electrical stimulation of aortic

depressor nerves (ADN) was used to first identify monosynaptic or polysynaptic neurons[11–

13]. Then, the discharge patterns of NTS barosensitive neurons were characterized in response

to vasoconstrictor phenylephrine (PE)- /vasodilator sodium nitroprusside (SNP) (i.v.)-induced

AP increase/decrease in the whole body, or more specifically in response to pressure elevation-

induced by a balloon-tipped catheter occlusion of the descending aorta. In the present study,

we did not identify monosynaptic or polysynaptic neurons to classify neurons. Instead, we

HR reduction until a later time. C) Original recordings of a representative late neuron activity and the HR reduction during

MAP increase. C’) The HR and this late NA relationship curve was fitted using the logistic function. C”) The composite HR-

late NA relationship curve was reconstructed using the averaged parameters of the logistic sigmodal function curves of the

late neurons as shown in Table 2.

https://doi.org/10.1371/journal.pone.0169529.g005

Table 2. Parameters defining heart rate reduction (ΔHR)-late NA (% baseline)-logistic function curve.

R2 A (range) B (slope coefficient) X50 Ymax Gainmax NAth NAsat

0.75 ± 0.01 18.9 ± 1.2 -0.04 ± 0.006 111.8±18.4 -21.2 ± 1.3 -0.23 ± 0.04 67.3 ± 12.9 156.3 ± 24.3

Values are means ± SE.

n = 21.

R: correlation coefficient; A: minimum- maximum (range); B: slope coefficient; X50: NA at 50% of HR reduction range; Ymax: maximum HR reduction; Gmax:

maximum HR reduction gain (slope); NAth: X50 + (1.317/ B); NAsat: X50 - (1.317/ B). S2 File.

https://doi.org/10.1371/journal.pone.0169529.t002
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selected excitatory NTS neurons because they were the majority of the neurons and activation

of these neurons correlated with baroreflex bradycardia. Among these excitatory NTS neurons,

it was apparent that some neurons responded faster than the others. Thus, we further classify

these excitatory neurons into early and late neurons. Actually, the firing patterns of the early

and late neurons could be seen in several other reports as discussed below, although they did

not use the term “early” and “late” neurons [10–12]. Monosynaptic and polysynaptic neurons

may have the firing patterns of early and late neurons (see below discussion). In the present

study, we grouped the neurons according to firing patterns (early and late) rather than the

monosynaptic or polysynaptic classification. We assumed that the NTS neurons with the same

firing pattern may have similar functions. In below, we also discussed the relative contribu-

tions of the early and late neurons to baroreflex bradycardia.

Early and late putative barosensitive neurons

The majority of neurons (35 out of 46) increased firing upon AP elevation. In contrast, 7

neurons decreased firing. Additionally, 4 neurons appeared to have a bi-phasic response:

decreased firing rate upon AP elevation but increased firing rate following AP decrease. Simi-

lar types of NTS barosensitive neurons were reported by Zhang and Mifflin who also found

that the NTS neurons increased discharge rate, decreased discharge rate or were bi-phasic in

response to MAP elevation [11], as well as other neurons which increased or decreased firing

rate in response to a SNP-induced MAP depression. Seagard et alalso reported some neurons

with decrease in firing rate in response to carotid MAP elevation[31].

We observed that 14 neurons (out of 35) increased firing rate during the early phase of AP

increase (early neurons; Fig 2A and Fig 4A), whereas the remaining 21 neurons increased fir-

ing rate only near/after AP elevation reached its peak (late neurons; Fig 2D and Fig 4B). Using

the sigmoid logistic function, we fitted the data (firing rate % vs ΔMAP) from all excitatory

neurons. If the data could be well fitted by the sigmoid logistic function, then they were

accepted as the early neurons. Compared to the late neurons, the early neurons had much

shorter activation and peak delays.

In examination of the previous original recordings of the other studies, we found that the

firing patterns of these early and late neurons matched the major firing patterns in both mono-

synaptic and polysynaptic neurons. For examples, Zhang and Mifflin found that the majority

of monosynaptic and polysynaptic NTS neurons (38 out of 58 neurons recorded) were excit-

atory and may increase the firing rate to MAP increase induced by PE injection [11]. In 24

monosynaptic excitatory neurons (MSN), the peak increases in discharge frequency occurred

either before/during (5 MSNs) or after (19 MSNs) [11]. These 5 MSNs were very likely the

early neurons, whereas other 19 MSNs were likely late neurons (e.g., see Figs 2A and 3A

(early), and Fig 2B and Fig 4 (late) for MSN responses in [11]): the firing patterns of the neu-

rons in their Figs 2A and 3A are similar to the firing patterns of our early neurons, and the fir-

ing patterns of the neurons in their Fig 2B and Fig 4 are similar to the firing pattern of our late

neurons). Whereas in 19 polysynaptic excitatory neurons (PSN), the peak excitatory responses

occurred either before/during (5 PSNs) or after (14 PSNs), thus these 5 PSNs were very likely

the early neurons and the other 14 PSNs were the late neurons(see Fig 5A (early) and Fig 5B

(late) for PSN responses in [11]). In those original figures for MSN and PSN early neurons, the

neurons did not increase their firing rates until the MAP had increased up to about 20–40

mmHg [11]. Previously, Rogers et al also identified presumed secondary NTS neurons using

ADN electrical stimulation and used PE to increase AP [10]. They observed that some neurons

responded during the rising phase of MAP, but a delay of increase in neuronal firing rates

were often observed (e.g., see Figs 3 and 4 in [10]): the activities of these neurons did not

Characterization of NTS early and late neurons

PLOS ONE | https://doi.org/10.1371/journal.pone.0169529 April 6, 2017 14 / 20

https://doi.org/10.1371/journal.pone.0169529


increase until about a 20–30 mmHg increase in MAP was recorded. Such a delay of increase in

neuronal firing rate was also clearly seen in Deuchars et al who physiologically identified and

anatomically labeled arterial baroreceptive NTS neurons in the working heart-brainstem prep-

aration [12]. In Deuchars et al [12], they characterized baroreceptive NTS neurons in response

to stimulation of the aortic arch and/or ipsilateral carotid sinus by an aortic balloon or by

injection of perfusate via a catheter placed in the common carotid artery. In 7 morphologically

labeled NTS barosensitive neurons, some of them could be classified as early neurons and oth-

ers late neurons according to our strategy. Even for early neurons, they may not increase firing

rate until about 25–40 mmHg pressure increase (e.g., see Figs 3, 7, and 8 in [12]). For late neu-

rons (see Figs 4 and 5 in [12]), they did not increase firing rates until the pressure reached

about the peak about 50 mmHg. Therefore, there is a significant time delay between MAP

increase and the neuronal firing increase. For 14 early neurons in our study, the mean ΔMAP

threshold was 14.12 mmHg and activation delays ranged from 0 to 2.5 s.

Whether early and late neurons receive different baroreceptor inputs is another issue. In

our study, we had less early neurons than late neurons. Previously, we injected tracer into the

nodose ganglia in order to anterogradely label depressor nerve innervation of the aortic arch,

and observed that there were fewer large aortic depressor nerve fibers than small fibers [27–28,

30]. This observation is consistent with Brown [32], who reported that there are less A-fibers

than C-fibers in the depressor nerve. Since C-type axons have much higher thresholds than A-

fibers [32], it is likely that the early neurons may receive A-fiber inputs and the late neurons

may receive C-fiber inputs. Previously, Seagard et al. reported that there are two types of baro-

receptors, which have different activation thresholds [33]. Later, two types of NTS barosensi-

tive neurons were identified [31]: rapidly adapting neurons which have a sudden onset firing

after the pressure reaches a threshold value and begin to adapt in firing as the pressure contin-

ues to increase up to 250 mmHg, whereas the slow-onset non-adapting neurons have a much

higher threshold than the other type and continuously and slowly increase their firing rate as

the pressure increases to 250 mmHg. Recently, Chen et al reported that there was actually a

continuum of activation thresholds of aortic baroreceptors [34]. In our study, we found that

there is a continuum of activation delays for early and late neurons (Fig 2). Therefore, the NTS

neurons which increase firing at different pressure thresholds may echo the distribution of

activation thresholds of primary baroreceptor depressor nerves [34].

Another possible mechanism for the early and late neurons may be the NTS neurons receiv-

ing suprathreshold and subthreshold baroreceptor afferent inputs. NTS (both monosynaptic

and polysynaptic) barosensitive neurons may receive suprathreshold and subthreshold aortic

nerve inputs [13]. While suprathreshold neurons can increase firing during aortic nerve stimu-

lation, the NTS subthreshold neurons would only increase firing in response to aortic nerve

inputs after application of excitatory amino acid (EAAs) to these neurons. EAAs from barore-

ceptor afferent inputs as well as other peripheral and central sites may contribute to the inte-

gration within NTS. It is likely that some NTS neurons (secondary and higher order neurons)

may receive subthreshold baroreceptor inputs and they are in a “reserved state” and can be

activated and become suprathreshold neurons under certain condition [13]. Thus, we postu-

late that the early neurons may be correlated with suprathreshold neurons, whereas the late

neurons may be correlated with subthreshold neurons. This is particularly interesting because

acute short-term small fluctuations of AP pressure can trigger the firing of NTS suprathreshold

neurons to adjust HR and AP, but prolonged AP elevation (e.g., chronic hypertension) may

activate the reserved subthreshold or late neurons to further reduce the HR and lower the AP

[13, 14]
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Early NA-MAP elevation sigmoid relationship

The relationship between baroreceptor depressor nerve activity and MAP has been well estab-

lished and used [15, 20, 23]. But to our knowledge, the NTS NA-ΔMAP relationship curve has

not been shown. In this study, we used the sigmoid logistic function to construct the NA-

ΔMAP relationship in early NTS neurons. The characteristics of NTS NA in response to

ΔMAP can be depicted by 6 parameters in Table 1. Whether such a NTS NA-MAP elevation

relationship can be obtained in other types of NTS neurons, such as the neurons whose firing

rate decreases as MAP elevated or the neurons those firing rate increases as MAP is depressed,

is an issue and should be further explored. For late neurons, we could not construct a NTS

NA-ΔMAP relationship curve because the MAP had already reached the plateau before NTS

neurons started to increase discharge from their basal activities. As shown previously [15, 16,

20, 35, 36], the sigmoid logistic curves can be used to study the drug- and disease-induced

changes of baroreceptor depressor nerve function and sympathetic nerve functions. Using the

sigmoid logistic function as a tool, we could differentiate early from late neurons. The early

NA-ΔMAP logistic function curve can be a useful tool to compare the functional changes of

early neurons in disease models.

Time-course of the early and late NA-ΔMAP increase

To further characterize and compare the early and late neurons, we examined the time-course

of their NA-ΔMAP increase. The time point was defined relative to the 5% increase of ΔMAP.

Interestingly, the early neurons had higher firing rate increase in response to the MAP elevation

compared to the late neurons during the period of AP elevation (< 12 s) before the occlusion

was released. Time-course depicts the relationship between NA and MAP increase even after

the MAP reached the plateau and neurons continued to increase discharge frequency. In con-

trast to the sigmoid logistic function which only applied to the early neurons, time-course mea-

surement was applied to both early and late neurons. As shown in Fig 3B, the time-course can

be used to compare NTS neurons activity between two types of neurons. Early neurons not only

had a rapid activation, but also showed a higher firing rate in response to MAP increase than

the late neurons. But we also noted that the activity of early neurons might decline from 8 to 12

s (Fig 3B), even though it was not significantly different within the time window<12 s.

The firing of the early neurons had a sudden-onset activity after the MAP reached the

threshold which quickly reached the peak within 3–5 sec. This rapid increase of firing is some-

what similar to the sudden-onset neurons as reported before [8, 31]. But our neurons only

show small adaptation. In contrast, the sudden-onset neurons showed much more significant

adaptation to a large pressor ramp increase. This difference could be due to the difference in

methodology: our MAP was first increased by 30–50 mmHg from the baseline MAP and then

held relatively constant at 130–150 mmHg. In contrast, Seagard et al had a ramp carotid sinus

pressure (CSP) increase from 0 to 250 mmHg and the neurons were silent up to a given CSP

(67.8–98.1 mmHg) in dogs, and then they responded with burst of activity which immediately

decreased as the ramp continued [8]. Our early neurons only showed the trend but did not

show as much as adaptation possibly due to our relatively small increase of MAP compared to

the large increase CSP [8, 31]

It is important to emphasize that the amount of MAP increase (ΔMAP) and the rate of

ΔMAP to the peak was also similar in both groups during the 12 s aortic occlusion-induced

MAP elevation since different MAP increases may lead to different responses from the same

NTS neurons [10–11]. Also, we should mention that through practice, we could control the

descending aorta occlusion such that the amount of MAP increase (ΔMAP) and the rate of

ΔMAP to the peak was similar in both groups. One advantage is that it was more conveniently
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to increase pressure repeatedly, the basal AP and HR returned to the baselines much quicker

after the release of aorta occlusion than PE injection.

Early and late neuron activity-HR reduction relationship

Whether and how the firing of early and late neurons may contribute to the baroreflex brady-

cardia is an issue. In our study, we correlated early and late neurons activity with HR reduc-

tion. Based on the correlation, we suggested that the early neurons contribute to both the

initial and late stages of HR reduction, whereas the late neurons contributed mainly to the late

stage of HR drop during 12 s sustained MAP elevation. One concern might be that the above

assumption is based on the correlation of early and late neuron activity with HR reduction.

Although this correlation is not “causative”, it was a reasonable linkage, because it has been

well established that activation of baroreceptor afferent results in activation of NTS barosensi-

tive neurons and reduces HR. Application of excitatory amino acid glutamate, NMDA or non-

NMDA receptor agonists into the NTS may increase the firing rate of NTS barosensitive neu-

rons in a dose-dependent manner [37], microinjection of glutamate into the NTS in brainstem

may reduce HR [38] and blockage of NMDA and non-NMDA receptors may attenuate barore-

flex bradycardia [38–40]. Therefore, the correlation analysis of early and late neuron activities

with HR was reasonable which may provide the valuable information that subgroups of NTS

neurons with different thresholds may regulate the HR under different MAP conditions.

As shown in Fig 3 and Fig 5B, it appears that the early neurons might be contribute to HR

reduction more than the late neurons even during sustained MAP elevation, if we assumed

that the high firing rate contributed more to HR reduction. However, this may not be true

because if the MAP elevation had lasted even longer than 12 s, then the adaptation of early

neurons could have become more significant and the firing rate of the early neurons would be

less than the late neurons. In reality, it might be likely that more late neurons than early neu-

rons are involved during high AP elevation. Thus, we should speculate that the early neurons

may play a major role in the initial control of the HR and but reduce their contribution to

long-lasting sustained high AP elevation. In contrast, the late neurons may not be activated to

contribute to the initial control of HR, but are likely to be more responsive to long-lasting sus-

tained high AP elevation. This assumption should be tested in the future.
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