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Abstract
Texel lambs are known to be more resistant to gastrointestinal nematode (GIN) infection

than Suffolk lambs, with a greater ability to limit infection. The objectives of this study were

to: 1) profile the whole transcriptome of abomasal lymph node tissue of GIN-free Texel and

Suffolk lambs; 2) identify differentially expressed genes and characterize the immune-relat-

ed biological pathways and networks associated with these genes. Abomasal lymph nodes

were collected from Texel (n = 6) and Suffolk (n = 4) lambs aged 19 weeks that had been

GIN-free since 6 weeks of age. Whole transcriptome profiling was performed using RNA-

seq on the Illumina platform. At the time of conducting this study, a well annotated Ovine
genome was not available and hence the sequence reads were aligned with the Bovine
(UMD3.1) genome. Identification of differentially expressed genes was followed by pathway

and network analysis. The Suffolk breed accounted for significantly more of the differentially

expressed genes, (276 more highly expressed in Suffolk v 162 in Texel; P < 0.001). The

four most significant differentially expressed pathways were all related to immunity and

were classified as: Role of Pattern Recognition Receptors in Recognition of Bacteria and
Viruses, Activation of IRF by Cytosolic Pattern Recognition Receptors, Role of RIG-I-like
Receptors in Antiviral Innate Immunity, and Interferon Signaling. Of significance is the fact

that all of these four pathways were more highly expressed in the Suffolk. These data sug-

gest that in a GIN-free environment, Suffolk lambs have a more active immune profile rela-

tive to the Texel: this immune profile may contribute to the poorer efficiency of response to a

GIN challenge in the Suffolk breed compared to the Texel breed.
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Introduction
Gastrointestinal nematode (GIN) infection of ruminants is a major economic and health con-
cern, causing substantial loss to livestock producers worldwide. Increasing consumer concerns
about drug residues in animal products and the emergence of anthelmintic-resistant nematode
species have stimulated efforts to develop alternative strategies to anthelmintic therapy [1], in-
cluding genetic selection for natural resistance to nematodes. The latter approach is justified by
evidence of genetic variation in resistance to GIN infection both within and between sheep
breeds [2–6].

The identification of genetically resistant animals through DNA analysis has been focused,
to date, on the identification and characterization of candidate genes such as the major histo-
compatiblity complex (MHC) DRB [5, 7], MHC class I and II genes [8, 9] and interferon
gamma [10, 11], all of which have alleles that have been associated with resistance to GIN. A
weakness of the candidate gene approach is that resistance/susceptibility to GIN is a complex
trait with genetic control being polygenic. Our hypothesis is that biochemical pathways and
networks are central to differences in resistance and, thus, identification of these will provide a
more secure foundation for the elucidation of gene profiles associated with resistance to GIN.
Others have shown that a number of genes/biological processes are differentially expressed in
duodenal tissue from two lines of lambs selected for divergence in resistance to GIN [12, 13].

Previous studies from our group have shown that the Texel breed is more resistant to GIN
infection than the Suffolk breed [14]. Comparing the gastrointestinal lymph tissue transcrip-
tome between Texel and Suffolk in the absence of a GIN challenge should allow the identifica-
tion of gene pathways and networks that are differentially expressed between the two breeds
and thus likely to be involved in the response to a GIN challenge. An understanding of the mo-
lecular basis for such breed variation may reveal markers associated with resistance to patho-
gens. Hence, the objectives of the present study were: 1) to profile the whole transcriptome of
abomasal lymph node tissue of GIN-free Texel and Suffolk lambs; and 2) to identify the differ-
entially expressed genes and characterize the immune-related biological pathways and net-
works associated with the difference in resistance between the Texel and Suffolk breeds. As a
well annotated Ovine genome was not released at the time of conducting this study we aligned
the transcriptome with that of the UMD3.1 Bos taurus genome.

Materials and Methods

Ethics statement
All procedures described in this experiment were conducted under experimental license (B100/
2584) from the Irish Department of Health in accordance with the Cruelty to Animals Act
1876 and the European Communities (Amendments of the Cruelty to Animals Act 1976) Reg-
ulations, 2002 and 2005) and approved by the Teagasc Ethics Committee (5909).

Animals
The lambs described here were part of a larger experiment concerning the response of Suffolk
and Texel lambs to experimental infection with Teladorsagia circumcincta [15]. Lambs (10 in
total; 6 Texel and 4 Suffolk) were born (28th and 29th March) indoors, and moved to pasture
until 6 weeks of age (mid-May), at which point they were weaned and moved and kept indoors
until mid-September. Given that Nematodirus battus was the predominant species observed in
FEC in lambs after housing (all lambs, data not shown), it was the predominant species on pas-
ture. Animals were maintained indoors on a concentrate-based diet, with free access to water,
from mid-May to mid-September. The lambs were faecal sampled per rectum at weaning but
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sufficient material was obtained from only 7 individuals (4 Texel and 3 Suffolk). Nematodirus
eggs were detected in all cases (17, 50, 150, 1700 e.p.g. for Texel and 22, 300, 1000 e.p.g. for Suf-
folk) while eggs from other Trichostrongyle spp (excluding S. papillosus) were detected in 4
cases (1, 17, 100 e.p.g. for Suffolk and 50 e.p.g. for one Texel). All lambs were then treated with
Ivermectin (Oramec, Merial Animal Health Limited) according to the manufacturer’s instruc-
tions and quarantined in a slatted pen for 48 h prior to being penned on straw. Faecal samples
were collected on 3 consecutive days 5 weeks post-housing/anthelmintic treatment to deter-
mine GIN infection status. No eggs were detected in the faecal material of any of the 10 lambs
at this stage. The lambs were faecal sampled again one week prior to slaughter to confirm their
trichostrongyle infection-free status for at least 13 weeks prior to slaughter.

Tissue samples
At the end of the experiment, all ten animals were slaughter by electrical stunning followed by
exsanguination. Immediately after slaughter, animals were dissected and approximately 1 g of
abomasal lymph node was stored from each animal at room temperature for 24 h in 10 mL
RNAlater (Ambion, Austin, TX, USA). RNAlater was then discarded and samples were stored
at -80°C until RNA was isolated.

RNA extraction
A representative subsample (40 to 50 mg) of the abomasal lymph node tissue was homogenized
in 1 mL of TRIreagent (MRC, Cincinnati, OH, USA), using the Qiagen TissueLyzer, and total
RNA was extracted following the manufacturer’s instructions. DNase I (Sigma-Aldrich, St
Louis, MO, USA) treatment of the RNA was then performed and further purification was car-
ried out using the GenElute mammalian total RNA miniprep kit (Sigma-Aldrich, St Louis,
MO, USA). The quantity and quality of total RNA were assessed using a Nano Drop spectro-
photometer (Thermo Fisher Scientific, USA) and an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Inc. CA, USA), respectively. All RNA samples used in this study had an RNA
integrity value� 8.0.

RNA-seq library preparation
An RNA-seq library was prepared from ~2 μg of total RNA using an Illumina TruSeq RNA
Sample Prep Kit (Cat. No FC-122-1001; Illumina Inc., San Diego, CA, USA) according to the
manufacturer’s protocol. A multiplexing-capable kit was used for sample multiplexing. The
final concentration of the libraries was assessed using a Qubit fluorometer (Invitrogen, Paisley,
UK) and quality was assessed using a high sensitivity DNA kit (Agilent Technologies, Inc. CA,
USA). The high sensitivity DNA chip and the Agilent 2100 Bioanalyzer were used for library
sizing and final validation. One RNA-seq library was prepared from abomasal lymph node tis-
sue from each animal.

Sequencing
Equi-molar quantities (10 nM) of the bar-coded cDNA libraries were multiplexed and run in 6
lanes across three flow cells. The sequencing was carried out using Illumina’s Genome Analyzer
II (Illumina Inc., San Diego, CA, USA) according to the manufacturer’s instructions. The se-
quencing products consisted of single-end reads of 36 nucleotides plus the 6-nucleotide index
marker (42 bases in total). FastQC [16] software was used to assess the quality of the sequence
data; sequences with a Phred mapping quality score� 30 were used for further analysis. This
quality score threshold corresponds to base call accuracy of 99.9% [17]. As the quality of the
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sequence data was very good we did not trim the raw sequences during the processing of data,
and thus the length of raw and processed reads were same.

Data analysis
As a well annotated Ovine genome was not released at the time of conducting this study we
aligned the transcriptome with that of Bovine. The alignment software Bowtie 0.12.7 [18] was
used to align the reads to the UMD3.1 Bos taurus genome assembly allowing up to two mis-
matches per read. Only uniquely aligned reads were used for the analyses. The binary align-
ment/map (BAM) files from the Bowtie mapping were sorted and filtered for duplications
(possibly resulting from PCR bias) using SAMtools [19]. The raw counts, per gene were esti-
mated by HTseq (v0.4.7) (http://www-huber.embl.de/users/anders/HTSeq/doc/overview.
html#). The data were normalized in edgeR [20] using the trimmed mean of M values (TMM)
method [21]. Only genes with� 5 reads in total, across all samples, were included in the final
analysis. The normalized raw counts per gene were used to identify genes that were differential-
ly expressed (DE) between breeds using edgeR. Gene ontology (GO) of DE genes was per-
formed using GO-Elite [22]. Classification of functional processes of biological importance and
of canonical pathways and networks of DE genes were performed using Ingenuity Systems
Pathway Analysis (IPA; Ingenuity Systems, Redwood City, CA, USA; http://www.ingenuity.
com). Data has been made publically available: http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE43241.

As some of the most significant differentially expressed pathways suggested that the animals
may have been infected with a virus, the RNA-seq data were further aligned with the reference
genomes of a number of different viral species [orf virus (HM133903.1) virus, jaagsiekte sheep
retrovirus (NC_001494.1), Schmallenberg (NC_018459.1), bluetongue virus (NC_006023.1)].
Moreover, the findings of alignment (presence of orf virus) were further confirmed by using con-
ventional polymerase chain reaction. Genomic DNA was prepared from 100 mg of abomasal
lymph node tissue samples. Amplification of orf virus was carried out according to Inoshima
et al. [23]. The forward- (5'GCGAGTCCGAGAAGAATACG3') and reverse (5'TACGTGG
GAAGCGCCTCGCT3') primers bind to a target region specific to the major envelope protein
(B2L) gene of orf virus isolate SV178/12 and yielding a PCR product of 594 bp. The reaction con-
ditions and PCR cycling conditions are as described by Inoshima et al. [23].

Validation by quantitative real time PCR (qPCR)
To validate the results of RNA-seq analysis, a panel of differentially expressed genes was select-
ed from the RNA sequence database and qPCR assays were designed to confirm the direction
and magnitude of the expression profiles. Ten genes were randomly selected from the panel of
27 DE genes identified and classified as part of the genetic network ‘Infectious Disease, Antimi-
crobial Response, Inflammatory Response’. Gene specific primers were designed using Primer
Express (v2.0) (PE Applied Biosystems) software and were synthesized by Sigma Aldrich, USA.
The details of the primers are in Table 1.

Complementary DNA (cDNA) was synthesized from 1 μg of purified total RNA using
cDNA Synthesis Kit (Fermentas, Vilnius, Lithuania) and oligo dT primers following the manu-
facturer’s instructions. The primer efficiency was determined using a serial dilution (1:4 dilu-
tion series over 7 points) of a cDNA pool, prepared by pooling an equal quantity of cDNA
from all of the experimental samples; the efficiency of all primers was shown to be between
90% to 110%. The reaction was carried out in a total volume of 20 μL, which comprised 10 μL
2X Fast SYBR green PCR Master Mix (Life Technologies), 1 μL of forward and reverse primer
mix (final concentration 300 nM each), 1 μL of diluted cDNA template (equivalent to 2.5 ng of
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RNA) and 8 μL of nuclease-free water (Sigma-Aldrich, St Louis, MO, USA), in an ABI Prism
7500 FAST sequence detection system (Applied Biosystems, Warrington, UK). The PCR cy-
cling conditions were 95°C for 10 min for 1 cycle followed by 95° C for 3 sec and 60° C for 30
sec for 40 cycles. The specificity of the product was confirmed by melt curve analysis.

Following analysis of the relative quantities of the gene transcripts of 8 potential reference
genes (GAPDH, B2M, PGK1, ATPsynth, RPL19, TBP, GUSB, ACTB) with the GeNorm applica-
tion within the qBasePLUS software package [24] (Biogazelle, Zwijnaarde, Belgium), two robust
reference genes (PGK1 and RPL19) were selected for normalization of the relative expression of
the target genes. Calibrated normalized relative quantities of gene expression for each target
gene were generated using qBasePLUS. RNAseq and qPCR data were compared by calculating
the correlation coefficient for specific genes after accounting for breed effects using SAS v9.1.3
(SAS Institute, Cary, NC, USA).

Results and Discussion
An average of 13 (s.d. 1.9) million reads were generated per sample. Due to the lack of a well-
annotated Ovine genome at the time of conducting this study, reads were aligned to the bovine
sequence, which was the closest species with a well-annotated genome. Alignment of these
reads to the Bos taurus genome yielded an average of 7 (s.d. 1.1) million uniquely aligned reads
per sample, which were subsequently used in the analysis.

Differentially expressed genes and validation of RNA-seq data
Based on a false discovery rate< 0.05, a total of 437 DE genes were identified. The gene expres-
sion patterns, in terms of direction and magnitude, of all 10 genes chosen for validation were
reproducible by qPCR analysis (Fig 1). Of the DE genes, 276 were more highly expressed in
Suffolk while 161 were more highly expressed in Texel. The proportion of DE genes was signifi-
cantly associated with breed (P< 0.001).

Table 1. Nucleotide sequence of primers used for quantitative real time PCR.

Gene category Gene Symbol Sequence (5/ to 3/) Product (bp)

Reference genes PGK1 TTGGCACTGCTCACCGAGCC TCGGGGCTCTCCAAGGCCTT 118

RPL19 ATGCCAACTCCCGCCAGCAG CTTCCGGCGAGCCAAGGTGT 116

GAPDH ATGCCTCCTGCACCACCA AGTCCCTCCACGATGCCAA 76

B2M TTCTGTCCCACGCTGAGTTCA CAACCCAAATGAGGCATCGT 149

TBP GACCATTGCACTTCGTGCCCG CTCTTGGCTCCCGTGCACACC 135

ACTB CGCAGACAGGATGCAGAAAGA GCTGATCCACATCTGCTGGAA 148

GUSB CTCATCGTTGGTGCCAATGCAAGT TCACATCCACCCTGGGAAACAGAA 193

ATPSynth TCCTGCTCTGATCCGTTCTT GGCCACTGCTGTAGGAAGG 107

Target genes EPCAM AATGGTGAACTACTGGATCTG CCACAATGACGGCAATAATAC 115

IFIT1 GAAGAAGCACTGACTGATGAG TGGATTATTTGTGACTTGTAGCA 182

ISG-54 CAGAGACTAATAAGACACGCTAT TTCTTCATACTGACCGACTTG 120

IFIT3 TCCATACCAAACAATGCCTAC AGTTCTTCAATCTCCTCTCCTT 122

IFIT5 TCCAGAGATTGACTGTGAGAA TCAGAATCATCCAGCCGATA 162

MDA-5 GTCGTCGGATGGGAGTTT GATGTACCTTTTCACTCTGGC 79

OAS1 TCTTCCTCACCAATCTCACA GACCTCAAACTTCACTTCAAATG 125

RIG-I GATGAATGTCACAACACCAAT GCAATGAGTCTGAAGATCCT 94

RSAD2 TAATCTGTAGCCCATACTGACTAT AACTCCATCACAAAGCGTAAA 106

MX1 ATGGTTCTTTCTGACTTGGAT CCTTGGACTCCGTTTCAT 100

doi:10.1371/journal.pone.0124823.t001
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Gene-ontology analysis of differentially expressed genes
Functional annotation classification of the 276 genes more highly expressed in the Suffolk
breed yielded a total of 59 significant (P< 0.05) functional annotation clusters; the 10 most sig-
nificant clusters are presented in Table 2. The majority of the functional annotation clusters in
the Suffolk relate to the immune system, including: ISG15-protein conjugation, Immune re-
sponse, Antigen processing and presentation of peptide antigen via MHC class I, Response to
other organism, Defence response,MHC class I protein complex, Regulation of interleukin-10
production, Chemokine activity and Type I interferon biosynthetic process. The most significant
group, ISG15-protein conjugation, contains 4 genes, whereas the two largest clusters Immune
response and Defence response comprise 31 and 21 genes, respectively. In the Texel breed, a

Fig 1. Validation of RNA-seq data using quantitative real time PCR.Clear bar shows the Texel breed and the black bar represents Suffolk breed. Error
bars show the standard error of the mean. Pearson correlation coefficient (r) values within breed effect (P<0.001 for all comparisons) are shown between the
RNA-seq and qPCR charts.

doi:10.1371/journal.pone.0124823.g001
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total of 26 significant (P< 0.05) functional annotation clusters were identified and the 10 most
significant clusters are presented in Table 3. The GO terms associated with highly expressed
genes in the Texel breed describe normal cellular processes and include: Vitamin transport,
Regulation of smooth muscle cell proliferation, Collagen fibril organization, Proteinaceous extra-
cellular matrix, Extrinsic to plasma membrane, Extracellular space, Glucose metabolic process
and Cell-cell adhesion.

Identification of pathways and gene interaction networks
Pathway analysis. A total of 23 significantly over-represented canonical pathways were

identified as differentially expressed between GIN-free Texel and Suffolk sheep (Table 4). The
four most significant pathways all relate to processes of anti-viral /anti-bacterial innate

Table 2. Major functional annotation clusters (top 10 annotation clusters based on z-score) of genes that were differentially expressed in Suffolk
breed.

GO name Number of
genes

z-
score

Genes names

ISG15\-protein conjugation 4 16.47 USP18, UBA7, UB2L6, ISG15

Immune response 31 9.59 RIG-I, LAG3, C1QB, IL1A, TBK1, RSAD2, OAS2, OAS1, CXL10, CTLA-4, MHC-I,
C1QC, TNFRSF4, CCL22, BOLA, A6QQE3, IDO1, ANXA3, MIC, CACB3, CCL20,
CCL8 oas1z, CD40L, FCERG, JSP1, Q3YFG6, Q9TSB2, Q9TUD0, REG1,
TNFSF10

Plasma membrane organization 4 9.23 AGRN, DYSF, MYOF, Q9TUD0

Antigen processing and presentation of
peptide antigen via MHC class I

4 8.84 BOLA, FCERG, JSP1, Q3YFG6

Response to other organism 15 7.55 STAT4, RIG-I, MX1, MX2, IRF3, TBK1, RSAD2, ISG20, A6QQE3, IDO1, ANXA3,
FCERG, LYSCN, Q9TUD0, UCRP

Defence response 21 7.16 RSAD2, TBK1, RIG-I, IFI47, IL1A, LAG3, C1QB, TNFRSF4, CCR4, A6QQE3,
IDO1, ANXA3, CCL20, CCL8, CD40L, CXL10, FCERG, LYSCN, Q56J78,
Q9TUD0, REG1,

MHC class I protein complex 5 6.97 BOLA, B2MWQ2, MHC-I, JSP1, Q3YFG6

Cellular response to heat 3 6.52 IL1A, MYOF, TFEC

Regulation of interleukin\-10 production 3 6.25 IDO1 FCERG, TRIB2

Chemokine activity 5 6.04 CCL22, CCL20, CCL8, CXL10, REG1

doi:10.1371/journal.pone.0124823.t002

Table 3. Major functional annotation clusters (top 10 annotation clusters based on z-score) of up-regulated genes in Texel breed.

GO name Number of
genes

z-
score

Gene names

Vitamin transport 3 9.40 RET4, SLC22A16, TCN2

Regulation of smooth muscle cell
proliferation

3 7.43 CAD13, CALRL, IBP5

Collagen fibril organization 3 6.78 COBA1, DERM, TNXB

Proteinaceous extracellular matrix 9 6.05 TNC, COBA1, DERM, FMOD, MFAP5, TNXB, PGS2, GPC1, POSTN

Extrinsic to plasma membrane 3 4.58 GBG7, SCUBE1, ST14

Extracellular space 11 4.16 TNC, A2M, ECM1, ADIPO, CAD13, DERM, FMOD, TNXB, PGS2, RET4,
SCUBE1

Extracellular matrix part 4 3.97 TNC, COBA1, MFAP5, TNXB

Cell projection assembly 4 3.90 KLF5, CAD13, PKHD1, VANGL2

Glucose metabolic process 4 3.56 ADIPO, DCXR, PGM1, RET4

Cell\-cell adhesion 7 3.50 CDH17, ADIPO, CAD13, CLD1, COBA1, TNXB, PKHD1

doi:10.1371/journal.pone.0124823.t003
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immunity and were all more highly expressed in the Suffolk lambs relative to the Texel lambs.
The four pathways and the DE genes assigned to each pathway are as follows:

• Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses: RIG-I,MDA-5,
DECTIN-2, IRF3, OAS1, OAS2, C1QC, C1QB, EIF2AK2, RNASEL, C3AR1 (Fig 2);

• Activation of IRF by Cytosolic Pattern Recognition Receptors: RIG-I,MDA-5, DAI, ISG-54,
TBK1, IRF3, IRF9, STAT2, ADAR1, ISG15 (Fig 3);

Table 4. Gene classification based on canonical signaling pathways identified by Ingenuity pathway
analysis (IPA).

Ingenuity Canonical Pathways P-values Molecules‡

Activation of IRF by Cytosolic Pattern
Recognition Receptors

10.0×10–
08

MDA-5, RIG-I, DAI, STAT2, IRF9, TBK1, IRF3,
ADAR1, ISG-54, ISG15

Role of Pattern Recognition Receptors in
Recognition of Bacteria and Viruses

7.0×10–07 MDA-5, OAS1, OAS2, RIG-I, DECTIN-2, C1QC,
C1QB, IRF3, EIF2AK2, RNASEL, C3AR1

Interferon Signaling 2.1×10–05 IFIT3, IFIT1, OAS1, MX1, STAT2, IRF9

Role of RIG-I-like Receptors in Antiviral
Innate Immunity

8.7×10–04 MDA-5, RIG-I, TBK1, IRF3, TRIM25

Riboflavin Metabolism 0.004 FLAD1, ENPP1, ACP6
Communication between Innate and
Adaptive Immune Cells

0.005 CXCL10, TLR10, CD40LG, IL1A, HLA-A,
FCER1G

Dendritic Cell Maturation 0.006 CD40LG, IL1A, HLA-A, CD1A, FCER1G, STAT2,
CREB3L4, FCGR3A

Graft-versus-Host Disease Signaling 0.008 IL1A, HLA-A, FCER1G, GZMB

Autoimmune Thyroid Disease Signaling 0.008 CD40LG, HLA-A, FCER1G, GZMB
Hepatic Fibrosis / Hepatic Stellate Cell
Activation

0.010 CD40LG, IL1A, CTGF, MYL4, FGFR2, IGFBP5,
A2M

cAMP-mediated signaling 0.011 P2RY13, TULP2, PRKAR2B, CCR4, PDE3B,
ADCY6, CREB3L4, CNGA3, MPPE1

Sphingolipid Metabolism 0.012 CERS6, ARSJ, SGPP1, PPAP2C, SMPD3
G-Protein Coupled Receptor Signaling 0.014 CALCRL, GPR15, ADCY6, CREB3L4, MPPE1,

ADRA1D, P2RY13, TULP2, PRKAR2B, CCR4,
PDE3B, GPR126, CCR8, HRH4, C3AR1,
GPR143

Altered T Cell and B Cell Signaling in
Rheumatoid Arthritis

0.016 TLR10, CD40LG, IL1A, SPP1 (includes
EG:20750),FCER1G

Complement System 0.018 C1QC, C1QB, C3AR1

Nitrogen Metabolism 0.023 MARC1, ADAR, GLS2

NF-κB Signaling 0.024 TLR10, CD40LG, IL1A, FCER1G, FGFR2, TBK1,
EIF2AK2

Cardiac β-adrenergic Signaling 0.255 TULP2, PRKAR2B, PDE3B, ADCY6, GNG7,
MPPE1

Relaxin Signaling 0.026 TULP2, PRKAR2B, PDE3B, ADCY6, GNG7,
MPPE1

Alanine and Aspartate Metabolism 0.028 DDO, AGXT2, ASL

Protein Kinase A Signaling 0.040 TULP2, PRKAR2B, ADD2, PDE3B, ADCY6,
MYL4, CREB3L4, CNGA3, GNG7, MPPE1

VDR/RXR Activation 0.044 CXCL10, SPP1 (includes EG:20750), CYP24A1,
IGFBP5

Lipid Antigen Presentation by CD1 0.049 CD1A, FCER1G

‡Genes more highly expressed in the Suffolk breed are in bold while genes that are more highly expressed

in the Texel breed are in normal typeface.

doi:10.1371/journal.pone.0124823.t004
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• Role of RIG-I-like Receptors in Antiviral Innate Immunity: RIG-I,MDA-5, TBK1, IRF3,
TRIM2, (Fig 4);

• Interferon Signaling: IFIT1, IFIT3, IRF9, OAS1,MX1, STAT, (Fig 5).

Gene interaction networks. The overall gene interaction networks for the differentially
expressed genes were constructed using IPA. A total of 25 significant (P< 0.05) gene interac-
tion networks were identified. The details of the 10 most significant networks are presented in
Table 5. The gene interaction network with the highest number of focus molecules (n = 27)
was designated Infectious Disease, Antimicrobial Response, Inflammatory Response. This net-
work included 24 genes that were more highly expressed in the Suffolk breed and 3 genes that
were more highly expressed in the Texel breed (Fig 6).

Exploring the roles of these specific genes, pathways and the network in more detail, it is ev-
ident that in a GIN-free environment, the Suffolk lambs had greater expression of a number of
cytosolic pattern recognition receptors, membrane bound receptors, transcription factors and
IFN-induced proteins than Texel lambs. Interestingly, a number of DE genes are assigned to
more than one of these pathways (e.g., RIG-I,MDA-5, STAT2, IRF-3, IRF-9, OAS1), indicating
that there is overlap between the pathways. These molecules are normally associated with the T
helper cell type 1 (Th1) response to viral and/or bacterial exposure [25–28]. A variety of pat-
tern recognition receptors (PRRs) were more highly expressed in the Suffolk lambs relative to
the Texel lambs. PRRs are a primitive component of the innate immune system. They recognise
microbe-specific molecules (pathogen associated molecular patterns; PAMPS), including viral
RNA/DNA, lipopolysaccaride, mannose, bacterial peptides, peptidoglycans, lipoproteins and
fungal glucans [26–29]. They can be located intracellularly, extracellularly, or membrane
bound. The gene expression of three cytosolic PRRs (RIG-I, MDA-5 and DAI) was higher in

Fig 2. Schematic representation of the Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses pathway from IPA.Genes
within the pathway showing differential expression are highlighted in colour. The colour intensity indicates the degree of elevated expression in Suffolk (red)
or in Texel (green). Grey shading indicates genes that were not differentially expressed; white shading represents genes in the pathway not represented on
the RNA-seq data.

doi:10.1371/journal.pone.0124823.g002

Suffolk and Texel Ovine Abomasal Transcriptome

PLOSONE | DOI:10.1371/journal.pone.0124823 May 15, 2015 9 / 17



the Suffolk lambs than in Texel lambs. Both RIG-I and MDA-5 belong to the RIG-1-like recep-
tor family, whose members act as sensors of viral RNA. As represented in Fig 3, upon binding
to viral RNA, these receptors induce type-1 interferon (IFN) production via serine/threonine-
protein kinase (TBK1), interferon regulatory factor-3 (IRF-3) and ISG-15 [26]. The PRR DAI
binds to microbial dsDNA, which induces type-1 interferon production via TBK1 and IRF-3
[27]. Hence, activation of any of these three PRRs leads to the production of IFN, which in
turn activates a cluster of IFN-induced proteins, including a number of those genes that were
more highly expressed in the Suffolk lambs: IFIT1, IFIT3 andMX1 which are activated via the
transcription factors STAT2 and IRF9 [28, 30, 31]. It has previously been reported that the
IRF9 protein binds with STAT2 protein to produce a set of IFN-induced proteins IFIT3, IFIT1,
OAS1, OAS2 and MX1 to activate non-specific anti-viral immunity [32, 33]. In fact polymor-
phisms in the OAS1 gene are associated with host susceptibility to various diseases [34, 35] and
with resistance to viral infections [36].

Fig 3. Schematic representation of the Activation of IRF by Cytosolic Pattern Recognition Receptors pathway from IPA.Genes within the pathway
showing differential expression are highlighted in colour. The colour intensity indicates the degree of elevated expression in Suffolk (red) or in Texel (green).
Grey shading indicates genes that were not differentially expressed; white shading represents genes in the pathway not represented on the RNA-seq data.

doi:10.1371/journal.pone.0124823.g003
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The genes coding for two membrane-bound PRRs (DECTIN-2 and C3AR1) were also more
highly expressed in the Suffolk. DECTIN-2 is a PRR that stimulates non-specific antifungal im-
munity [37, 38] and upon activation mediates a Th2 immune response [39]. There was, howev-
er, no evidence that the downstream effector molecules of DECTIN-2 (ERK, NFkB or JNK)
were differentially expressed between the breeds (Table 4). C3AR1 is a receptor of the

Fig 4. Schematic representation of the Role of RIG-I likes receptors in antiviral innate immunity pathway from IPA.Genes within the pathway
showing differential expression are highlighted in colour. The colour intensity indicates the degree of elevated expression in Suffolk (red) or in Texel (green).
Grey shading indicates genes that were not differentially expressed; white shading represents genes in the pathway not represented on the RNA-seq data.

doi:10.1371/journal.pone.0124823.g004
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complement cascade [40, 41], and interestingly, C1QB and C1QC, which are the B and C
chains of the first component of the classical complement pathway were more highly expressed
in the Suffolk lambs.

The spectrum of genes in the Th1/IFN network that are being transcribed in the Suffolk
breed, suggests that the Suffolk animals are either innately more prepared for a microbial chal-
lenge than the Texel animals, or were actually actively responding to a microbial challenge. In
exploring the possibility of recent microbial challenge, two approaches were adopted. Firstly,
the haematological parameters of both Suffolk and Texel animals were assessed, and secondly,
the RNA-seq data was searched for evidence of viral RNA from viral species known to infect
sheep, including Schmallenberg virus, bluetongue virus, orf virus and jaagsiekte sheep retrovi-
rus (JSRV). There was no evidence for an active infection based on the haematological parame-
ters evaluated (unpublished data). Interestingly, there was evidence for two types of viral RNA
in all the animals with a similar average number of reads in both breeds (JSRV: Suffolk 62±34,
Texel 112±32; orf virus: Suffolk 2040±121, Texel 2190±152). It has previously been reported
that the exogenous infectious form of JSRV has an endogenous counterpart, which was inte-
grated into the ovine genome prior to the evolution of sheep and goats [42]. The sheep genome
has approximately 27 integrated copies of endogenous JSRV that are genomically closely relat-
ed to JSRV [43]. It is possible that the Suffolk lambs are responding to the products from the
integrated JSRV genome and reacting in a manner described for autoimmune diseases [44].
However, the high number of reads aligned with the orf virus genome is highly suggestive of re-
cent or active orf infection. Orf virus specific polymerase chain reaction in the sheep genomic
DNA samples from the lymph node showed the presence of orf virus in all the animals (Fig 7).
Viral DNAmay be integrated with the genome of the animals and carried over within the cell
during the life of the animals All of the animals used in this study received a fully virulent live

Fig 5. Schematic representation of the Interferon Signaling pathway from IPA.Genes within the pathway showing differential expression are
highlighted in colour. The colour intensity indicates the degree of elevated expression in Suffolk (red) or in Texel (green). Grey shading indicates genes that
were not differentially expressed; white shading represents genes in the pathway not represented on the RNA-seq data.

doi:10.1371/journal.pone.0124823.g005
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virus vaccine (Scabivax, Intervet Ireland) during the first week of life. A recent study detected
orf viral DNA in reindeer lymph nodes 4 weeks post experimental inoculation [45]. Within the
confines of the current experiment, it was not possible to determine if either of these viruses
are responsible for the immune profile in the Suffolk lambs. However, it is worth considering
in our future studies particularly the alignment of this sequence data with Ovine genome are
likely to reveal greater details on the nature of adaptive and innate immune system of these
two breeds.

In conclusion, the analysis of the RNA transcriptome of Suffolk and Texel lambs maintained
under GIN-free conditions, suggests that Suffolk sheep have a more active antiviral/antibacteri-
al immune profile than Texels. It is likely that this profile contributes to the variation between
the two breeds in their capacity to mount a timely and effective immune response when ex-
posed to a gastrointestinal nematode challenge.

Table 5. Top 10 gene classifications of molecules in networks using IPA.

Top functions Molecules‡ in Network Score Focus
molecules

Infectious Disease, Antimicrobial Response, Inflammatory
Response

ADAR, BPI, RIG-I, EIF2AK2, ENPP1, EPCAM, HERC5, IFI6, IFI27,
Ifi47, MDA-5, IFIT1, ISG-54, IFIT3, IFIT5, IRF3, IRF9, IRG, ISG15,
MX1, OAS1, OAS2, PASK, RSAD2, STAT2, TNFSF10, UBA7

40 27

Tissue Morphology, Cell-To-Cell Signaling and Interaction AGRN, C1QB, C1QC, DCN, ELF5, ETS2, EVI2A, FMOD, GBP7,
GDF11, GPC1, KLRC1, KLRD1, LAG3, MHC Class I (complex),
MRPL44 (includes EG:301552), MYL4, NAIP, PPAP2C, SGPP1,
SIGLEC1, ST14, TFEC, XAF1

37 24

Connective Tissue Development and Function, Lipid
Metabolism, Small Molecule Biochemistry

CDH13, CDH17, CDH20, CIDEC, CLEC1B, DECTIN-2, CTLA4,
FCGR3A, ICOS, LY6E, MPPE1, PDE3B, PLIN1, PRKAR2B, SAA,
SAMSN1, STMN2, THRSP, TRIM21, TULP2

29 20

Gene Expression, Gastrointestinal Disease, Inflammatory
Disease

BATF2, C1QB, CDH13, CLEC4A, CLEC4E, CLEC4F, CMPK2,
DDIT4L, DTX3L, FAM26F, HERC6, IFI6, IL22RA2, NAALADL1,
PARP9, SAMD9, SHISA2, SLC22A16, TMC6

27 19

Infectious Disease, Cell-To-Cell Signaling and Interaction,
Cellular Movement

ALDH9A1, APOL3, BTN1A1, CCL20, CCL22, CLCA1, CXCL10,
IDO1, Oas, PLB1 (includes EG:151056), RNASE1, RNASEL, TBK1,
TNFRSF4, TRIM25, UBE2L6, USP18, DAI

25 18

Small Molecule Biochemistry, Inflammatory Response,
Drug Metabolism

ADIPOQ, BST2, C1RL, CD40LG, FABP4, GSTM1, Gstt3, HP,
HPGDS, IL1A, LYZ, PLA2G2A, PLSCR1, SAA1, SERPINE2,
SPINK5, UBD, VANGL2

25 18

Tissue Development, Connective Tissue Development
and Function, Skeletal and Muscular System
Development and Function

ACVR1C, ADCY6, CACNA1H, CD1A, CTGF, CYP24A1, ECM1
(includes EG:100332249), EPHA7, FCER1G, HOMER2, IGFBP5,
KLF5, LY9, P2RX7, PAPSS2, SH3GL2, SMPD3, SPP1 (includes
EG:20750), TLR10, TNXB

24 20

Cell-mediated Immune Response, Cellular Movement,
Hematological System Development and Function

ACP6, ADRA1D, ARRDC4, C3AR1, C5orf13, CALCRL, CCR4,
CCR8, GNG7, GPR15, GPR126, GPR143, HRH4, P2RY13, RGS1,
WARS

20 16

Lipid Metabolism, Molecular Transport, Small Molecule
Biochemistry

ACRBP, CERS6, CIDEC, CLCA1, D4S234E, DDO, HUNK,
KIRREL3, LMO3, PLIN4, PODXL2, POSTN, SCUBE1, SLC41A2,
TDRD7

19 15

Cell-To-Cell Signaling and Interaction, Nervous System
Development and Function, Behaviour

ANXA3, ASL, BCO2, DENND2A, FADS3, FMOD, GLS2, HUNK,
IGSF6, KLHDC8B, LYPD1, LYSMD2, RTP4, STS, TRIB2

19 15

‡Genes more highly expressed in the Suffolk breed are in bold while gene that are more highly expressed s in the Texel breed are in normal typeface.

doi:10.1371/journal.pone.0124823.t005
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Fig 6. Schematic representation of the Infectious Disease, Antimicrobial Response and Inflammatory
Response interaction network from IPA.Genes within the pathway showing differential expression are
highlighted in colour. The colour intensity indicates the degree of elevated expression in Suffolk (red) or in
Texel (green). Grey shading indicates genes that were not differentially expressed; white shading represents
genes in the pathway not represented on the RNA-seq data.

doi:10.1371/journal.pone.0124823.g006

Fig 7. Polymerase chain reaction amplification of the 594 base pair region of major envelop protein (B2L) gene of orf virus isolate SV178/12 in
Suffolk (Lane 1 to 4) and Texel (Lane 5 to 9) animals.M- molecular weight marker.

doi:10.1371/journal.pone.0124823.g007
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