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A robust experimental and
computational analysis
framework at multiple
resolutions, modalities
and coverages
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The ability to study cancer-immune cell communication across the whole

tumor section without tissue dissociation is needed, especially for cancer

immunotherapy development, which requires understanding of molecular

mechanisms and discovery of more druggable targets. In this work, we

assembled and evaluated an integrated experimental framework and

analytical process to enable genome-wide scale discovery of ligand-

receptors potentially used for cellular crosstalks, followed by targeted

validation. We assessed the complementarity of four different technologies:

single-cell RNA sequencing and Spatial transcriptomic (measuring over

>20,000 genes), RNA In Situ Hybridization (RNAscope, measuring 4-12

genes) and Opal Polaris multiplex protein staining (4-9 proteins). To utilize

the multimodal data, we implemented existing methods and also developed

STRISH (Spatial TRanscriptomic In Situ Hybridization), a computational method

that can automatically scan across the whole tissue section for local expression

of gene (e.g. RNAscope data) and/or protein markers (e.g. Polaris data) to

recapitulate an interaction landscape across the whole tissue. We evaluated the

approach to discover and validate cell-cell interaction in situ through in-depth

analysis of two types of cancer, basal cell carcinoma and squamous cell

carcinoma, which account for over 70% of cancer cases. We showed that

inference of cell-cell interactions using scRNA-seq data can misdetect or
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detect false positive interactions. Spatial transcriptomics still suffers from

misdetecting lowly expressed ligand-receptor interactions, but reduces false

discovery. RNAscope and Polaris are sensitive methods for defining the

location of potential ligand receptor interactions, and the STRISH program

can determine the probability that local gene co-expression reflects true cell-

cell interaction. We expect that the approach described here will be widely

applied to discover and validate ligand receptor interaction in different types of

solid cancer tumors.
KEYWORDS
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Introduction

Cell-to-cell communication underscores a dynamic cellular

ecosystem that develops, evolves, and responds to environmental

factors. The implications and roles of cell-to-cell communication

have been investigated extensively, particularly in cancer, using a

wide range of in vitro and in vivo techniques, albeit at different

scales and resolutions (1). Breakthroughs arising from

discoveries in cell communication have led to important

clinical applications. A classic example is the interaction via

immune checkpoint proteins (2). Tumor cells, tumor infiltrating

lymphocytes and tumor associated myeloid cells express

inhibitory PD-L1/CTLA4 ligands to engage PD-1 receptors on

cytotoxic T cells and CD80/86 receptors on myeloid cells,

effectively blocking immune activation against the tumor cells.

The discovery has led to applications of using monoclonal

antibodies that specifically target this ligand-receptor (L-R)

interaction as a form of immunotherapy, allowing immune

cells to suppress cancer growth (3). Therapies targeting these

two pairs of ligand-receptors have transformed the management

of several cancers, including melanoma, renal cell carcinoma,

bladder cancer, head and neck cancer, and many others (4).

Notably, often less than 20% of patients respond to a single

immunotherapy, including common cancer types like breast,

colon and prostate cancer (4), and hence the urgent need to

combine therapies, for example by using antibodies against PD-

L1, CTLA-4 and/or PD-1 (4). However, mechanisms of action

for combinational immunotherapies remain elusive (5) and the

number of current druggable targets for cancer-immune cell

interaction is extremely limited, compared to the large repertoire

of over 2,000 known ligands and receptors. Therefore, research

to explore and advance understanding of known and new

ligand-receptor pairs in the context of tumor-immune cell

interaction within a tumor is extremely important for the

further development of immunotherapies (3).
02
Most ligand-receptor (L-R) interaction research so far has

been relying on the use of fluorescently-conjugated antibody-

based methods, that are only able to assess protein levels of a few

target molecules and results are often based on a small number

of cells at a time. Whole-transcriptome analysis, especially

methods using single-cell RNA-seq (scRNA-seq) with gene

expression profiles at single cell level, provide a means towards

high-throughput L-R screening assays (6). However, these

transcriptomics-based methods do not assess cellular

communication in a tissue context, where interactions happen

only between neighbor cells but not between distant cells. Often,

these methods result in a large number of false positive

predictions. Spatial transcriptomics (ST-seq) overcomes these

limits and enable the study of (target) gene expression in

undissociated tissue sections, maintaining tissue integrity (7).

ST-seq measures barcoded gene expression in spots printed onto

a functional glass slide (7), which captures mRNA released from

a tissue section, preserving the cell morphology. ST-seq has been

applied to study the gene expression landscape of tissues and

diseases, such as prostate cancer (8), pancreatic cancer (9),

melanoma (10). However, ST-seq still has not achieved single-

cell resolution per spatial spot (1-50 cells/spot), and the number

of cells as well as the transcriptome quality that can be captured

in each spot depend on the tissue context. These shortcomings of

ST-seq can be overcome by a targeted RNA in situ hybridization

(RNA-ISH) approach to visualize the cell interaction through

detecting L-R pairs at a single cell level. The RNAscope HiPlex

assay (ACD Bio) has been developed based on the RNA-ISH

technique and improved on the signal amplification and

background suppression process compared to the previous

version, allowing for visualization and detection of mRNA at

near single molecule sensitivity. The technology allows

researchers to simultaneously detect up to 12 single target

genes on the same tissue section through fluorophore cleavage

steps. Extending from measuring RNA, we implemented
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another technique to detect protein, covering the whole tissue

and at subcellular resolution. Opal multiplex IHC can measure

4-7 proteins on the same tissue. While the experimental

frameworks are accessible, all of the scRNA-seq, ST-seq,

RNAscope and IHC data require computational analyses to

quantitatively process the sequencing and imaging data so that

cell-cell interactions can be inferred from and compared

across datatypes.

In this work, we aim to establish a pipeline to study L-R

interaction of cancer and immune cells across the whole tissue

section, utilizing neighborhood information between cells. We

assessed the utility of combining four complementary

technologies to study and validate L-R interaction between

immune and cancer cells in skin cancer tissue. These

techniques include scRNA-seq, ST-seq, RNA-ISH, and Opal

multiplex immune histochemistry (MHC) assay.

With the complementarity of the four technologies as discussed

above, we aimed to build a pipeline (toolbox) to comprehensively

discover and validate L-R interaction at the transcriptional level. To

identify L-R pairs at a transcriptome-wide scale, we applied two

approaches, starting with scRNA-seq and followed by ST-seq, using

skin cancer samples. We hypothesised that current computational

methods that only use gene expression levels in cells to infer

interactions would result in false positive detection of interactions

between cells that are further away. On the other hand, spatial data

could reduce false positive detection of cell-cell interactions by

adding spatial information from ST-seq data We also posited that

most ligands and receptors are expressed at a relatively low level,

leading to a high possibility for the under-detection of those genes

by using either scRNA-seq and ST-seq. Therefore, the overarching

goal of this research was to assess the complementarity of these four

technologies to build a toolbox from less sensitive but at a broader

genome-wide scale with scRNA-seq and ST-seq to the more

sensitive but at a small set of targeted genes or proteins with

RNAscope (RNA level) and Opal Polaris MHC (protein

level) (Figure 1A).

To achieve this aim, we performed in-depth analysis of two

of the most common skin cancer types (Bascal Cell Carcinoma

and Squamous Cell Carcinoma - BCC, SCC), where we used a

reference baseline with a set of three known L-R pairs reported

to be active immune-cancer interactions in skin cancer with the

ground-truth expectation that these pairs will be detected by the

pipeline. These pairs include interleukin-34 (IL34) interacting

with colony-stimulating factor 1 receptor (CSF1R) (12); THY1

(also known as CD90), Integrin subunit alpha M (ITGAM, also

known as CD11b (13);, PD-1 (also known as PDCD1) and PD-

L1 (encoded by CD274) (2). From STRING interactions

database, all three pairs have strong evidence of interactions

(Supplementary Figures S1A–C) (14). We assessed how scRNA-

seq and ST-seq detected many L-R pairs, and if these pairs

include the three reference pairs. We then evaluated the

detection of these pairs by the high-sensitive RNAscope and
Frontiers in Immunology 03
Polaris methods. Our work provided the important assessment

of the genomics and imaging technologies that can be used to

discover, validate and understand immune-cancer cell

interaction within a tumour section, commonly used in

histopathological assessment of cancer.
Results

Genome-wide analysis of ligand-
receptor interaction using scRNA-seq

We performed scRNA-seq analysis from dissociated cells of

three tissue samples (Supplementary Table S1). scRNA-seq

measures expression of all genes and data and can be used for

genome-wide prediction of cell-cell interaction (Figure 1A).

Unsupervised clustering and differential expression analysis

revealed three major subpopulations of epithelial cells

(accounted for 80% of total cell population) including

Keratinocyte (KC) Basal, KC Differentiating (KC-Diff) and

KC Cycling (Methods, Supplementary Figure S2). Several

immune and skin specific cell types were also identified

including Lymphocyte, Myeloid, Dendritic, Melanocyte

(Methods, Supplementary Figure S2). To infer potential L-R

pairs that are likely used as means of intercellular

communication, we applied common single cell inference

methods, CellPhoneDB (11) and NicheNet pipeline (6) on

our scRNA-seq dataset of matched samples, containing a

squamous cell carcinoma sample tissue (SCC) and a normal

sample tissue from the same patient (Supplementary Figure

S2A). NicheNet combines expression data with prior

knowledge on gene signaling and gene regulatory networks

to predict L-R pairs used by interacting cells (sender and

receiver cells). We expected to use the detection of known

IL34-CSF1R (12) and THY1-ITGAM (13) interaction to assess

the sensitivity of the inference approach using scRNA-seq. The

two pairs were not among the significantly detected pairs

predicted by NicheNet (Supplementary Figure S2A). To

examine the relatedness of cells coexpressing the L-R pairs,

we visualize L-R expression relative to cell cluster information

in the UMAP space (Supplementary Figures S2B, C). We found

evidence of KC-Basal and KC-Diff cells that expressed IL34

while the receptor CSF1R was expressed by Myeloid and

Lymphocyte (Supplemental Figure S2C). However, THY1

and ITGAM were only expressed by a few cells with no

distinct patterns of coexpression (Supplemental Figure S2C).

The results from examining THY1-ITGAM suggested the

insensitivity of using scRNA-seq alone to study cell

communication. Overall, we found that scRNA-seq can be

utilized to study cell communication, but statistical test based

on gene expression alone has low sensitivity and misdetects

expected interactions.
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FIGURE 1

An integrated technological and computational approach to study cell-cell interaction across the whole tissue section. (A) A workflow illustrating the
combination of four technologies to study L-R interaction in skin cancer tissue, including Visium Spatial Transcriptomic (ST-seq), RNAscope Hiplex,
Opal multiplex protein imaging, scRNA-seq, and optionally digital droplet PCR (ddPCR). (B) The annotated H&E images of the two adjacent tissue
sections that were used for Visium ST analysis (top) and the consecutive section of the same block used in RNAscope assay (bottom). (C) Target RNA
molecule expression at a single cell level using RNAscope assay and the visualization of the local co-expression of two pairs L-R including IL34-CSF1R
and THY1-ITGAM (left panel). (D) Using ST-seq data and ligand-receptor expression analysis of neighbouring spots to determine significant local co-
expression level of IL34-CSF1R (the color bar shows the ligand-receptor score). (E) Results from our STRISH computational pipeline reported in this
paper to analyse RNAscope imaging data, showing the detection of the local co-expression of IL34-CSF1R. The heatmap shows the windows with
significant level of co-expression of ligand-receptor pair (scored by -log10 of p-values). The red solid line box indicates an example of a tissue region
where consistent cell-cell interactions occur in ST-seq and RNAscope analysis. (F) Spatial feature plots of the four distinct clusters defined by Louvain
graph-based clustering. The annotation was based on differential gene and pathway analysis. The distribution of the cluster annotated as cancer was
consistent with the location of cancer nests in the upper H&E image shown in (B). (G) The inference of ligand-receptor based cellular communications
from ST-seq data, using CellPhoneDB (left) (11) and NicheNet (right) (6). For CellPhoneDB prediction, top four highly active pairs of ligand-receptor and
the two target pairs were selected for visualization together with IL34-CSF1R and THY1-ITGAM. (H) The UMAP feature plots highlighted the cells that
expressed either CSF1R or IL34 (red dots, left plot) and both CSF1R and IL34 (Cyan dots, right plot).
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Genome-wide analysis of ligand-
receptor interaction using ST-seq

We postulated that cell-cell communication could be more

accurately assessed by using ST-seq, which preserves

neighborhood information of interacting cells. We performed

ST-seq on four tissue sections from four patients, with 2xSCC

and 2xBCC tissue sections, (Supplementary Table S1),

(Figures 1B, D, F; Supplementary Figures S3A, S4A-C). With

ST-seq protocol, hematoxylin and eosin (H&E) images allowed

us to annotate cancer and immune cells, where the morphology

revealed important tissue regions, including cancer nests,

immune infiltrations and non-cancer regions (Figure 1B

Supplementary Figures S4A-C). Additionally, adjacent tissue

sections were used for RNAscope analysis as means of

validation (Figures 1B, C; Supplementary Figure S5). From the

same block, one section was used for ST-seq and another for

RNAscope, and comparing the ST-seq and RNAscope results for

the two sections allows us to validate the ST-seq prediction data

(Figures 1C-E; Supplementary Figure S3, S4), as discussed in the

later section.

With ST-seq approach, we reasoned that because each spot

in the Visium slide contains a mixture of cells and these

neighbouring cells (within a 55 µm diameter spot) can

communicate if both ligand and receptor are detected in the

spot (juxtacrine, autocrine, and short distance paracrine

interactions). In addition, interaction between cells from two

neighbouring spots (100 µm distance), through paracrine

signalling, can likely occur if these spots display L-R co-

expression. Therefore, local co-expression of L-R pairs within

a spot or between neighboring spots in ST-seq data suggests

possible cell-cell interaction. Based on the above assumptions,

we implemented stLearn cell-cell interaction analysis to test for

L-R local co-expression that was significantly higher than the

background signal of random non-interacting gene-gene pairs.

Using our stLearn software, we generated a cell-cell

communication activity map across each of the whole tissue

section for IL34-CSF1R from ST-seq data (Figure 1D;

Supplementary Figures S3A, B, S4) (15). Specifically, the

heatmap of significant L-R interaction in the ST-seq data

suggests the concentrated regions with high interaction

within and surrounding the tumour areas as well as the

immune infiltration regions. Independent pathological

annotation also provided evidence for IL34-CSF1R

interaction at the cancer-immune infiltration regions

(Figure 1B; Supplementary Figures S3A-C, S4). Unbiased

clustering of gene expression using a graph-based approach

in stLearn demarcates the tissue section into four distinct

groups (Figure 1F). Based on differentially expressed genes

and enriched pathways, we identified two major populations in

cluster 1, observed in normal skin including keratinocyte

(expressing CSTA, KRT6A) (16), epidermis (expressing
Frontiers in Immunology 05
KRT10, KRT14) (17). Meanwhile the other three clusters

expressed markers for cancer (SFRP5, GLI1) (17; 18), stromal

cells (CD40, THY1) (19), and macrophages (CXCL12, CD68).

The distribution of the four cell types identified unbiasedly

based on molecular profiles consistently overlapped with the

pathological annotation based on the skin morphology and

cancerous areas defined in H&E images. These cell types

support the ST-seq prediction of spatial locations where

IL34-CSF1R interact [between inflammatory cells (20)]. The

interaction activities were highest in the area with more cancer

and immune infiltration cells, particularly in the epidermal

compartment (Figure 1B; Supplementary Figure S3E, S4A, B).
Comparisons of ligand-receptor
interaction between ST-seq and
scRNA-seq

We found that computational methods that did not use

spatial information failed to detect expected L-R interactions.

From the CellPhoneDB analysis pipeline (11), a total 1024

possible combinations of L-R were tested using the ST-seq

dataset. The dot-plot in Figure 1G demonstrated the low

significance of the two L-R pairs, IL34-CSF1R and THY1-

amb2 complex (ITGAM pathway) in comparison to the four

other CellPhoneDB highest significance of the interaction

pairs. We further applied NicheNet (6) workflow on the ST-

seq data to integrate prior knowledge into the prediction.

While NicheNet could identify interaction pairs that were

directly linked to cancer (i.e., CD6-ALCAM), the prediction

also failed to detect the two pairs IL34-CSF1R and THY1-

ITGAM. The expression plots of the four target markers

overlayed to the tissue section (Supplementary Figures S3C,

D) illustrated the low abundance across the tissue, which likely

suffered from the inherent dropout (randomly misdetecting

molecules due to the scRNA-seq protocol). The results suggest

that for the noisy (high dropout) data and lowly-abundant

genes, computational methods without spatial information

like CellPhoneDB and NicheNet likely mis-identify

meaningful cell-cell communication (Figures 1G, H). In

contrast, the addition of spatial information to test for

significant local-coexpression over the background, like

stLearn, could detect such signalling events (Figure 1D;

Supplementary Figures S3E, S4A-B). Although scRNA-seq

and ST-seq enable us to test for thousands of ligand-

receptor pairs, their inherent technical limitations in

detection sensitivity necessitate the addition of independent

validation experiments that are sensitive and are not

sequencing based. Next, we describe RNAscope and our

novel Spatial TRanscriptomic In Situ Hybridization

(STRISH) pipeline as a powerful experimental method for

validating cell-cell interaction within spatial tissue sections.
frontiersin.org
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STRISH, a computational pipeline to map
ligand-receptor interaction activities
across the whole tissue (interaction
landscape) using RNAscope data

To overcome the limitations in detection sensitivity due to a

lack of signal in the cancer region from the sequencing methods

(scRNA-seq and ST-seq) and to achieve single cell resolution, we

implemented RNAscopeHiPlex assay. RNAscopeHiPlex can detect

upto 12 gene targets simultaneously at single-molecule sensitivity.

In this study, we used whole tissue fluorescent microscopy images

captured at 40x magnification to determine RNA interaction at

cellular resolution. Three different fluorophores (Cy3, Cy5 and Cy7)

were used in two iterative wash-stain rounds to label the five distinct

target genes, including THY1, IL34, and CSF1R, CD207 and

ITGAM (Figure 1C, Supplementary Figure S5). The zoom-in

images from a cancer nest area (marked as a white dashed line,

and two red/green circles - IL34 and CSF1R in a red box and THY1

and ITGAM in a green box) show distinct coexpression of

neighbouring cells at single-cell resolution, suggesting cell to cell

interaction for each of pair compared to no signal in the

‘Negative’ control.

To automate and improve the accuracy of detecting L-R

interaction across the whole tissue section based on fluorescent

data, like RNAscope, we developed a computational pipeline

STRISH. The STRISH pipeline consists of two phases, starting

with a cell local co-expression detection step to define spatial

neighborhood, followed by scoring, statistical testing and

visualizing significant local co-expression (Figure 2A; Method

Algorithms 1,2). Local co-expression is defined as the expression

within a tissue area containing fewer than a threshold number of

cells (depending on tissue types), for example fewer than 100 cells.

The pipeline runs a series of positive-cell detection iterations to

find regions that contain lower than the predefined threshold of

neighboring cells and subsequently determines the number of L-R

co-expression within these regions (refer to the Method section

about STRISH algorithm). The L-R co-expression scores are then

used for statistical test of significant coexpression over the null

distribution of random, non-interacting gene-gene pairs. Across

the tissue samples, we observed considerable interaction of IL34-

CSF1R around the areas where the cancer nests are in both BCC

and SCC, particularly in the epidermal compartments (Figures 1E,

2B). Interestingly, compared to RNAscope data we observed a

similar pattern in ST-seq data, with many spots that were predicted

to have cell-cell communication through IL34-CSF1R located in

cancer and epidermis regions.

We further assessed the performance of STRISH by measuring

the interaction of another less abundant L-R pair, THY1-ITGAM.

We found lower signal and less wide-spread interaction of THY1-

ITGAM that were localized to the dermal compartments

(Figure 2B). By comparing the number of the tissue regions

(through STRISH windows) where local co-expression was

found, we noticed the average count of the windows with THY1
Frontiers in Immunology 06
and ITGAM co-expression was, on average, 2.5 times less than

those of IL34-CSF1R. Similarly, the normalized local co-expression

in the same STRISHwindows for ITGAMwere also lower than that

of IL34. We noted that most of the STRISH-detected local co-

expression of THY1 and ITGAM were clustered densely around

the adjacent areas of the immune cell infiltration. At the core,

STRISH is constructed based on a new data structure called

STRISH_Object which was developed to make use of the data

structure from AnnData (21). Thus, STRISH is highly compatible

with other single-cell based platforms [i.e. Scanpy (21) and Squidpy

(22)]. STRISH can also accommodate the visualization of

expression level of each marker at single-cell resolution for

quality inspection and facilitates the external validation/

correlation of cells with markers of interest (i.e ddPCR)

(Figure 2C). We also found that STRISH was quantitative and

provided the capability of counting interaction events, an important

utility that is needed in the cellular communication research

(Figure 2D; Equations 2, 3). Overall, we found that RNAscope

data analysed by STRISH could detect cell-cell communications at a

higher sensitivity than ST-seq and scRNA-seq.
Highly sensitive detection of ligand and
receptor expression by ddPCR

While RNAscope is expected to be able to detect single

molecules in each cell, scanning through a whole tissue section

with millions of cells may lead to noise and reduced accuracy

due to tissue heterogeneity. ddPCR, on the other hand, enables

to sensitively detect and quantify single molecules from tissues,

albeit spatial information is absent. To further confirm the

presence of ligand and receptor in the tissue, we performed

ddPCR on the same cancer tissue block (Supplementary Figure

S6). The transcript copy number per input RNA of each gene

was presented in a bar plot (Figure 2E). ddPCR signal was highly

consistent between cells (droplets) and both L-R pairs were

detected. Strikingly, the result from ddPCR was highly consistent

to that of RNAscope data (Figures 2D, E), with Pearson

correlations at 0.95, 0.89 and 0.94 for the patient samples

tested, ID-E15, B18 and D04, respectively. The ddPCR results

support the quantitativeness of using RNAscope for measuring

target gene expression, suggesting the suitability of using

RNAscope for detecting and quantifying cell-cell interaction.
Extending the application of STRISH to
analysing protein fluorescence data to
detect L-R interaction

While scRNA-seq, ST-seq and RNAscope data can be used

for inferring cell-cell interaction, they measure RNA and thus

not directly reflecting the interaction at protein level. We

generated multiplex protein immunofluorescence data for a
frontiersin.org
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FIGURE 2

Detection of target RNAs in skin cancer patients by collective transcriptomic and genomic methods. (A) STRISH analysis method to scan for local-
coexpression of ligan-receptor pairs. Steps from raw RNAscope data to creating a tissue-scale heatmap (significant activity map) of local co-expression
of target mRNAs are shown. Briefly, STRISH splits the image into large, even-sized windows (Step 1). Based on cell segmentation and the count of
number of cells per window, STRISH further splits a window into smaller ones if the window has more cells than required and discards those windows
without cells (Step 2). Using the remaining windows which contains cells expressing L-R, STRISH can perform the co-localization scoring and statistical
test to produce a heatmap of the most significant windows in spatial context (Step 3 and 4). (B) From top to bottom: annotated H&E of SCC patient ID-
F21 and the corresponding heatmaps (activity maps) of local co-expression for the two L-R pairs, IL34-CSF1R and THY1-ITGAM, respectively. (C) The
expression levels of THY1 and ITGAM using RNAscope signal measurement within the cells throughout the tissue of the patient ID-D04. (D, E) The
absolute copy number of the target mRNAs counted using ddPCR and RNAscope assays.
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SCC cancer sample using multispectral imaging with primary

antibodies-Opal pairing technologies (Akoya biosciences). On

the same tissue section, six cancer and immune markers were

detected simultaneously, including a L-R pair (PD-1 and PD-

L1), PanCK (epithelial cancer marker), CD8 (T cell marker),

CD68 (Macrophage marker), FoxP3 (T regulatory cell

marker), (Figure 3A).

Our STRISH pipeline can be flexibly applied to protein data.

Here, we implemented the STRISH pipeline to detect the local

expression levels of the L-R pair PD-1 and PD-L1, well known

signalling molecules used in immune and cancer cell interaction

(2), (Figure 3B). We divided the fluorescent tissue image into

multiple smaller areas containing fewer than 100 cells, defined as

a local neighborhood region (refer to Algorithm 1,2 and Method

Section). We then quantified the cell expression on the window

for either PD-1 or PD-L1 (refer to Algorithm 2, Method

Section). The activity map of PD-1 and PD-L1 interaction is

shown as a tissue heatmap with colors representing the

normalised count (normalisation of all cells within each

window) of PD-1 and PD-L1. The automated STRISH

detected regions with high co-expression of PD-1 and PD-L1

were visually examined, separately for each of the two channels,

PD-1 and PD-L1 (Figure 3C). Similar to the RNAscope data, we

showed that STRISH could detect PD-1 and PD-L1 local co-
Frontiers in Immunology 08
expression accurately. Visual inspection of positive and negative

windows (Figure 3C) shows the unique new feature of STRISH

in that it detects local co-expressing cells of the L-R pairs, in

contrast to other methods that only detect the co-expression of

two or more proteins from the same cell.
Discussion

We presented a technological and computational end-to-end

pipeline from discovery to validation of L-R interaction across

the whole spatial landscape of a tumour tissue section using four

complementary technologies. Multimodal data from these four

methods allowed us to systematically examine over 1000 L-R

pairs in scRNA-seq and ST-seq data, followed by deep analyses

of three L-R pairs for patients with two types of non-melanoma

skin cancers (BCC and SCC), which account for about 70% of all

cancer cases (23). The pipeline allows us to quantitatively and

visually assess the expression of target transcripts while

maintaining the physiological spatial information in

undissociated tissue sections. Computationally, we developed

and demonstrated the utility of an imaging analysis pipeline

called STRISH to automatically and statistically detect tissue

regions with high cell-to-cell interaction activities, from high
A C

B

FIGURE 3

STRISH application to protein data. (A) A multispectral image captured using MOTiF™ PD-1/PD-L1 panel (6 proteins and a DAPI) of an SCC
cancer tissue section. (B) STRISH significant test heatmap (activity map) suggesting the tissue locations with high (yellow color) or low (dark
color) level of protein local co-expression after the statistical test for the ligand-receptor pair PD-1 and PD-L1 (the value shows in color bar
indicate negative log p-values). The tissue contour was plotted using the windows of neighboring cells identified by STRISH. (C) A close-up
visualization of the areas identified as the existing cells local co-expression of PD-1 and PD-L1 by STRISH.
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multiplex RNAscope RNA and Opal protein imaging data.

STRISH imaging analysis results are important orthogonal

validation of the predictive results from scRNA-seq and ST-

seq analysis.

For quantitative cell-cell interaction analysis, STRISH

automatically scans for local co-expression of a pair of L-R

genes or proteins in a RNAscope image or Opal Polaris image to

recapitulate an interaction landscape across the whole tissue

section. The pipeline also consists of a robust image registration

step to merge two separate images from two imaging rounds,

with potential application to also merge histopathological

images in adjacent tissue sections. This utility allows for data

integration, not only increasing the multiplex capacity to detect

more L-R in one tissue section, but also adding pathological

annotation to interpret the molecular analyses. Existing image

analysis tools have been developed to search for colocalization of

two gene/protein markers within each individual cell (24).

STRISH, in contrast , finds co-express ion between

neighbouring cells rather than within one cell, thereby

identifying potential paracrine interaction between cells that

are in proximity to each other. The number of neighbouring

cells can be determined by users, allowing the flexibility to study

different microenvironment systems, such as those in BCC or

SCC or other cancer types. Finally, the interaction activity can be

tested by a permutation test to find signal, significantly higher

than the background. Significant regions can then be visualized

in a heatmap covering the whole tissue landscape. Overall,

STRISH is generalisable from assessing interactions at RNA

level like IL34-CSF1R and THY1-ITGAM in RNA-ISH

multiplex assay to protein level like PD1-PD-L1 in Opal

Polaris protein assay. Importantly, the extension of STRISH

application to immunofluorescence data suggests the very broad

applicability of this analysis pipeline to the vast amount of

protein fluorescence imaging data.

Our detection of CSF1R and CSF1/IL34 interaction between

cancer and immune infiltrating cells at the epidermal layers was

consistent to the biological context of the skin cancer. The

signalling interaction between CSF1R and CSF1/IL34 is well

known to regulate macrophage differentiation (12). IL34, CSF1

and their receptors co-expressed within the immune cell

infiltrated area and regulated the different downstream

signalling pathways in breast cancer (25). CSF1R is known to

be expressed on CD1a/CD207 Langerhans cells in human

epidermis and stratified epithelial (26), where it can be found

in high abundance in the basal and squamous layers of the

epidermis, and is involved in anti-tumoral immune responses

(27). Here, we specifically observed that the co-expression of

IL34-CSF1R L-R pair is high in/near cancer nest area in all the

patient samples analysed and that the interaction was

heterogeneous in high or low activities across the whole tissue

section. The results are important in pinpointing the

microenvironment within the tissue that can potentially be

markers for cancer progression.
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Similarly, we found that while the co-expression of ITGAM-

THY1 was not as high as the one of IL34-CSF1R with respect to

tissue morphology related to cancerous areas, it was correlated

with regions of infiltrated immune cells rather than cancer nests.

This is concordant with previous studies, suggesting that this L-

R pair may be involved in migration of leukocytes to damaged

cells and initiate host defense (13). THY1 is one of the cell

surface markers for T-lymphocytes and mesenchymal stromal

cells (28). The interaction of THY1 and ITGAM, an integrin

molecule marking myeloid cell populations such as monocytes

and polymorphonuclear granulocytes, has been reported (13).

The interaction is shown to be involved in leukocyte migration

in injured or inflammatory tissue, leading to an initiation of the

function of leukocytes in host defenses (29). Our STRISH

pipeline provided novel spatial mapping of the ITGAM-THY1

microenvironments across the tissue sections, suggesting the

potential for migration of immune cells into the cancer core

regions, thus controlling the cancer from spreading.

Our results suggest RNAscope Hiplex assay to be

quantitative, sensitive and high-resolution in detecting L-R

interactions. RNAscope detection is more suitable than IHC in

precancerous dysplastic nodules, helping early monitoring and

diagnosis for patients with high risk of diseases (30).

Additionally, our results from the absolute quantification of

the target genes from ddPCR analysis (using adjacent tissue

sections of the same tissue blocks) suggests that the RNAscope

can accurately measure the expression of L-R pairs. Moreover,

RNAscope can map the interactions across different locations

within the tissue. This observation is important because

RNAscope assay quantifies from a microscopic image that

captures the fluorescent transcripts, which usually semi-

quantitative. The high correlation to ddPCR results suggests

the high accuracy of RNAscope assay.

Here, we propose a complete pipeline from bench work to

bioinformatic analysis to study cell interaction through L-R pairs

in cancer tissues. We suggest using spatial transcriptomics (with

whole genome scale and with spatial information, like the

Visium), followed by a targeted validation approach that is

more sensitive and at a high resolution like the RNAscope

and/or with an additional validation at protein level like by

using mIHC (e.g. Polaris). The workflow demonstrates the

feasibility to discover new L-R pairs by genome-wide

approaches (scRNA-seq and/or ST-seq), which are less

sensitive but cover all genes, followed by targeted validation by

high-resolution, high-multiplex, and sensitive RNAscope

imaging and Opal protein imaging. The pipeline integrates

multimodal data to assess cell-to-cell interaction in tumors

using collective methodologies on a same cancer patient

specimen. The combination of different technologies

overcomes the inherent limitations of any individual method.

Our technological and analytical platform that allows for the

discovery and detailed-analyses of more than one pairs of L-R

interaction in cancer tissues provides a powerful approach on
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finding new targets and/or understanding the mechanisms

underlying options for combinatorial immunotherapies.
Methods

Single cell RNA analysis

Fresh shaved suspected SCC and BCC lesions and a 4mm

punch biopsy of non-sun exposed skin from the same patient were

collected in DMEM for immediate tissue dissociation. The tissue

sections were rinsed in PBS and incubated in 8 mg/mL Dispase at

37°C for 1h, and were minced before a 3-minute incubation in

0.25% Trypsin at 37°C. To collect single cells, the suspension was

filtered through a 70µm cell strainer. Cells were collected in PBS

containing Fetal Calf Serum. The 10x Genomics Chromium

scRNA-sequencing followed the manufacturer’s instructions,

using the Single Cell 3’ Library, Gel Bead and Multiplex Kit

(version 2, PN-120233; 10x Genomics). Cell numbers in each

reaction were optimized to capture approximately 3,000 cells. The

single-cell transcriptome libraries were sequenced on an Illumina

NextSeq500, using a 150-cycle High Output reagent kit

(NextSeq500/550 version 2, FC-404-2002; Illumina) as follows: 98

bp (read 2), 8 bp (I7 index), and 26 bp (read 1 - cell barcodes and

UMI). The BCL file was converted to a FASTQ file using bcl2fastq/

2.17. We used CellRanger/3.0.2 for mapping to Homo sapiens.

GRCh38p10 reference.

All three gene-barcode count matrices were loaded and

merged into a single Seurat object using Seurat/4.0.0 in R/4.0.

We removed cells with fewer than 200 or more than 5000 genes

and cells with over 20% of all reads mapped to mitochondrial

genes. Seurat canonical correlation analysis was performed to

correct batch effect and integrate the samples. The processed

expression matrix was scaled to 10,000 reads/cell, normalized

and only the top 5000 most variable genes were kept for PCA

dimensionality reduction. The top 50 PCs were used to generate

UMAP plot and clustering the cells using Louvain graph-based

in Seurat Supplementary Figure S2B. Using FindClustering

function with the resolution of 0.7, we determined 12

subpopulation of cell types. Differential expression (DE) was

performed to find top 100 differentially expressed genes for each

cluster. Clusters with similar top DE genes were combined,

which subsequently resulted in three different Keratinocytes

subtypes including KC Basal (KRT15, KRT14, CXCL14

upregulated), KC Differentiating (KRT1, 2 and 10), KC Cycle

(TOP2A, STMN1) (17, 31) and two skin specific cell types

Melanocyte (DCT, TYR, TYRP1), Pilosebaceous (DEFB1,

DEFB2) (32). Besides, we identified three immune cell types

that commonly found in skin tissue Lymphocyte (CD8, CD4),

Myeloid (highly expressed CD207, S100A9 and HLA-DRA),

Plasma Dendritic cells (CD20, CD79 upregulated) (17).

To infer cell-cell interaction through L-R pair, we applied

NicheNet L-R prediction pipeline (6) on our two scRNA-seq
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datasets of cancer and normal samples from a patient

(Supplementary Table S1). We ran the gene differential

expression analysis for two conditions of cancer and normal.

For the differentially expressed genes we used top 12 upstream

ligands, then filtered the prebuilt ligand receptor network to find

the corresponding upstream receptor and plotted the heatmap of

potential interaction in Supplementary Figure S2A.
Visium spatial transcriptomics
sequencing and analysis

Tissue cryosectioned at 10µm thickness were transferred to

chilled Visium Tissue Optimization Slides (3000394, 10x

Genomics, USA) and Visium Spatial Gene Expression Slides

(2000233, 10x Genomics, USA), and allowed to adhere by

warming the back of the slide. Tissue sections were dried for

one min at 37°C, fixed in chilled 100% methanol for 30 minutes

and stained with hematoxylin and eosin for 5 minutes and 2

minutes as per Visium Spatial Tissue Optimization User Guide

(CG000238 Rev A, 10x Genomics) or Visium Spatial Gene

Expression User Guide (CG000239 Rev A, 10x Genomics).

Brightfield histology images were captured using a 10x

objective on an Axio Z1 slide scanner (Zeiss). Brightfield

images were exported as high-resolution tiff files using Zen

software. This H&E staining and imaging protocol was used to

stain all skin sections for histopathological annotation in

this study.

The Visium raw sequencing data in BCL format was

converted to 110,782,035 FASTQ reads using bcl2fastq/2.17.

The reads were trimmed by cutadapt/1.8.3 to remove sequences

from poly-A tails and template-switching-oligos. We used

SpaceRanger V1.0 to map FASTQ reads to the cellRanger

human reference genome and gene annotation for GRCh38-

3.0.0. On average, for each spot we mapped 94,710 reads and

detected 1,428 genes. The count matrix of the Visium data was

preprocessed to remove genes that expressed in less than three

cells, followed by the normalization, log transformation and

scaling. For spot clustering, we first performed gene expression

normalization using spatial morphological information from the

H&E image then clustered the spots using Louvain community

detection algorithm. The normalization was to reduce the

technical limitation in detecting lowly expressed genes.

Besides, a neighborhood graph of spots was built based on the

reduced dimensional space, followed by the application of

Louvain community detection to group similar spots

into clusters.

We performed ST-seq on four tissue sections from three

BCC/SCC patients (patient ID-E15, B18, F21). The prediction of

cell-cell interaction of a pair IL34 and CSF1R analysis is

produced by the stLearn package (15) (Figure 1C,

Supplementary Figures S3, S4). For L-R prediction with

CellPhoneDB, we applied the default parameters (6) and used
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a curated database v2.0.0. Similar to scRNA-seq analysis for cell-

cell communication via L-R pairs, we applied NicheNet L-R

prediction on ST-seq data. The upstream ligands were ranked by

descending Pearson values and top 5 ligands were pulled out to

sort out the corresponding upstream receptors (Figure 1G).
Multiplexed RNA in-situ hybridization
with RNAscope

The following target probes to detect L-R interaction were

designed by ACD probe design Team and used for the RNAscope

HiPlex assay (ACDCat. No. 324110): THY1 (ADV430611T2), IL34

(ADV313011T3) , CSF1R (ADV310811T4) , CD207

(ADV809521T7), and ITGAM (ADV555091T8). The assay was

performed as described in the manufacturer’s user manual (ACD,

324100-UM). Briefly, a 10µm thickness tissue slide sectioned from

the OCT embedded BCC or SCC tissue block was used for the assay

and a consecutive section was made for a negative control. The

(frozen) sections were fixed with freshly made 4% PFA for an hour

followed by a dehydration process in ethanol and then were

digested with protease IV for 30 minutes at room temperature.

The slide was stained with a mixture of the 5 probes to allow them

to hybridize with RNAs. The negative control slide was stained with

RNAscope HiPlex 12 Negative control Probe that was provided in

the kit. Consequently, a specific signal was amplified with high

efficiency using RNAscope HiPlex Amp 1–3 reagents. After several

iterative washes using a washing buffer, the sections were then

stained with RNAscope HiPlex Fluor T1–T4 reagent and were

counterstained with DAPI followed by mounting with a ProLong

Gold Antifade Mountant (Fisher Scientific).

The images were captured by Axio Z1 slide scanner (Zeiss) with

an appropriate adjustment of each fluorescent intensity. The first

round of images was performed using 4 filters including DAPI for

nuclei, Cy3 for THY1, Cy5 for IL34, and Cy7 for CSF1R. For the

high resolution of an image, a 40x objective was used and the Z-

stack interval was set up to 1.5µm resulting in 9 of Z-slices for each

slide. Completing the first round of image, the fluorophores on the

slide were cleaved for the second round of imaging process. The

sections were stained with RNAscope Fluoro T5 – T8 reagent and

images were captured using 3 filters including DAPI for nuclei, Cy5

for CD207 and Cy7 for ITGAM. The parameters for the

microscope were set up the same as the first round. The images

were further processed by ZEN software (version 3.2) for manual

stitching and adjusting contrast/brightness.
STRISH pipeline for cell-cell
interaction analysis

To uncover the interaction of immune cells and cancerous

cells in the whole BCC/SCC tissue section, we developed an
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analysis pipeline, called STRISH. A standard multiplexing

RNAscope which captured the cell nuclei and RNA fluorescence

signal in a multidimensional image format is used the input for

the pipeline. First, we utilised stardist (33) model and QuPath

software (34) to perform cell detection. We applied the

preprocessing step to calculate the mean signal values of all 9 of

Z-slices following Equation (1), which aggregates the signal form

multiple Z slices into one layer. Noted that during the RNAscope

imaging, the slide was scanned using Z-stack interval which

resulted in multiple slice images. It is possible to carry out cell

detection at every Z-slice image. However, stardist has consistently

outperformed other models in detecting overlapped signal from

nucleus (33, 35). Thus, using stardist allows accurately capturing

the cell with single layer image and avoid computational

inefficient. The cell detection process transforms every cell from

DAPI channel in image into a polygonal object (a margin for cell

membrane is added to nuclei boundary). Secondly, the mean

intensity of RNA fluorescence signal within cell boundary was

measured and assigned to the corresponding cell (Figure 2A Step

1). For the next step, STRISH provides a function converts into

single cell object called STRISH_Obj which customised from

AnnData (21).

ci =
on _ slides

j=1 cij

n _ slides
(1)

where ci indicates the DAPI or RNA marker channel, j is an

iterator of the Z-slices.

Finally, several data preprocessing functions are available

within STRISH to remove the effect of artificially high

background from fluorescent intensity (outlier) and cells that

are too large or small (false detection). By default, STRISH clips

that cell’s marker expressions to 95th percentile of all intensities

and remove cells that are too small (less than 5th percentile of all

areas). To determine more specific thresholds, STRISH enables

several functions for quality control and plotting the marker

expression of every cell (i.e. Figure 2C).

The downstream analysis for detecting cell local co-

expression by window scanning in STRISH is summarised in

Algorithm 1. More specifically, the STRISH functionality for cell

local co-expression was developed to iteratively scan through the

image, using a neighborhood window detection strategy to find

the target regions with cells expressing the marker of interest.

First, a cell scanning windows process is initiated to cover a

broad area of scanning with dimensions for width and height set

to a predefined rate of the whole scan images. While iterating

through the stack of all the existing windows, STRISH will

discard those windows with fewer than two cells (cell count is

based on DAPI signal). For each window, where the number of

detected cells is greater than a threshold (user’s defined

threshold depending on cancer tissue types), STRISH further

splits it into smaller windows (the default rate is 50% of the

current considering window dimension) and adds these smaller
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windows into the iteration stack (Figure 2A Step 2). Finally,

windows that pass the cell threshold check are subjected to the

next step to detect co-expression. Using expression level of each

marker for every cell as the features, STRISH performs cell

classification through standard single-cell cell clustering [i.e.

leiden clustering from scanpy (21)] and/or signal gating on

respective marker signal.

Algorithm 1: Cell detection by window scanning

throughout the tissue section
Fron
1. cell_segmentation_data = read_cell_detection

(dapi_channel_path)

2 . i n i t _ w i n d ow s = a d d _w i n d ow _ t o _ im a g e

(img_width_height)

3. cell_count = window_cell_detection(init_windows,

cell_segmentation_data)

4. while (init_windows.count() > 0) or (cell_count >

threshold) do:

5. windows_available = get_all_annotations()

6. for window in windows_available do:

7. count_cells = window_cell_detection (dapi_channel,

window)

8. if count_cells > 2 then:

9. widows_available.remove_window(window)

10. else if (count_cells > 2) and (count_cells < threshold):

11 . ce l l s_express_ l igand = run_ce l l_detec t ion

(ligand_channel)

12. cel ls_express_receptor = run_cell_detection

(receptor_channel)

13. export_to_file(count_cells, cells_express_ligand,

cells_express_receptor)

14. windows_available.remove_window(window)

15. else:

1 6 . n e w _ w i n d o w s = a d d _ a n n o t _ w i n d o w s

(widows_available, subset_rate)

17. remove_window(window)

18. end if

19. end for

20. end while
To quantitatively measure the local co-expression of each

window, we defined a scoring function to score the number of

cells that express either ligand or receptor in the same window

following the Equation (2). Coexpression score considers the

frequency of the cell that express the ligand and receptor reside

in each window. Besides, the coexpression score is constrained to

the presence of both marker ligand and receptor in the same

window which increase the likelihood of interaction between
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cells through that pair of L-R (Figure 2A Step 3). Once every

window is scored, a statistical test for the most significant

windows is used.

coexpression _ scorewi

=

ncells _ ligand _wi+ncells _ receptor _wi
ntotal _ cells _wi

0; if ncellsligand _wi = 0 or ncells _ receptor _wi = 0

(
(2)

where ncells_ligand, ncells_receptor, ntotal_cells are the number of

cells that express ligand, receptor marker, and total number of

cells present in the current window wi.
Test of significance windows with L-R
colocalization

To test for the significant of the cell-cell interactions based

on colocalization, STRISH performs a statistical test to compare

the level of co-localisation of the pair of ligand-receptor of

interest with the random combination of two pair of markers

available for the same window and across all the positive

windows. Briefly, STRISH finds tissue locations (windows) that

have coexpression of ligand-receptor pairs higher than random

expression in other windows and by other non ligand-receptor

pairs. There are two randomization procedures, testing for the

expression level relative to random non ligand-receptor pair at

one location (one window), and testing for significant expression

of one ligand-receptor pair relative to all locations [equation

(3)]. Firstly, the means of cells co-localisation for both ligand or

receptor within every window wi ≠ 0 is compared to the random

combination of a positive ligand and a non-receptor marker

from the same window. The comparison between real pair of

ligand-receptor with the matched randomized pairs allows us to

test for if there are significantly more cells expressing the ligand

and receptor within a window than cells co-expressing random

non ligand-receptor pairs. Secondly, for all the windows that

have the positive mean of co-localisation score of the same

ligand-receptor, we tested if certain windows had significant

more cells co-expressing the pair than the remaining windows.

This test reduces false positive detection, because while the

scanning windows approach could capture the region of

colocalization of cells expressing the ligand and receptor, the

colocalization can be random expression of the pairs that

happened to be in the same window but was at a low level.

The second randomness test aims to identify the windows which

have the highest frequency of colocalization of the target L-R

compared with all other windows throughout the tissue. The

combination of two statistical test generates a P value for each

window which correspond to either significant or insignificant

colocalization. Figure 2A (Step 4) shows the spatial heatmap of

the p-values obtained by the statistical test.
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Equation (3) describes our approach for the significant test

of ligand-receptor positive windows:

Pwi =

om
i=1 coexpress _ scorewi > coexpressrandom _ pairs _wi

� �
+on−1

j=1

coexpress _ scorewi > coexpress _ scorepos _ lrj

� �
total _ randomrandom _ pairs + total _windowpos _ lr

(3)

Where, coexpress_sorewi is colocalisation score of each window

wi, calculated as in Equation (2), (m is the number of windows in

the dataset); coexpressrandom_pairs_wi is the colocalisation score of the

same window wi, calculated for random pairs of other markers in

the dataset that are known to not interact, as calculated in Equation

(2); the number of random pairs is the permutation of n ∗ (n−1)
2

(where n is the number of markers in the dataset);

coexpress_sorepos-lrj is the colocalisation scores of all the windows

within the tissue that express the same ligand and receptor pair as in

wi; total_randomrandom_pairs denotes the total number of windows

with randomized pairs of markers; total_randompos_lr denotes the

number of windows with the same pair of target ligand-receptor

Algorithm 2: Quantifying local co-expression and statistic test
Fron
1. target_lr, random_pair_markers, window_available,

p_threshold = input()

2. coexpres_score_lr = cal_coexpress(window_available,

target_lr)

3. coexpres_score_random = cal_coexpress(window_available,

random_pair_markers)

4. window_score_all = concatenate(coexpres_score_lr,

coexpres_score_random)

5. all_window_pos_target_lr = window_score_all[target_lr]

6. for current_window in window_score_all.rows do:

7. window_coord = current_window.location()

8. current_lr_pair_scores = current_window[target_lr]

8. randow_pair_scores = current_window [window_coord,

random_pair_markers]

9. merged_background_scores = merge(random_pair_scores,

all_window_pos_target_lr)

1 0 . t o t a l = s um( c u r r e n t _ l r _ p a i r _ s c o r e s >=

merged_background_scores)

1 1 . c u r r e n t _ w i n d o w _ P v a l u e = t o t a l / l e n

(merged_background_scores)

1 2 . w i n d ow_ s c o r e _ a l l [ t a r g e t _ l r _ P v a l u e ] =

current_window_Pvalue

13. window_score_all[target_lr_log_Pvalue]= -log10

(window_score_all)

14. end for

15 . s i gn ific an t_w indows = w indow_sco r e_a l l

[window_score_all[target_lr_Pvalue] > p_threshold]

16. final_heatmap = visualise_windows(tissue_img,

significant_windows [target_lr_log_Pvalue])
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We developed a Python-based pipeline to construct the

heatmap of cell local co-expression.
As there were two rounds of RNAscope imaging, we added

to STRISH an image registration functionality. For the

interaction of ITGAM and THY1, as the signal of the genes

were captured in two separated imaging rounds with the

respective stitching in post process, some variants were

introduced (Supplementary Figures S7A, B). To overcome the

unaligned tissue layout, we performed image registration to map

one image to the other (Supplementary Figure S7C). The image

registration is performed solely using SITK library (36).

Our code for detecting local co-expression of L-R pairs,

generation of heatmap (interaction activity map), and tissue

plotting with contour marking tissue boundary is publicly

available on github and the STRISH software is available

on PyPi.
Single molecule droplet digital PCR

Frozen scrolls were adjacently sectioned (110-120 µm

total thickness) from the same OCT block that was used for

Visium and RNAscope assays. Three individual BCC tissues

from the block were isolated into separate tubes and were

snap-frozen with dry ice. Total RNA was extracted using

RNeasy MinElute Cleanup kit (Qiagen) according to the

manufacturer’s instructions. RNA integrity was determined

by Agilent RNA 6000 Pico kit and concentration was

measured by Qubit (Thermo Fisher). cDNA was synthesized

using Superscript™ IV VILO™ master mix with ezDNase™

enzyme (Invitrogen). In parallel, a No-RT control using equal

RNA input was also generated to confirm the absence of

gDNA contamination.

The ddPCR was carried out on the QX200 platform (Bio-

Rad) according to the manufacturer’s instructions (37). Each

triplicate reaction contained 1x ddPCR SuperMix for Probes no

dUTP (Bio-rad), 1x target primer/probe mix conjugated with

FAM or HEX (PrimePCR assay, Bio-Rad), cDNA, and dH2O.

The controls consisted of a reaction mixture containing dH2O

instead of cDNA or No-RT template from cDNA synthesis.

Greater than 10,000 droplets were generated in each well by an

automated droplet generator (range = 10,381 – 19,788).

Subsequently, PCR amplification was performed in a C1000

Touch Thermal Cycler using an optimized program. The

reaction was run at 95°C for 10 minutes, 40 cycles of 94°C for

30 seconds, 57.5°C for 30 seconds, and a final incubation at 98°C

for 10 minutes. Results from the amplification were read using a

QX200 Droplet Reader followed by data analysis with the

QuantaSoft analysis software. The absolute transcript number

for each target gene was determined by the software after

manually setting the threshold for defining positive droplets.

The mean of each triplicate was then calculated to give detected
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transcripts per microliter, from which values for transcript

copies/ng RNA input were calculated.
Generation of Vectra® Polaris™ protein

Multispectral analysis of FFPE tissue utilised the MOTiF™

PD-1/PD-L1 kit (Akoya Biosciences, cat# OP-000001). Staining

with Leica BOND RX (Leica Biosystems) and imaging with

Vectra® Polaris™ (Akoya Biosciences) was performed at The

Walter and Eliza Hall Institute (WEHI) Histology core facility as

per kit manufacturer instructions. Briefly, tissue was stained

through cycles of incubation with primary antibody, anti-IgG

polymer HRP and covalent labelling with Opal TSA

fluorophores, followed by heat induced epitope retrieval to

remove bound antibodies prior to subsequent antibody cycles.

Target markers included CD8 (Opal 480), PD-L1 (Opal 520),

PD-1 (Opal 620), FoxP3 (Opal 570), CD68 (Opal 780, PanCK

(Opal 690) and spectral DAPI DNA stain. Whole slide

multispectral scanning was performed on the Vectra®

Polaris™ using automatically adjusted exposure settings.

Image tiles were spectrally unmixed in InForm® (Akoya

Biosciences), then restitched in QuPath software (34).
Applying STRISH for analysis of Vectra®

Polaris™ mutiplex protein data

In addition to the analyses at transcriptomic level (RNAscope

data), we also extended STRISH’s applications to quantify the

interaction between cells at protein level. We reasoned that the

STRISH pipeline is computationally flexible and could be applied

to construct the landscape of L-R interaction at protein level.

Similarly, the analysis on RNAscope, STRISH first performed cell

detection by applying positive cell detection on the image that was

generated from the Vectra® Polaris™ system. Subsequently, the

pipeline applied the PD-1 and PD-L1 markers detection and

thresholding to the windows containing fewer than 100 cells.

Finally, the STRISHmin-max normalization was performed and a

heatmap was plotted to display the local co-expression levels of

PD-1 and PD-L1.
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