
fgene-11-610764 December 31, 2020 Time: 17:11 # 1

REVIEW
published: 12 January 2021

doi: 10.3389/fgene.2020.610764

Edited by:
Guilhian Leipnitz,

Federal University of Rio Grande do
Sul, Brazil

Reviewed by:
Josef Finsterer,

K.A. Rasmussen, Norway
Ayman W. El Hattab,

Tawam Hospital, United Arab
Emirates

Alessandra Maresca,
IRCCS Institute of Neurological

Sciences of Bologna (ISNB), Italy

*Correspondence:
José A. Sánchez-Alcázar

jasanalc@upo.es

Specialty section:
This article was submitted to

Genetics of Common and Rare
Diseases,

a section of the journal
Frontiers in Genetics

Received: 27 September 2020
Accepted: 26 November 2020

Published: 12 January 2021

Citation:
Povea-Cabello S,

Villanueva-Paz M, Suárez-Rivero JM,
Álvarez-Córdoba M, Villalón-García I,
Talaverón-Rey M, Suárez-Carrillo A,

Munuera-Cabeza M and
Sánchez-Alcázar JA (2021) Advances

in mt-tRNA Mutation-Caused
Mitochondrial Disease Modeling:

Patients’ Brain in a Dish.
Front. Genet. 11:610764.

doi: 10.3389/fgene.2020.610764

Advances in mt-tRNA
Mutation-Caused Mitochondrial
Disease Modeling: Patients’ Brain in
a Dish
Suleva Povea-Cabello1, Marina Villanueva-Paz2, Juan M. Suárez-Rivero1,
Mónica Álvarez-Córdoba1, Irene Villalón-García1, Marta Talaverón-Rey1,
Alejandra Suárez-Carrillo1, Manuel Munuera-Cabeza1 and José A. Sánchez-Alcázar1*

1 Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red:
Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain, 2 Instituto de Investigación Biomédica de Málaga,
Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, Málaga, Spain

Mitochondrial diseases are a heterogeneous group of rare genetic disorders that can
be caused by mutations in nuclear (nDNA) or mitochondrial DNA (mtDNA). Mutations
in mtDNA are associated with several maternally inherited genetic diseases, with
mitochondrial dysfunction as a main pathological feature. These diseases, although
frequently multisystemic, mainly affect organs that require large amounts of energy
such as the brain and the skeletal muscle. In contrast to the difficulty of obtaining
neuronal and muscle cell models, the development of induced pluripotent stem cells
(iPSCs) has shed light on the study of mitochondrial diseases. However, it is still a
challenge to obtain an appropriate cellular model in order to find new therapeutic options
for people suffering from these diseases. In this review, we deepen the knowledge
in the current models for the most studied mt-tRNA mutation-caused mitochondrial
diseases, MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like
episodes) and MERRF (myoclonic epilepsy with ragged red fibers) syndromes, and their
therapeutic management. In particular, we will discuss the development of a novel model
for mitochondrial disease research that consists of induced neurons (iNs) generated
by direct reprogramming of fibroblasts derived from patients suffering from MERRF
syndrome. We hypothesize that iNs will be helpful for mitochondrial disease modeling,
since they could mimic patient’s neuron pathophysiology and give us the opportunity to
correct the alterations in one of the most affected cellular types in these disorders.
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Abbreviations: 19m, mitochondrial membrane potential; 3D, 3-dimensional; CM, cristae membrane; CoQ10, coenzyme
Q10; DPI, days post-infection; EMA, European Medicines Agency; IBM, inner boundary membrane; IMM, inner
mitochondrial membrane; iNs, induced neurons; iPSCs, induced pluripotent stem cells; LCLs, lymphoblastoid cell lines;
LHON, Leber’s hereditary optic neuropathy; MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-
like episodes; MERRF, myoclonic epilepsy with ragged red fibers; miRNAs, micro RNAs; MNGIE, mitochondrial
neurogastrointestinal encephalomyopathy; MRC, mitochondrial respiratory chain; mtDNA, mitochondrial DNA; NDM,
neural differentiation medium; nDNA, nuclear DNA; NPCs, neural progenitor cells; OMM, outer mitochondrial membrane;
OXPHOS, oxidative phosphorylation; PGD, preimplantation genetic diagnosis; REST, RE-1 silencing transcription factor;
ROS, reactive oxygen species; SCs, supercomplexes; TALENs, transcription activator-like effector nucleases; tRNA, transfer
RNA; UPR, unfolding protein response; ZFNs, zinc-finger nucleases.
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INTRODUCTION: MITOCHONDRIA, THE
POWERHOUSES OF THE CELL

Mitochondria are small, mobile, and plastic organelles located
in the cytoplasm of most eukaryotic cells. These organelles are
responsible for important cellular processes, such as regulation
of apoptosis, calcium homeostasis, and reactive oxygen species
(ROS) production. However, the main function of mitochondria
is energy production through oxidative phosphorylation
(OXPHOS), which takes place in the mitochondrial respiratory
chain (MRC) (Russell and Turnbull, 2014). Mitochondria
contain their own DNA, the mitochondrial DNA (mtDNA),
which is circular and double stranded. The mitochondrial
genome consists of 16,569 nucleotide pairs that encode 13
proteins, two ribosomal RNA components, and 22 transfer
RNAs (tRNAs) (Alberts et al., 2002). Regarding mitochondrial
structure, these organelles are composed by two membranes,
the inner and the outer mitochondrial membranes (IMMs and
OMMs, respectively) that delimit two main compartments:
the internal matrix and the intermembrane space. The IMM
contains many folds named cristae that protrude into the matrix
and enlarge the IMM surface. This membrane can be subdivided
into two compartments, the inner boundary membrane (IBM)
and the cristae membrane (CM), that are connected via cristae
junctions. Albeit IMM is considered a continuous membrane,
lateral diffusion of membrane proteins is restricted and IBM
and CM exhibit an asymmetric protein distribution. This
heterogeneity is important for efficient OXPHOS, mitochondrial
biogenesis, and remodeling (Wollweber et al., 2017; Busch, 2020).
Although mainly separated, the inner and outer mitochondrial
membranes are partially connected via contact sites that are
involved in cristae organization (Bulthuis et al., 2019). Since
the OMM is more permeable than the IMM, containing many
copies of the transport protein porin, the intermembrane space
composition is equivalent to the cytosolic one. However, due to
the presence of cardiolipin, the IMM is specially impermeable to
ions and it is selectively permeable to small molecules required
by matrix enzymes, thanks to the presence of several transport
proteins (Alberts et al., 2002).

For producing energy, mitochondria rely on the MRC
components that are five multiprotein complexes whose
polypeptides are encoded by mtDNA and nuclear DNA
(nDNA), the latter contributing the most. For that reason,
mitochondrial function relies on both genomes (Alberts et al.,
2002). Four of these components (Complexes I–IV) are involved
in electron transfer and proton pumping across the IMM,
which generate an electrochemical proton gradient responsible
for the mitochondrial membrane potential (19m), a marker
of mitochondrial health. The flux of protons into the matrix
through the ATP synthase (Complex V) drives ATP synthesis
(Alberts et al., 2002). There is a current consensus about a higher
level of organization of these components that are arranged in
supercomplexes (SCs) (Brzezinski, 2020) that exist in a wide
variety of stoichiometries (Cogliati et al., 2016). SC assembly
and stability are determined by mitochondrial cristae shape
since knockdown of OPA1, a protein that plays a key role in

mitochondrial fusion, impairs SC formation (Cogliati et al., 2013;
Jang and Javadov, 2020). In addition, cellular pathways such as
the unfolding protein response (UPR) are involved in cristae
density and SC assembly, improving mitochondrial respiratory
function under nutrient stress conditions (Balsa et al., 2019).
Thus, this higher level of organization is dynamic and adapts to
the energetic status of the cell. Structural and modeling studies
indicate that SC assembly facilitates electron transfer, prevents
protein aggregation, and preserves the structural organization of
MRC components (Jang and Javadov, 2020). However, despite
extensive studies, SC functional relevance remains unknown
(Brzezinski, 2020).

Defects in mitochondrial function have been linked not only to
genetic mitochondrial diseases but also to cardiovascular diseases
(Murphy et al., 2016) and neurodegenerative disorders such as
Huntington’s and Parkinson’s diseases (Zeviani and Carelli, 2003;
Martin-Jimenez et al., 2020).

MITOCHONDRIAL DISEASES

Mitochondrial diseases are a heterogeneous group of rare
genetic disorders caused by a partial or total dysfunction of
mitochondria. These illnesses can be caused by mutations
in nDNA or mtDNA. These mutations affect not only
genes encoding for MRC components but also those that
are involved in protein translation and assembly, mtDNA
stability, as well as mutations in those nDNA-encoded proteins
involved in the maintenance of mitochondrial nucleotide pools,
nucleotide transport, mtDNA replication, RNA transcription,
and mitochondrial dynamics (Schon et al., 2012; Chapman et al.,
2020). Mitochondrial diseases are clinically heterogeneous; they
may occur at any age, and patients manifest a wide variety of
symptoms (Gorman et al., 2016). However, all of them share
morphological and biochemical features. As a consequence of the
MRC deficiency, cells manifest a reduced enzymatic function of
MRC components, a reduction in oxygen consumption and ATP
synthesis, and a ROS overproduction. In the case of patients,
they suffer from lactic acidosis and elevated pyruvate levels in
serum at rest and, specially, after moderate exercise. Additionally,
patients’ muscle biopsies usually show ragged red fibers that
reflect the proliferation of OXPHOS-defective mitochondria
(Schon et al., 2012).

Mitochondrial Diseases Caused by
Mutations in Mitochondrial Transfer
RNAs
Mutations in mtDNA are associated with a wide variety
of maternally inherited genetic disorders that provoke
mitochondrial dysfunction (Kirino and Suzuki, 2005). Since
1988, when the first mtDNA mutations were identified (Holt
et al., 1988; Wallace et al., 1988; Zeviani et al., 1988), more
than 400 pathogenic mutations related to specific and non-
specific diseases have been characterized (Lott et al., 2013).
Among them, some frequent mitochondrial disorders caused
by a point mutation in mtDNA are MELAS and MERRF
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syndromes. In most of the cases, MELAS syndrome is caused
by a transition from adenine to guanine in the position 3243 in
the mt-tRNALeu(UUR) (MT-TL1) gene (Schon et al., 2012). In
the case of MERRF syndrome, the m.8344A > G mutation in
the mt-tRNALys (MT-TK) gene is the most frequently associated
with the disease (Shoffner et al., 1990; Yoneda et al., 1990;
Kirino and Suzuki, 2005).

Pathogenic mutations in mt-tRNA affect mtDNA translation,
causing a defect in protein synthesis and decreasing MRC
complex function (Brisca et al., 2015). In the case of MELAS
syndrome, the m.3243A > G mutation affects mt-tRNA
structure stabilization, methylation, aminoacylation, and triplet
recognition (Finsterer, 2007). This mutation causes a specific
defect of UUG-rich gene translation such as ND6 gene that
encodes a subunit of the NADH-coenzyme Q reductase complex,
also known as Complex I. This translation defect results in
specific Complex I deficiency due to a reduction in the synthesis
of ND6 subunit that is characteristic of the MELAS syndrome
(Kirino and Suzuki, 2005). On the other hand, m.8344A > G
mutation, which accounts for the MERRF syndrome, affects both
AAA and AAG codon translation, causing a defect of whole
mitochondrial protein synthesis. This fact could explain some
of the different symptoms that are associated with these two
different diseases (Kirino and Suzuki, 2005).

Due to the multicopy nature of mtDNA, these mutations
can be homoplasmic or heteroplasmic. Thus, MELAS and
MERRF syndromes are heteroplasmic, which means that
mutant and wild-type mtDNA copies coexist within the
same cell. This feature is associated with the severity of
the symptoms and hinders disease prognosis. In fact, it is
thought that there is a threshold from which biochemical
alterations are apparent (Zeviani and Carelli, 2007). This genetic
heterogeneity gives rise to a wide variety of symptoms of
diverse severity among patients. Both MELAS and MERRF
syndromes are associated with neurological symptoms. MELAS
syndrome affects several organs, and some of its manifestations
include stroke-like episodes, dementia, epilepsy, lactic acidemia,
myopathy, recurrent headaches, hearing impairment, diabetes,
and short stature (El-Hattab et al., 2015). Stroke-like episodes
are one of the main features of this syndrome, and patients’
brain MRIs usually show multiple stroke-like lesions in both
occipital and temporoparietal areas (Angelini, 2014; El-Hattab
et al., 2015). In the case of MERRF syndrome, the first symptom is
usually myoclonus that is followed by generalized epilepsy, ataxia,
weakness, and dementia. Other findings are hearing loss, short
stature, optic atrophy, and cardiomyopathy (DiMauro, 2015).

Therapeutic Management of
Mitochondrial Diseases
The development of useful therapies for mitochondrial diseases
is challenging due to the difficulty of correcting the lack or
dysfunction of essential mitochondrial proteins, the phenotypical
heterogeneity of the diseases, and multisystem alteration.
Furthermore, the brain, one of the most affected organs, is
difficult to reach by potential therapies because it is protected by
the blood–brain barrier. For those reasons, there are no effective

treatments available for mitochondrial diseases and management
of these diseases is mainly symptomatic. Still, several strategies
that are summarized in this review (Viscomi and Zeviani, 2020)
have been developed.

Pharmacological treatment options are generally focused on
targeting cellular pathways, such as mitochondrial biogenesis or
autophagy, or preventing oxidative damage. For these reasons,
AMP-activated protein kinase (AMPK) and mammalian target
of rapamycin complex 1 (mTORC1) signaling have been the
main targets of these strategies. Some of the most known
drugs for treating mitochondrial diseases are rapamycin and
its analogs (rapalogs) that inhibit mTORC1. Rapamycin and/or
rapalogs have been demonstrated to improve the symptoms
of some patients (Sage-Schwaede et al., 2019), but individual
cases should be evaluated and long-term side effects remain
unknown (Viscomi and Zeviani, 2020). Another common
compound that is usually used for mitochondrial disease
treatment is coenzyme Q10 (CoQ10), an essential component
in the mitochondrial electron transport and antioxidant in cell
membranes (Santa, 2010). However, improvement of symptoms
under CoQ10 treatment has been variable, and no sustained
clinical benefits have been reported (Santa, 2010; Gorman et al.,
2016). The activation of mitochondrial biogenesis through
AMPK is another common therapeutic option for these diseases.
5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside
(AICAR), an AMP analog that activates AMPK, has been
demonstrated to ameliorate the clinical phenotype in mouse
models of mitochondrial diseases (Viscomi and Zeviani, 2020),
but it is still not clarified if all tissues will benefit from this
treatment in the long term (Suomalainen and Battersby, 2018).

Particularly in mtDNA mutations, several supplements as
antioxidants and cofactors are being used. In MELAS syndrome,
these treatments are L-arginine, citrulline, CoQ10, creatine
monohydrate, and L-carnitine (El-Hattab et al., 2015). In
addition, oral taurine supplementation has been demonstrated
to reduce the recurrence of stroke-like episodes and increase
taurine modification in mt-tRNALeu(UUR) (Ohsawa et al., 2019).
Moreover, idebenone, a CoQ10 analog, has shown promising
results alone (Ikejiri et al., 1996) or in combination with
riboflavin (Napolitano et al., 2000) when used in concrete
patients. In Leber’s hereditary optic neuropathy (LHON),
a mitochondrial disease commonly caused by a primary
homoplasmic mutation in mtDNA (Meyerson et al., 2015),
orphan designation (EU/3/07/434) was granted by the European
Medicines Agency (EMA) for idebenone on 2007, and recently,
commercialization of idebenone (Raxone) has been authorized
by EMA for the treatment of visual impairment in adolescent
and adult patients with this disease (EMA/480039/2015). In the
case of MERRF syndrome, CoQ10, idebenone, or L-carnitine
is frequently prescribed. Conventional anticonvulsant drugs,
such as levetiracetam, are also used to treat seizures (DiMauro
and Hirano, 1993; Finsterer, 2019). However, none of these
treatments has demonstrated enough effectiveness and only
partially ameliorate some symptoms.

Given the diversity of mutations and the different therapeutic
options, a personalized therapeutic approach is required in
mitochondrial diseases. For this reason, the development of
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cellular models derived from patients (discussed below) can be
useful for both the evaluation of new drugs and the repositioning
of existing ones.

Gene therapy is a promising alternative for treating
mitochondrial diseases. Since pathogenic mtDNA mutations are
usually heteroplasmic, reducing mutational load can be used
as a therapeutic approach. There are several tools that could
target mtDNA, but only two of them have been demonstrated
to be successful: zinc-finger nucleases (ZFNs) and transcription
activator-like effector nucleases (TALENs). Both tools are
delivered into mitochondria using a mitochondria localization
signal, and they selectively target mtDNA sequences to create
double-strand breaks (Reddy et al., 2020).

Zinc-finger nucleases have been demonstrated to reduce
mutant mtDNA and consequently restore mitochondrial
respiratory function in cytoplasmic hybrid (cybrid) cell models
(Minczuk et al., 2008; Gammage et al., 2014). In addition, this
tool has been able to specifically eliminate mutant mtDNA
in the cardiac tissue of a mitochondrial disease mouse model
(Gammage et al., 2018). ZFNs are small and, due to their
similarity to mammalian transcription factors, they are thought
to have low immunogenic properties. However, they are
complex, expensive, and exhibit lower specificity and efficiency
than TALENs (Reddy et al., 2020). TALENs have been widely
used for genetic manipulation in different organisms. This tool
has been demonstrated to reduce mutant mtDNA load and
improve the pathophysiology in a cellular model of MERRF
syndrome (Hashimoto et al., 2015) as well as to eliminate the
m.3243A > G mutation in MELAS iPSCs and porcine oocytes
(Yang et al., 2018). In addition, TALENs have been able to
reduce mutant mtDNA load in a mouse model harboring a
mutation in a mt-tRNA, reverting disease-related phenotypes
(Bacman et al., 2018). These gene therapy tools could be
used together with other therapies aiming the elimination or
prevention of pathogenic mtDNA transfer from mother to child
(Nissanka and Moraes, 2020).

Regarding prevention of these diseases, the only option
available is transferring embryos below the threshold of clinical
expression in order to avoid or at least reduce the risk of
transmission of mtDNA mutations. The selection of these
embryos is based on preimplantation genetic diagnosis (PGD)
(Gorman et al., 2016). In addition, there is a new strategy,
the mitochondrial donation, that consists of the substitution of
mutant maternal mitochondria using enucleated donor oocytes
(Gorman et al., 2016). However, this technique has raised ethical
issues and remains controversial (Saxena et al., 2018).

COMMON MODELS FOR
MITOCHONDRIAL DISEASE STUDY

Clinical research in mitochondrial diseases has been traditionally
carried out in many patients worldwide. There are many
articles regarding these disorders that are in fact case reports.
These studies have provided valuable information about these
diseases such as the clinical hallmarks, the mutations that
cause the disease, the onset, and the effects of the available

treatments and supplements. In addition, they help to infer the
pathophysiological mechanisms underlying these diseases.

However, experimental research has been hindered by the
lack of proper biological models. These models are necessary for
understanding the pathophysiology of the diseases as well as for
finding new therapeutic targets. Despite the difficulties to mimic
the repercussions of mtDNA mutations, there are several models
to study mitochondrial diseases, such as microorganism, animal,
and cellular models (Figure 1).

Microorganism Models
Saccharomyces cerevisiae is the most used microorganism model
to study mitochondrial diseases. Mitochondrial functions are
highly conserved between humans and S. cerevisiae, and this
microorganism maintains pathogenic mutations that lead to
mitochondrial dysfunction in humans. Therefore, yeasts are a
good model to study mitochondrial diseases, providing insight
into both physiological and pathophysiological processes (Baile
and Claypool, 2013). The S. cerevisiae strain harboring the A14G
mutation is equivalent to the human m.3243A > G mutation that
causes MELAS syndrome. This model has been demonstrated
to be suitable for compound screening (Garrido-Maraver et al.,
2012). In the case of MERRF syndrome, there are no yeast
strains with an equivalent mutation. However, the SLM3 gene in
yeast is homologous to human TRMU, an enzyme involved in
mt-tRNA wobble position thiolation. Mutations in SLM3 gene
cause phenotypic features similar to those of m.8344A > G
mutation, and consequently, yeasts harboring a defect in that
gene have been used to study MERRF syndrome (Umeda et al.,
2005). However, they do not maintain these mutations in a
heteroplasmic state, so this aspect cannot be assessed using this
model (Rinaldi et al., 2010).

Animal Models
To deepen the knowledge in the consequences of mtDNA
mutations as well as develop new therapeutic strategies for
mitochondrial diseases, animal models are necessary. However,
there are only a few animal models for studying mitochondrial
diseases, and none of them is specific for MELAS and
MERRF syndromes.

The fruit fly Drosophila melanogaster is an excellent model
organism for studying molecular mechanisms of human
diseases and has been used for modeling neurodegenerative
diseases such as Alzheimer’s and Parkinson’s diseases as
well as for drug discovery (Pandey and Nichols, 2011).
In the case of mitochondrial diseases, there are Drosophila
mutants of MRC components that show neurodegeneration,
motor dysfunction, increased ROS production, and abnormal
mitochondrial morphology (Liu et al., 2007; Mast et al., 2008),
as well as mutants of mtDNA, such as a model of Leigh syndrome
(Celotto et al., 2006). However, currently, it is not possible to
generate a Drosophila mutant with intermediate heteroplasmy for
studying MELAS and MERRF syndromes (Palladino, 2010).

Mitochondrial composition, function, and mtDNA are well
conserved between Caenorhabditis elegans and humans (Falk
et al., 2009). C. elegans growth and development are energy-
dependent, and the main ATP source for this organism is the
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FIGURE 1 | Biological models for mitochondrial disease research.
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MRC, which makes it interesting for studying mitochondrial
diseases. In fact, there are worm strains that harbor mutations
in MRC subunits encoded by nDNA (Ishii et al., 1998; Kayser
et al., 2001; Tsang et al., 2001). However, mtDNA mutations
have a mild effect in C. elegans (Tsang and Lemire, 2003), and
they do not mimic the pathophysiological features of mtDNA
mutation-caused mitochondrial diseases.

Mammalian models are necessary for studying pathogenesis
or tissue-specific alterations that cannot be addressed using
other models. Several murine models for OXPHOS deficiencies
caused by mutations in nuclear genes encoding for MRC
complexes, regulatory factors, and other components required
for mitochondrial function have been created by transgenesis
(Iommarini et al., 2015; Torraco et al., 2015). However, this is
not the case for diseases caused by mutations in mtDNA, whose
modeling is technically difficult (Tyynismaa and Suomalainen,
2009). Different mutagenesis methods to generate mutations in
mouse mtDNA have been described, and these mutations can
be transferred from cultured cells into mice, thereby creating
transmitochondrial mice (mito-mice) (Inoue et al., 2000; Nakada
et al., 2001; Fan et al., 2008; Kauppila et al., 2016). For
example, a mouse model of LHON has been generated by
introducing the equivalent of the human ND6 G14600A P25L
mutation in homoplasmy into the mouse. Mutant mice showed
a reduction in retinal function and neuronal accumulation
of abnormal mitochondria among other events probably due
to partial Complex I defects and increased ROS production
(Lin et al., 2012). However, the generation of a mouse model
with pathological heteroplasmic mtDNA mutations has proved
challenging due to the multicopy nature of the mitochondrial
genome. Furthermore, the transfection of plasmids or modified
mtDNA into mouse mitochondria has not been successful
(McGregor et al., 2001).

Cellular Models
Due to the lack of proper animal models for studying these
diseases, cellular models have been extensively used in order
to study MELAS and MERRF syndromes. Among them, we
can find transmitochondrial cybrids, human B lymphoblastoid
cell lines (LCLs), patient-derived cells such as myoblasts and
dermal fibroblasts, and induced pluripotent stem cells (iPSCs)
(Hu et al., 2019).

Transmitochondrial cybrids are generated by fusing
enucleated cells that harbor wild-type or mutated mtDNA
with ρ(0) cells, in which endogenous mtDNA has been
depleted. For that reason, they are very useful for studying
mtDNA mutations excluding the influence of nDNA variability
(Vithayathil et al., 2012; Wilkins et al., 2014), and they have
been used for studying MELAS and MERRF syndromes (Cotan
et al., 2011; De la Mata et al., 2012; Garrido-Maraver et al.,
2012; Villanueva-Paz et al., 2020). However, cybrid models show
important limitations such as the need for a high mutational load
to observe some pathophysiological features and the alteration
in the cell behavior due to the loss of nDNA and mtDNA
interactions (Dunbar et al., 1995).

Lymphoblastoid cell lines are generated by transformation of
peripheral B lymphocytes and constitute a valuable source of

mitochondria to study their function in mitochondrial diseases
patients (Bourgeron et al., 1992). This model offers advantages
such as the facility to obtain large quantities of lymphocytes and
that they can be immortalized efficiently (Hu et al., 2019). For that
reason, they have been used to study MERRF syndrome (Chang
et al., 2013) and other mitochondrial diseases (Chin et al., 2018).
Although this model is still the choice of storage for patients’
genetic material due to its low somatic mutation rate and ease of
maintenance, LCLs have some limitations such as the presence
of two different cellular stages and the different response in
comparison with other cell types (Sie et al., 2009). Moreover, they
are difficult to manipulate, and the phenotype is often not evident.

Myoblasts derived from patients’ biopsies are a very attractive
model because they belong to one of the most affected tissues
in these diseases. For that reason, they have been used to study
the role of antioxidant enzymes and ATP levels in MELAS
syndrome (Rusanen et al., 2000) and the distribution and
expression of mutant mtDNAs in MERRF syndrome (Boulet
et al., 1992). However, using myoblasts as a cellular model
for mitochondrial diseases has several drawbacks. First, large
quantities of proliferative myoblasts are difficult to isolate
from a muscle tissue biopsy at later stages, so it is probable
that more than one muscle biopsy is necessary to obtain
enough cells for the analysis required. Moreover, primary
myoblasts demand special conditions for optimal growth, and
myoblast enrichment protocols are needed in order to obtain a
pure cell culture.

Cultured fibroblasts are other patient-derived cells that have
been a useful tool to study mitochondrial diseases. This model
offers numerous advantages, since it is easy to obtain from a little
invasive process such as a skin biopsy. In addition, fibroblast
cultures are highly proliferative and provide a renewable source
of cells (Hu et al., 2019). This model has been and still is
widely used for studying cellular pathophysiology and as a
screening tool for MELAS and MERRF syndromes (Wu et al.,
2010; Cotan et al., 2011; De la Mata et al., 2012; Garrido-
Maraver et al., 2015; Hayashi and Cortopassi, 2015; Villanueva-
Paz et al., 2020) and other mitochondrial diseases. Nevertheless,
it has some drawbacks as a cellular model for these diseases.
First, they rely on glycolytic metabolism for energy production;
therefore, they are not much vulnerable to energy-dependent
defects resulting from mitochondrial dysfunction. In addition,
they are difficult to maintain in culture and sometimes it is
challenging to observe pathophysiological alterations, especially
when the heteroplasmy load is low.

The most affected cell types in these diseases are the
brain and the skeletal muscle cells, since they have a huge
mitochondrial density due to high energy requirements and,
consequently, they are more vulnerable to defects caused by
mitochondrial dysfunction (DiMauro, 2007). In fact, neuron
alteration is such that MELAS and MERRF syndromes are
considered neurodegenerative mitochondriopathies in which
there is neuronal cell death. MELAS neurodegeneration usually
involves cortical territories in occipital and temporoparietal
areas, as well as neurons in the Purkinje layer; meanwhile, in
MERRF syndrome, the most affected areas are the Purkinje layer
and dentate nucleus (Swerdlow, 2009).
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The appearance of iPSCs in 2006 (Takahashi and Yamanaka,
2006) has led to numerous possibilities in the field of disease
modeling. In fact, it has been a great step forward in the study
of neurodegenerative diseases (Ebert et al., 2009; Lee et al., 2009;
Kondo et al., 2013), as well as mitochondrial diseases (Cherry
et al., 2013; Kodaira et al., 2015; Chou et al., 2016; Zhang et al.,
2016; Inak et al., 2017; Lorenz et al., 2017; Yang et al., 2018).
These iPSCs can be differentiated into somatic cell types such as
neurons, which allow the study of these diseases in one of the
most affected cellular types.

In the case of MERRF syndrome, neural progenitor cells
(NPCs) derived from iPSCs have been demonstrated to
reproduce pathophysiological features previously observed in
other models of the disease, such as an impaired mitochondrial
respiration, increased ROS production, altered antioxidant
enzyme expression, as well as a fragmented mitochondrial
network (Chou et al., 2016). Regarding MELAS syndrome,
iPSC-derived neurons have made possible the study of not
only common pathophysiological alterations but also neuron-
specific alterations in the disease. For instance, in this work
(Klein Gunnewiek et al., 2020), MELAS iPSC-derived neurons
harboring a high heteroplasmy load showed lower dendrite
complexity compared to control and low heteroplasmy neurons.
These neurons also exhibited a reduced synaptic density,
axonal mitochondrial abundance, and frequency of spontaneous
excitatory activity, as well as an impaired neuronal network
activity and synchronicity.

In addition, iPSC-derived neurons from mitochondrial
disease patients can show different pathophysiological
characteristics than parental patient-derived cells. For example,
Hämäläinen et al. (2013) observed that parental MELAS
fibroblast lines with intermediate heteroplasmy levels showed
a combined deficiency of mtDNA-encoded Complexes I, III,
and IV subunits; meanwhile, MELAS iPSC-derived neurons
manifested a remarkable CI deficiency, which is typical
for MELAS patient tissues and commonly reported upon
mitochondria-associated neurodegeneration.

Reprogramming into iPSCs offers several advantages, since
iPSCs can be cultured and a large quantity of starting material can
be obtained. However, the protocol is complex, expensive, and
time-consuming (Dolmetsch and Geschwind, 2011; Figure 2).
Furthermore, this technique results in some disadvantages related
to their use in mitochondrial disease research.

Several studies have demonstrated that reprogramming into
iPSCs resets cellular age (Hsu et al., 2016), obtaining young
neurons that could not show cell pathophysiology and, as a
result, might not be useful to study neurodegenerative diseases.
Furthermore, another study shows that this approach causes
mitochondrial rejuvenation and an improvement in the cellular
energy production capacity upon differentiation (Suhr et al.,
2010). Another drawback would be that the use of these cells
in cell replacement therapies is limited due to uncompleted
differentiation and their propension to form tumors (Parmar and
Jakobsson, 2011). In addition, analysis of mtDNA variants in

FIGURE 2 | Induced neurons (iNs) and induced pluripotent stem cell (iPSC)-derived neuron generation. This figure summarizes the protocols for the generation of
iNs and iPSC-derived neurons. For iN generation, following lentiviral transduction of neural transcription factors, cells are exposed to a neural differentiation medium
(NDM) I containing specific small molecules and growth factors and then to an NDM II containing only the growth factors. iNs are obtained at 25–35 days
post-infection (DPI). For iPSC-derived neuron generation, fibroblasts are transduced with Yamanaka factors to generate iPSCs. These iPSCs are converted into
neural progenitor cells (NPCs) by defined factors, and these are then differentiated into the desired neuron subtype.
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iPSCs showed that low levels of potentially pathogenic mutations
in the fibroblasts are revealed during reprogramming into
iPSCs. Thus, mutant iPSCs are generated, causing a deleterious
effect on their differentiated progeny and contributing to intra-
person variability. This accumulation of mtDNA mutations can
impact metabolic functions in iPSCs, hampering mitochondrial
respiration (Kang et al., 2016; Perales-Clemente et al., 2016).
These results highlight the need for monitoring mtDNA
mutations and examining the metabolic status and quality of
iPSCs intended for disease modeling or drug screening. Finally,
reprogramming into iPSCs provokes an mtDNA segregation
toward homoplasmy. In this way, after reprogramming, mutant
and wild-type cells are obtained (Pickrell and Youle, 2013). These
wild-type cells might be useful for cell therapy or as a syngeneic
control, since they would be identical but will not express
pathophysiological features. Therefore, the iPSC approach could
be considered an autologous source of material suitable for cell
therapy, without the risk of immune rejection (Smith et al.,
2015). However, homoplasmic mutant iPSCs would not reflect
patients’ cell pathophysiology, since they harbor the mutation in
a heteroplasmic state. Thus, there are major limitations that we
still have to overcome, and currently, iPSCs have no therapeutic
use (Crow, 2019). All of the above reasons make necessary the
generation of additional models for these diseases.

NEW MODEL FOR MITOCHONDRIAL
DISEASE RESEARCH: INDUCED
NEURONS GENERATED BY DIRECT
REPROGRAMMING

Direct reprogramming of fibroblasts into induced neurons (iNs)
was achieved for the first time in 2010 (Vierbuchen et al.,
2010). Using a combination of proneural transcription factors
such as Ascl1, Brn2, and Myt1l, Vierbuchen et al. (2010)
achieved the conversion of embryonic and postnatal murine
fibroblasts into functional neurons in vitro. One year later,
several advances allowed the improvement of the technique
and increased the conversion efficiency. One of them was the
utilization of microRNAs (miRNAs), in concrete miR-9/9∗ and
miR-124, that leads to the conversion of fibroblasts into neurons
even without the overexpression of proneural factors. However,
since the reprogramming efficiency was low, these miRNAs were
combined with the expression of NeuroD2 factor, Ascl1 and
Myt1l (Yoo et al., 2011). Alternatively, using NeuroD1 factor
together with the overexpression of Ascl1, Brn2, and Myt1l, direct
reprogramming of fibroblasts into iNs was achieved with high
efficiency (Pang et al., 2011). Additionally, compound screening
has allowed the usage of a combination of small molecules and
neural growth factors that increase reprogramming efficiency
(Ladewig et al., 2012; Pfisterer et al., 2016).

Later, Drouin-Ouellet et al. (2017a) described a barrier
for adult fibroblast reprogramming, the REST (RE-1 silencing
transcription factor) complex, and developed one single lentiviral
vector for the conversion of human adult fibroblasts into iNs
in a very efficient manner. These iNs expressed neuron-specific

proteins and exhibited electrophysiological properties. A recent
paper from this group describes that the addition of the miRNAs
indicated above, together with the overexpression of Ascl1
and Brn2, and the REST complex silencing, support neuronal
maturation (Birtele et al., 2019). This technique allows the
generation of a pan-neuronal population, but there are other
strategies for reprogramming into neuronal subtypes, such as
dopaminergic (Caiazzo et al., 2011), motor (Son et al., 2011;
Qin et al., 2018), and serotonergic neurons (Xu et al., 2016).
These approaches are valuable for some diseases in which there
is one specific neuronal subtype affected or even different neuron
subtypes may express distinct disease-related phenotypes.

Direct reprogramming brings numerous advantages. First, the
procedure is relatively simple and fast (Ladewig et al., 2013;
Figure 2). In addition, iNs maintain the age (Mertens et al.,
2015) and the epigenetic marks of the donor (Horvath, 2013;
Huh et al., 2016), which make them excellent models to study
neurodegenerative diseases such as mitochondrial disorders.
Furthermore, iNs have demonstrated to not cause tumorigenic
processes after in vivo reprogramming (Torper et al., 2013),
so they might be a promising tool for cell therapy. Thus, iN
generation from patients’ fibroblasts is thought to be a useful
approach for studying the pathogenesis of these diseases.

One of the main challenges of direct reprogramming is
reaching a high conversion efficiency. It is defined as the
percentage of iNs obtained over the number of cells plated for
conversion and can be very variable depending on the starting
cells and the protocol used. The first approaches using direct
reprogramming obtained very poor conversion efficiencies (Yoo
et al., 2011; Ladewig et al., 2013), but the single vector-based
approach developed by Drouin-Ouellet et al. (2017a; 2017b)
and Shrigley et al. (2018) can generate very high yields of iNs.
However, it is also necessary to reach a high percentage of purity,
which is the number of iNs in the final population over the cells
remaining in the plate. These two parameters are crucial since
neurons are post-mitotic cells not able to further expand.

In addition, maintaining iNs in long-term cultures is difficult
and expensive, since cell death can be observed from 30 days
post-infection (DPI). This fact may hinder electrophysiological
characterization of iNs, since the earliest time point when
spontaneous action potentials have been detected is at 80–100
DPI (Drouin-Ouellet et al., 2017a). Moreover, iNs tend to form
clusters during the reprogramming process, hampering isolation
of individual cells for further analysis.

To our knowledge, the first work that uses iNs for
mitochondrial disease study comes from our group. Following
the protocol established for generating iNs using a single lentiviral
vector (Shrigley et al., 2018), we successfully generated iNs
from two MERRF patient-derived fibroblasts harboring the
m.8344A > G mutation (Villanueva-Paz et al., 2019). The
proportion of this mutation in the fibroblast cultures was 66% in
MERRF 1 and 33% in MERRF 2 fibroblasts, and we demonstrated
that iNs maintained these proportions after reprogramming.
The maintenance of the heteroplasmy load is crucial if iNs
are going to be used for disease modeling or as a screening
platform. In addition, this fact makes direct reprogramming
a more suitable approach for studying mitochondrial diseases
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than iPSC generation because, in the latter case, mtDNA
segregation and a tendency to homoplasmy have been observed
(Pickrell and Youle, 2013).

In this work (Villanueva-Paz et al., 2019), the presence
of bouton-like structures and spine-like protrusions was
observed in both control and MERRF iNs, suggesting neuronal
maturation. Furthermore, in another paper from our group,
we performed electrophysiological recordings, and iNs showed
electrophysiological properties at 60–80 DPI (Villanueva-Paz
et al., 2020). The presence of neuronal maturation markers and
functional properties suggest that iNs are behaving like neurons
and make them a good candidate for mimicking the alterations
happening in the patients’ brain. We also characterized the
iN areas, perimeters, neurite features, as well as mitochondrial
morphology, and we observed differences between control and
MERRF iNs, indicating that the maintenance of the mutational
load was affecting these features (Villanueva-Paz et al., 2019).

In this regard, MERRF iNs also showed pathophysiological
features that have been described in other models of the
disease such as fibroblasts, cybrids (De la Mata et al., 2012;
Villanueva-Paz et al., 2020), and NPCs derived from MERRF
iPSCs (Chou et al., 2016). For instance, they showed a
reduced 19m, a ROS overproduction, a disrupted autophagy
flux, and an increased mitophagy (Villanueva-Paz et al.,
2019). This fact makes them a good model for studying the
cellular alterations happening in one of the most affected
cell types in the disease. MERRF iNs were also suitable
for performing other experiments such as the assessment
of cellular bioenergetics using an extracellular flux analyzer.
In these experiments, MERRF iNs showed alterations in
the bioenergetic status such as reduced basal and maximal
respirations, spare respiratory capacity, and ATP production
(Villanueva-Paz et al., 2019). Some of these alterations were able
to be rescued by Guttaquinon CoQ10 (a water-soluble derivative
of CoQ10) treatment, demonstrating that iNs are not only
suitable for disease modeling but also for compound screening
(Villanueva-Paz et al., 2020).

CONCLUSION AND FUTURE
PERSPECTIVES

The generation of mitochondrial disease patient-derived iNs is a
very promising starting point for the advance in the study of these
illnesses and the search for new treatments. This model has been
demonstrated to have neuronal identity as well as to reproduce

pathophysiological features of the diseases (Villanueva-Paz
et al., 2019). Among these characteristics, they have been
able to show mitochondrial dysfunction that is a hallmark in
mitochondrial disorders and other neurodegenerative illnesses
such as Parkinson’s or Huntington’s diseases (Zeviani and Carelli,
2003). The presence of these features in iNs is even more
important due to the fact that they are the most affected cell
types in neurodegenerative disorders. This model also brings
other advantages for studying this kind of diseases, such as the
maintenance of the age and the epigenetic marks of the donor
(Horvath, 2013; Mertens et al., 2015; Huh et al., 2016). For
those reasons, we think that iNs are very valuable for modeling
diseases that are accompanied by mitochondrial dysfunction.
An interesting further step in heteroplasmic mitochondrial
disease modeling would be the establishment of 3-dimensional
(3D) cultures, such as cerebral organoids (Amin and Pasca,
2018), in which iNs as the main cellular component would
presumably be maintained in culture for prolonged periods
while remaining viable and retaining their specific activities.
This 3D model has already been generated using iPSCs derived
from mitochondrial neurogastrointestinal encephalomyopathy
(MNGIE) patients’ cells (Pacitti and Bax, 2018). In addition, iNs
have been demonstrated to be suitable for compound screening,
since bioenergetic status of MERRF iNs was able to be rescued
by Guttaquinon CoQ10 treatment (Villanueva-Paz et al., 2020).
However, we still have to go deeper into the characterization of
these new models and their suitability for finding new therapeutic
targets for mitochondrial diseases.
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