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Abstract: While multi-drug resistance in bacteria is an emerging concern in public health, using
carbon dots (CDs) as a new source of antimicrobial activity is gaining popularity due to their
antimicrobial and non-toxic properties. Here we prepared carbon dots from citric acid and β-alanine
and demonstrated their ability to inhibit the growth of diverse groups of Gram-negative bacteria,
including E. coli, Salmonella, Pseudomonas, Agrobacterium, and Pectobacterium species. Carbon dots
were prepared using a one-pot, three-minute synthesis process in a commercial microwave oven
(700 W). The antibacterial activity of these CDs was studied using the well-diffusion method, and
their minimal inhibitory concentration was determined by exposing bacterial cells for 20 h to different
concentrations of CDs ranging from 0.5 to 10 mg/mL. Our finding indicates that these CDs can be
an effective alternative to commercially available antibiotics. We also demonstrated the minimum
incubation time required for complete inhibition of bacterial growth, which varied depending on
bacterial species. With 15-min incubation time, A. tumefaciens and P. aeruginosa were the most sensitive
strains, whereas E. coli and S. enterica were the most resistant bacterial strains requiring over 20 h
incubation with CDs.

Keywords: antimicrobial; multiple drug resistance; MDR; carbon dots

1. Introduction

Due to their cell wall composition, Gram-negative bacteria are reported to be more
resistant to antibiotics compared to Gram-positive bacteria [1,2]. Gram-negative bacteria
possess an extra protective outer membrane of lipopolysaccharides that limits the entry of
certain antibiotics. The majority of commercially available antibiotics follow two pathways
to enter the Gram-negative bacterial cell. Hydrophobic antibiotics use lipid-mediated
pathways, whereas hydrophilic antibiotics enter the cells using diffusion porins [3]. How-
ever, due to frequent modifications in lipid and protein compositions and porins in the
outer membrane of Gram-negative bacteria, they are selective against larger hydrophilic
antibiotics and therefore are more resistant to antibiotics. In addition, due to intensive
prescription of antibiotics, many bacteria are becoming multi-drug resistant (MDR) [4].
Hence, there is a need for alternative antibiotics with different chemistries for the treatment
of infections caused by Gram-negative bacteria. Recently, nanomaterials have gained
popularity as novel antimicrobial agents and also for nano-sensing and nano-delivery of
biomolecules into the cells especially because of their prominent characteristics, such as
nanostructure (1–100 nm), biocompatibility, and auto-fluorescence (easy to track inside
cells) [5]. Apart from these characteristics, carbon dots are water-soluble and less toxic
to mammalian cells than traditional antibiotics. Moreover, they have higher chemical
stability and simpler preparation steps [6–10]. Because of these exceptional characteristics,
carbon dots are widely used in the fields of biotechnology, energy, catalysts, biological
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labeling, bioimaging, gene transfer, and drug delivery at the target site [8,9,11]. Among
different nanoparticles, carbon dots (CDs) are popular as antimicrobial agents due to their
abundance and minimal toxicity [5,12]. They are effective against different microbes, such
as bacteria, fungi, and viruses [13]. CDs can inhibit bacterial growth upon direct contact
with bacterial cells because of the release of reactive oxygen species (ROS), which, in turn,
leads to impairment of biomolecules and cell death [13,14]. However, the exact details of
the inhibitory mechanism of different carbon dots need to be further investigated.

Here, we demonstrate the synthesis of CDs in a commercial microwave (700 W)
using citric acid as a carbon source and β-alanine as a surface passivator. These CDs
have previously been used for drug delivery and optical monitoring [8]. In this report,
we demonstrate the potential application of β-alanine based CDs as novel antimicrobial
agents against a diverse group of Gram-negative bacteria, including E. coli, Pseudomonas,
Salmonella, Agrobacterium, and Pectobacterium.

2. Materials and Methods

All the reagents for CD synthesis, including monohydrate citric acid (Cat#A104-500)
and β-alanine (Cat#AAA166650I), were purchased from Thermo Fisher Scientific (Waltham,
MA, USA). Bacteriological agar and yeast extract from IBI Scientific (Dubuque, IA, USA)
and Tryptone and sodium chloride for the preparation of Luria broth and agar media for
culturing E. coli, Pectobacterium, and Salmonella were purchased from MIDSCITM (Valley
Park, MO, USA). Protease peptone, dibasic potassium phosphate, magnesium sulfate
heptahydrate, glycerol, and bacteriological agar were used to prepare King’s media B (KB)
for culturing Pseudomonas. Yeast extract, Bacto-peptone, and sodium chloride were also
used to prepare YEP media for Agrobacterium culture.

2.1. Synthesis of Carbon Dots (CDs)

Carbon dots were synthesized using citric acid and β-alanine according to a previous
report [8] with a slight modification, outlined in Figure 1. We used citric acid monohydrate
(Fisher #A104-500, Pittsburg, PA, USA) as a carbon source instead of anhydrous citric
acid (Fisher #BP339-500, Pittsburg, PA, USA) at the same molar ratio and observed similar
results. Briefly, CDs were synthesized by mixing 1:2 molar ratio of citric acid and β-Alanine,
where one gram of citric acid was mixed with 0.9 g of β-Alanine in 10 mL of distilled water
(pH 3) in a conical flask. The mixture was homogenized using an Ultrasonicator (Ultrasonic
Cleaner FS30, Fisher Scientific, Pittsburg, PA, USA) until completely dissolved and then
heated for 3 min in a commercial microwave oven (Model#JES2251SJ02, GE Appliance,
Louisville, KY, USA) at 70% power level to proceed to carbonization and surface passivation.
The obtained brownish solid was then dissolved in 10 mL of distilled water (pH 3).

2.2. Purification of CDs

Purification of CDs was performed by dialysis using Spectra/Por® 7 Dialysis Mem-
brane with 11.5 mm diameter (#08-700-198, Fisher Scientific, Pittsburg, PA, USA). The water
tank was refreshed every 2 h for the first initial 8 h, then once a day for another 4 days.
Purified CD solutions were further passed through a 0.22 µm pore size filter.

2.3. Preparation of Bacteria Strains

Escherichia coli DH5α, Pectobacterium carotovorum Ecc7, Agrobacterium tumefaciens
EHA101, A. rhizogenes K599, Pseudomonas syringae pv. tomato DC3000, and Salmonella
enterica subsp enterica serovar typhimurium 13,311 were used in this study. A. tumefaciens,
A. rhizogenes, P. syringae pv. tomato, P. carotovorum were cultured overnight in YEP, King’s B,
and Luria Broth, respectively, at 28 ◦C. Similarly, E. coli and S. enterica subsp enterica were
grown on Luria Broth at 37 ◦C. OD600 was adjusted to 0.5 by subculturing the overnight
culture and harvesting at the logarithmic growth phase. Five milliliters of bacterial culture
was centrifuged and washed three times with sterile distilled water, resuspended in 1 mL of
15% glycerol, aliquoted in 50 µL in 0.65 mL tubes, and stored at −80 ◦C for long-term use.
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Figure 1. Diagram displaying the synthesis and purification of carbon dots using a microwave oven.

2.4. Characterization of CDs

Fourier-transform infrared (FTIR) spectroscopy analysis was performed to confirm
the functional groups of CDs. ATR-FTIR analysis was carried out using a Perkin Elmer
Frontier Infrared spectrometer equipped with a liquid nitrogen-cooled MCT-A (mercury
cadmium telluride) detector and an optics compartment purged with CO2- and H2O-
free air delivered by a Balston-Parker air purger. Freeze-dried CDs were used for FTIR
analysis, and FTIR spectra were recorded between 600 and 3800 cm−1. Photoluminescence
properties, such as absorbance, excitation, and emission wavelength, of the CDs were
recorded using a Synergy H1 Hybrid Multi-Mode Microplate Reader (BioTek, Winooski,
VT, USA). The Zetasizer nano ZS (Malvern Panalytical Inc., Westborough, MA, USA) was
used to measure the electrostatic charges carried by CDs.

2.5. Antimicrobial Study

The antimicrobial activities of CDs were evaluated by incubating bacterial cells with
different concentrations of CDs and different time intervals. The Agar plate well-diffusion
method was used to examine the antimicrobial activity of CDs diluted at different concen-
trations [15]. Agar plates were inoculated with 50 µL of bacterial suspension harvested at
OD600 = 0.5 (approximately 4 × 10ˆ8 CFU) using sterile glass beads. Then, with the help
of a cork borer, a well of 0.6 mm diameter was prepared on the inoculated plates. Forty
microliters of CDs solution was added to each well and incubated overnight at 28 or 37 ◦C
depending on the bacterial strain. To determine the minimum incubation time required
for the complete inhibition of bacterial cells, 50 µL of cells (harvested at OD600 = 0.5) were
mixed with 5 µL of freshly prepared CDs (~19 mg/mL concentration) and incubated for
different time intervals ranging from 1 h to 16 h. The incubation time with no bacterial
growth was recorded as complete inhibition of cell growth.
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2.6. Effect of Light on Antimicrobial Properties of CDs

To evaluate the effect of light on the antimicrobial properties of CDs, a mixture of
50 µL of bacterial suspension harvested at OD600 = 0.5 and 5 µL of freshly prepared CDs
(19 mg/mL) were incubated for different time intervals under different light conditions
(light and dark condition).

2.7. Statistical Analysis

The diameter of the inhibition zone for each bacterium was tabulated and analyzed
using R software (V3.6.3). The mean of each treatment was calculated from three biological
replicates, and a post hoc test was conducted by the least significant difference (LSD) t-test.

3. Results and Discussion
3.1. Characterization of CDs

Fourier-transform infrared (FTIR) spectroscopy was conducted to characterize the
chemical functional groups on the CDs (Figure 2). The FTIR results showed peaks at
1168 cm−1 (C-O) of the carbonyls group, 1400 cm−1 (C-N) of the Nitrile group, 1693 cm−1

(C=O) of ketone group, and 2981 cm−1 (C-H) of Alkane group. Successful passivation
of β-alanine was indicated by the presence of the 1400 cm−1 peak (C-N stretching) [8].
Obtained peaks were in accordance with a previous report, suggesting the successful
synthesis of CDs [8].
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Figure 2. FTIR spectrum of Citric acid/β-alanine.

Photoluminescence properties of CDs synthesized in this study showed two char-
acteristic absorbance peaks at 275 nm and 350 nm. These peaks are respectively due to
the sp2-carbon network and n–π* transition of surface carbonyl groups [16] (Figure 3A).
Their fluorescence emission profile showed excitation-dependent emission spectra of these
carbon dots. The excitation wavelength increment from 335 to 440 nm resulted in a shift
in the emission peak along with a reduction in the peak intensity (Figure 3B) [17]. The
maximum emission peak for these CDs was 445 nm with excitation at 375 nm, which is
similar to other carbon dots [18] (Figure 3C).

CDs synthesized in this study showed a zeta-potential value of −8.09 ± 5.68 mV
measured by the Malvern Zetasizer Nano-ZS ZEN 3600 (Figure 3D). This negative charge
provides sufficient colloidal stability to CDs and is due to the presence of two negatively
charged functional groups (C=O and C-O) at the surface of the synthesized CDs [19,20].

3.2. Interaction between CDs and Bacterial Cells

The interaction between cells and CDs was confirmed by confocal microscopy. For this
purpose, 5 µL of CA+β-alanine CDs (19 mg/mL) and 50 µL of bacterial cells (O.D600 = 0.5)
were incubated for 1 h. Cells were centrifuged and washed three times with sterile water
to remove free or unbound extracellular carbon dots. Interaction and bonding of CDs with
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bacterial cell surface was confirmed under laser confocal scanning microscopy (LCSM)
(Figure 4).
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Figure 3. Photoluminescence absorbance, emission, and excitation spectra of carbon dots (CDs). (A) Absorbance, emission,
and excitation spectra of CA+β-alanine recorded from 230–700 nm in 5 nm increments. (B) Emission spectrum showing
excitation dependent emissions at different excitation wavelengths ranging from 335 nm to 440 nm; (C) Normalized emission
spectrum of CDs showing variation in the intensity of spectrum at different excitation wavelengths, (D) zeta-potential of
CA+β-alanine at pH 3.
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3.3. Antibacterial Activity

The antimicrobial effect of synthesized CDs was studied on five Gram-negative bac-
teria using the agar-plate diffusion method. Both solutions of citric acid + β-alanine
(precursors used to prepare the CDs) and synthesized CDs were evaluated for their an-
timicrobial activities. Bacterial cells were plated on each plate, and diffusion wells were
created on each plate using a cork borer. Each well in the agar plate was then filled with 40
µL of 19 mg/mL of CDs and plates were transferred into an incubator with appropriate
temperature for each bacteria. The results showed that the antimicrobial capacity was
enhanced in CDs compared to the solution (Figure 5). CDs were most effective against
E. coli, Salmonella, Pectobacterium, and Pseudomonas (Figure 6). However, both Citric acid
+ B-alanine solution and CDs were found to be equally effective against both strains of
Agrobacterium (Table 1).
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Figure 5. Growth inhibition of bacteria by citric acid/β-alanine CDs. The indicated Gram-negative
bacteria were seeded on the agar media, and holes were made with cork-borer (0.6 mm in diameter).
The bottom of the holes was sealed with 0.5% agar, and 40 µL of CDs (19 mg/mL) was added to
each well.
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Table 1. Growth inhibitory effects of CDs on Gram-negative bacteria as determined by the agar-plate
diffusion method.

Bacteria
Inhibition Zone Diameter (mm)

Water Solution Carbon Dots

P. carotovorum 0.00 ± 0.00 9.75 ± 0.50 18.00 ± 0.82
E. coli 0.00 ± 0.00 5.25 ± 0.50 11.75 ± 0.96

P. syringae pv. Tomato 0.00 ± 0.00 13.67 ± 0.58 28.67 ± 0.58
A. tumefaciens 0.00 ± 0.00 20.00 ± 1.00 19.33 ± 1.15
A. rhizogenes 0.00 ± 0.00 19.67 ± 1.15 20.33 ± 0.58

S. enterica subsp enterica
serovar Typhimurium 0.00 ± 0.00 0.00 ± 0.00 20.67 ± s0.58

Values are mean (from three replicates) ± standard deviation.

Similarly, the agar-plate well diffusion method was used to determine the Minimum
Inhibition Concentration (MIC) of CDs. Among different concentration of CDs (0.5 mg/mL,
1 mg/mL, 5 mg/mL, and 10 mg/mL) used in this study, 1 mg/mL was found to inhibit
the growth of Agrobacterium, Salmonella, and E. coli (Figure 7). Whereas a concentration
of 5 mg/mL resulted in distinct inhibition zones for Pectobacterium and Pseudomonas, and
they displayed more resistance to lower concentrations (Table 2). Carbon dots were most
effective against Pseudomonas followed by A. tumefaciens with a mean inhibition zone of
32.33 mm and 31 mm at 10 mg/mL concentration, respectively (Figure 8).

Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 13 
 

 

Table 2. MIC of CDs against different Gram-negative bacteria. 

Bacteria 
Concentration of CDs 

0.5 mg/mL 1 mg/mL 5 mg/mL 10 mg/mL 

A. tumefaciens 0.00 ± 0.00 11.67 ± 0.47 26.00 ± 2.94 31.00 ± 2.16 

A. rhizogenes 0.00 ± 0.00 10.67 ± 0.47 20.33 ± 0.47 25.33 ± 0.47 

S. enterica 0.00 ± 0.00 11.67 ± 0.47 11.33 ± 0.47 15.67 ± 0.47 

P. syringae pv tomato 0.00 ± 0.00 0.00 ± 0.00 23.00 ± 0.82 32.33 ± 0.47 

E. coli 0.00 ± 0.00 9.67 ± 0.47 15.67 ± 0.94 19.67 ± 0.94 

P. carotovorum 0.00 ± 0.00 0.00 ± 0.00 15.33 ± 0.47 21.33 ± 0.47 

Values are mean (from three replicates) ± standard deviation. 

 

Figure 7. MIC of CDs as determined by agar-plate well diffusion method. 

3.4. Minimum Incubation Time for Complete Inhibition of Bacterial Growth 

To determine the minimum incubation time required for complete inhibition of bac-

terial growth, 50 µL of bacterial cell suspension was incubated with 5 µL (19.0 mg/mL) of 

freshly synthesized CDs and incubated for different time intervals. Different incubation 

times are required for complete growth inhibition of different bacterial species. For E. coli, 

a minimum incubation time of 16 h was required to completely inhibit the bacterial cell 

growth (Figure 9A). Similarly, the MIC of CDs against E. coli was determined along with 

different concentrations of CDs in which the complete inhibition was only observed at 5 

mg/mL and 10 mg/mL when incubated for 16 h (Figure 9B). In most other bacteria, com-

plete inhibition was obtained after 5–6 h of incubation with CDs (19 mg/mL), except S. 

enterica that required 11 h of incubation (Figure 10). 

Figure 7. MIC of CDs as determined by agar-plate well diffusion method.

Table 2. MIC of CDs against different Gram-negative bacteria.

Bacteria
Concentration of CDs

0.5 mg/mL 1 mg/mL 5 mg/mL 10 mg/mL

A. tumefaciens 0.00 ± 0.00 11.67 ± 0.47 26.00 ± 2.94 31.00 ± 2.16
A. rhizogenes 0.00 ± 0.00 10.67 ± 0.47 20.33 ± 0.47 25.33 ± 0.47

S. enterica 0.00 ± 0.00 11.67 ± 0.47 11.33 ± 0.47 15.67 ± 0.47
P. syringae pv tomato 0.00 ± 0.00 0.00 ± 0.00 23.00 ± 0.82 32.33 ± 0.47

E. coli 0.00 ± 0.00 9.67 ± 0.47 15.67 ± 0.94 19.67 ± 0.94
P. carotovorum 0.00 ± 0.00 0.00 ± 0.00 15.33 ± 0.47 21.33 ± 0.47

Values are mean (from three replicates) ± standard deviation.
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Figure 8. MIC of CDs against different Gram-negative bacteria. Values are mean (from three replicates) ± standard
deviation. Means of diameter of inhibition zones falls into different groups a, b, c and d indicating significant variation
among different concentration of CDs.

3.4. Minimum Incubation Time for Complete Inhibition of Bacterial Growth

To determine the minimum incubation time required for complete inhibition of bacte-
rial growth, 50 µL of bacterial cell suspension was incubated with 5 µL (19.0 mg/mL) of
freshly synthesized CDs and incubated for different time intervals. Different incubation
times are required for complete growth inhibition of different bacterial species. For E. coli,
a minimum incubation time of 16 h was required to completely inhibit the bacterial cell
growth (Figure 9A). Similarly, the MIC of CDs against E. coli was determined along with
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different concentrations of CDs in which the complete inhibition was only observed at
5 mg/mL and 10 mg/mL when incubated for 16 h (Figure 9B). In most other bacteria,
complete inhibition was obtained after 5–6 h of incubation with CDs (19 mg/mL), except
S. enterica that required 11 h of incubation (Figure 10).
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We tested the antimicrobial activity of synthesized CDs and identified its inhibitory
effects against several Gram-negative bacteria. Unlike Gram-positive bacteria, Gram-
negative bacteria possess an extra protective layer of lipopolysaccharides which renders
them more resistant to commercially available antibiotics. However, the negatively charged
CDs might bind to divalent cations Ca2+ and Mg2+ that are present at the lipid layer of
bacterial cells [21,22]. This interaction could lead to the breakage of phosphate group bonds
at the membrane lipid, which leads to destabilization of lipopolysaccharide, increased
membrane permeability, leakage of cytoplasmic fluid, and cell death [23].

3.5. Effect of Light on Antimicrobial Activity

The effect of light on antimicrobial properties of CDs was investigated by incubating
a mixture of bacterial cells and CDs in light or dark conditions at different time intervals
(Figure 11). The results were in accordance with Dong et al., 2020, indicating that an-
timicrobial properties of CDs are light-dependent [24–27]. Photoactivation of CDs under
ambient room lighting leads to the production of ROS in bacterial cells upon their contact
and causes growth inhibition and cell death. Even though light affects the antimicrobial
properties of CDs synthesized from citric acid and beta-alanine, our results indicate that
longer incubations in the dark are also able to prevent bacterial growth indicating that
these CDs also carry antimicrobial properties that are not light-dependent. A recent report
on cytotoxic side effects of photodegraded carbon dots on normal and cancerous human
cells [28] indicates a demand for CDs that do not require photoactivation to gain antimicro-
bial properties. Hence, CDs synthesized from citric acid +beta-alanine can be an alternative
for antimicrobial photo-independent carbon dots.
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4. Conclusions

In this report, we evaluated the antimicrobial effects of CA+β-alanine carbon dots
against a diverse group of Gram-negative bacteria and demonstrated that these carbon
dots can be considered as a novel strategy for the fight against Gram-negative bacteria.
The emerging issue of MDR can be addressed using nanomaterials with an antimicrobial
capacity. However, further studies are required to understand the mechanisms involved
in the antibiotic effect of these CDs, their interaction with the cell surface, their toxicity
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against human cells, and their efficacy against Gram-positive bacteria. It is also important
to understand their interaction with bacterial cell surface using other techniques, such as X-
ray photoelectron spectrometer (XPS) [29], in understanding the antimicrobial mechanisms
and confirming whether this behavior is solely due to the electrostatic interactions between
the protonated forms CDs and the lipids of the bacterial cell membrane or their ability to
generate reactive oxygen species (ROS).
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