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Abstract: Ritonavir-boosted atazanavir is an option for second-line therapy in low- and middle-
income countries (LMICs). We analyzed publicly available HIV-1 protease sequences from previously
PI-naïve patients with virological failure (VF) following treatment with atazanavir. Overall, 1497 pa-
tient sequences were identified, including 740 reported in 27 published studies and 757 from datasets
assembled for this analysis. A total of 63% of patients received boosted atazanavir. A total of 38% had
non-subtype B viruses. A total of 264 (18%) sequences had a PI drug-resistance mutation (DRM) de-
fined as having a Stanford HIV Drug Resistance Database mutation penalty score. Among sequences
with a DRM, nine major DRMs had a prevalence >5%: I50L (34%), M46I (33%), V82A (22%), L90M
(19%), I54V (16%), N88S (10%), M46L (8%), V32I (6%), and I84V (6%). Common accessory DRMs were
L33F (21%), Q58E (16%), K20T (14%), G73S (12%), L10F (10%), F53L (10%), K43T (9%), and L24I (6%).
A novel nonpolymorphic mutation, L89T occurred in 8.4% of non-subtype B, but in only 0.4% of sub-
type B sequences. The 264 sequences included 3 (1.1%) interpreted as causing high-level, 14 (5.3%) as
causing intermediate, and 27 (10.2%) as causing low-level darunavir resistance. Atazanavir selects for
nine major and eight accessory DRMs, and one novel nonpolymorphic mutation occurring primarily
in non-B sequences. Atazanavir-selected mutations confer low-levels of darunavir cross resistance.
Clinical studies, however, are required to determine the optimal boosted PI to use for second-line
and potentially later line therapy in LMICs.

Keywords: HIV-1; antiviral therapy; drug resistance; protease inhibitor; protease; mutation; atazanavir

1. Introduction

Ritonavir-boosted atazanavir has become increasingly important as an option for
second-line therapy in low- and middle-income countries (LMICs) [1]. Although it appears
to have comparable efficacy to ritonavir-boosted lopinavir (lopinavir/r) [2,3], there are
few data on the mutations arising in patients receiving boosted or unboosted atazanavir
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compared with the extensive data available for lopinavir/r [4–12]. Characterizing the spec-
trum of mutations arising in patients receiving atazanavir, whether boosted or unboosted,
provides an insight into the genetic barrier to atazanavir resistance and into the use of
boosted darunavir (darunavir/r) for third line therapy in LMICs.

Therefore, in this paper, we analyze publicly available protease sequences from previ-
ously protease inhibitor (PI)-naïve patients with virological failure (VF) on a boosted or
unboosted atazanavir-containing regimen. We compare the spectrum of protease mutations
observed in patients with subtype B as opposed to non-B viruses, in patients receiving
boosted as opposed to unboosted atazanavir, and in patients with early PI resistance (e.g.,
harboring few PI-associated drug-resistance mutations (DRMs)) with advanced PI resis-
tance (e.g., harboring four or more PI-associated DRMs). We also examine the predicted
susceptibility of the different patterns of atazanavir-selected mutations to lopinavir/r
and darunavir/r.

2. Results
2.1. Studies

Overall, 1763 protease sequences from 1497 patients reported in 30 studies who
received either boosted or unboosted atazanavir as their first PI were available for the
analysis (Table 1). These sequences included 773 sequences from 740 patients in 27 studies
from Stanford HIV Drug Resistance Database (HIVDB) [13], and previously unpublished
sequences, including (i) 741 sequences from 562 patients from the EuResist Integrated
Database (EIDB) [14]; (ii) 206 sequences from 152 patients from the Stanford University
Hospital (SUH); and (iii) 43 sequences from 43 patients from the RHIVDB [15], a freely
accessible database of HIV-1 sequences and clinical data of infected patients. Of the
184 patients with more than 1 sequence, 17 had sequences that differed from one another
by one or more DRMs. For these patients, we selected the sequence containing the largest
number of PI-associated DRMs. The complete set of 1497 one-per-person HIV-1 group M
sequences from persons receiving atazanavir was provided in Table S1.

Table 1. Studies containing publicly available sequences from previously PI-naïve patients receiving
boosted or unboosted atazanavir (ATV).

AuthorYr Study
Type

#
Total ATV

#
bATV

#
ATV

%
DRMs 1

Median
Year Country Subtypes

(%) 2

Large clinical trials and cohorts for which genotypic resistance testing was routinely available at virological failure

EuResist
Network [14] Cohort 562 286 276 10.3 2012 Europe

B (57.8),
G (16.2),

02_AG (12)

Stanford
University
Hospital

Cohort 152 142 10 9.2 2010 U.S. B (96.7)

Mollan12 [16] ACTG
A5202 137 137 0 5.8 2006 U.S. B (97.1)

Kantor15 [17] ACTG
A5175 117 19 98 14.5 2006 Multi-

continents
C (55.6),
B (41.9)

Lennox14 [18] ACTG
A5257 69 69 0 2.9 2010 U.S. B (97.1)

Case series and cohorts for which genotypic resistance testing may not have been routinely available at virological failure

Soldi19 [10] Cohort 149 81 68 30.2 2015 Brazil B (75.8),
F (12.8)
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Table 1. Cont.

AuthorYr Study
Type

#
Total ATV

#
bATV

#
ATV

%
DRMs 1

Median
Year Country Subtypes

(%) 2

Tarasova21 [15] Cohort 43 16 27 37.2 2017 Russia A (90.7)

Kouamou19
[19] Cohort 40 40 0 12.5 2017 Zimbabwe C (100)

de Carvalho
Lima20 [20] Cohort 37 28 9 54.1 2010 Brazil B (81.1),

F (16.2)

Acharya14 [21] Cohort 35 35 0 48.6 2013 India C (80), A (20)

Ndashimye18
[22] Cohort 33 33 0 42.4 2016 Uganda

A (57.6),
D (24.2),
B (15.2)

Gulick04 [23] ACTG
A5095 24 1 23 8.3 2003 U.S. B (100)

Colonno04 [24]

Case
series
from

clinical
trials 3

21 0 21 100 2000 Multi-
continents

B (71.4),
C (28.6)

Chimukangara16
[25] Cohort 17 17 0 29.4 2015 Zimbabwe C (100)

Posada
Cespedes21

[12]
Cohort 13 7 6 7.7 2015 South

Africa C (100)

Makwaga20
[26] Cohort 11 11 0 36.4 2020 Kenya

A (63.6),
B (18.2),
D (18.2)

de Sa Filho08
[27] Cohort 10 8 2 80 2006 Brazil B (80), F (20)

Kolomeets14
[28] Cohort 10 0 10 30 2012 Russia A (70),

02_AG (30)

Alves19 [29] Cohort 3 2 1 0 2017 Brazil C (66.7),
B (33.3)

Kim13 [30] Cohort 3 1 2 33.3 2011 Korea B (100)

Karkashadze19
[31] Cohort 2 0 2 100 2015 Republic

Of Georgia A (50), B (50)

Armenia20 [32] Cohort 1 1 0 0 2012 Italy B (100)

El-Khatib10
[33] Cohort 1 1 0 100 2008 South

Africa C (100)

Hoffmann13
[34] Cohort 1 0 1 0 2010 South

Africa C (100)

Mziray20 [35] Cohort 1 1 0 0 2018 Tanzania C (100)

Neogi16 [36] Cohort 1 0 1 0 2013 South
Africa C (100)

Riddler08 [37] ACTG
A5142 1 1 0 0 2004 U.S. D (100)
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Table 1. Cont.

AuthorYr Study
Type

#
Total ATV

#
bATV

#
ATV

%
DRMs 1

Median
Year Country Subtypes

(%) 2

Rosen-Zvi08
[38] Cohort 1 1 0 0 2006 Germany B (100)

Svard17 [39] Cohort 1 1 0 0 2013 Tanzania A (100)

Vergani08 [40] Cohort 1 0 1 0 2006 Italy B (100)

Footnotes: 1 DRMs were defined as those with a Stanford HIV drug resistance program penalty score for ≥1 PI.
2 Subtypes with ≥10% sequences were listed. 3 Colonno04 contained sequences from previously PI-naïve patients
with virological failure with resistance on ATV-containing regimens in three clinical trial, AI424-007/041, AI424-
008/044, and AI424-034. Additional notes: All studies used the Sanger dideoxynucleoside sequencing method,
except for Alves19 in which next-generation sequencing was used; samples from peripheral blood mononuclear
cells (PBMCs) were used in Alves19, Makwaga20, and Mziray20, and from both PBMC and plasma in Kim13. In
the remaining studies, plasma was used. Abbreviation: b-ATV—boosted atazanavir.

The 30 studies were published between 2004 and 2021. The median number of patients
per study was 12 (IQR: 1–39). The distribution of studies and patients by region included
Africa (10 studies; 119 patients), North America (5 studies; 383 patients), Europe (4 studies;
565 patients), Latin America (4 studies; 199 patients), Eastern Europe (3 studies; 55 patients),
and Asia (2 studies; 38 patients). Two studies included 138 patients from 1 or more regions.

The median sample year was 2011 (IQR: 2007–2015). Approximately 99% of sequences
were obtained from plasma and 1% from peripheral blood mononuclear cells (PBMCs).
Next-generation sequencing (NGS) was performed in 1 of the 30 studies. The most common
subtypes were B (61.9%), C (13.6%), A (6.7%), G (6.1%), 02_AG (4.9%), F (3.1%) and D
(1.1%). Of 1497 patients, 62.7% (n = 939) received boosted atazanavir and 37.3% (n = 558)
received unboosted atazanavir. A higher proportion of patients with subtype B (70.4%
of 927) compared with non-subtype B (50.2% of 570) viruses received boosted (p < 0.001).
Table 2 summarizes the numbers of patients according to the administration of atazanavir
(boosted vs. unboosted), subtype (B vs. non-subtype B), previous antiretroviral therapy
(ART) (naïve vs. experienced), and year of ART initiation.

Table 2. Proportion of patients with PI-associated drug resistance mutations (DRMs) and median
number of DRMs per patient according to ART history and HIV-1 subtype.

# Patients,
(% of Total;

n = 1437)

# Patients
with ≥1 DRMs 1,
(% of Row Total)

Median # DRMs in
Patients with ≥1

DRM (IQR)

Unboosted vs. boosted

Unboosted 558 (37.3) 117 (21.0) 3.0 (1.0–4.0)

Boosted 939 (62.7) 147 (15.7) 2.0 (1.0–4.0)

Subtype B vs. non-subtype B

Subtype B 570 (38.1) 150 (16.2) 3.0 (1.0–4.0)

Non-subtype B 927 (61.9) 114 (20.0) 3.0 (1.0–4.0)

ART-naïve vs. ART-experienced

ART-naïve 907 (60.6) 136 (15.0) 3.0 (1.0–4.0)

ART-experienced 590 (39.4) 128 (21.7) 2.0 (1.0–4.0)

Year of ART initiation 2

1993–2004 134 (11.9) 24 (17.9) 2.0 (1.0–2.1)

2005–2006 362 (32.1) 44 (12.1) 1.0 (1.0–2.4)

2007–2009 316 (28.0) 26 (8.2) 2.0 (1.0–2.8)

2010–2018 315 (28.0) 29 (9.2) 2.0 (1.0–2.3)

Footnotes: 1 DRMs were defined as those with an HIVDB drug resistance program penalty score for ≥1 PI.
2 Patients with available year of ART initiation (n = 1127) were grouped into four time periods containing
approximately equal numbers of patients.
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2.2. Mutation Prevalence

Of the 1497 patients, 264 (17.6%) had 1 or more PI-associated DRMs. Of the 57 HIVDB
PI-associated DRMs, 48 occurred in ≥1 patient, 38 in ≥2 patients, and 24 in ≥5 patients.
The most commonly occurring major DRMs were I50L (34.1%), M46I (32.6%), V82A (22.3%),
L90M (19.3%), I54V (16.3%), N88S (10.2%), M46L (7.6%), V32I (6.4%), and I84V (6.1%)
(Table 3). The most common accessory DRMs were L33F (20.8%), Q58E (15.9%), K20T
(14.4%), G73S (11.7%), L10F (9.8%), F53L (9.8%), K43T (8.7%), and L24I (6.1%).

Table 3. Drug resistance mutations (DRMs) occurring in ≥1 sequences from patients receiving
boosted or unboosted atazanavir as their first PI.

DRM 1 Classification 2 % in the 264 Patients with a PI-Associated DRM Median # Co-Occurring DRMs (IQR)

I50L Major 34.1 2 (0.2–3)

M46I Major 32.6 3 (2–5)

V82A Major 22.3 4 (3–5)

L90M Major 19.3 3 (2–4.5)

I54V Major 16.3 4 (3–5)

N88S Major 10.2 3 (2–4)

M46L Major 7.6 3 (2–4)

V32I Major 6.4 3 (2–5)

I84V Major 6.1 3 (2–5)

I54L Major 4.2 3 (3–4.5)

G48V Major 3.4 3 (2–3)

I47V Major 2.7 5 (4.5–7)

I50V Major 2.3 4 (3–5)

L76V Major 2.3 5.5 (4.2–6)

I47A Major 1.5 3.5 (2–5)

V82M Major 1.5 2 (1.7–3)

V82T Major 1.5 4.5 (3.5–5.5)

D30N Major 1.1 4 (3.5–7)

G48A Major 1.1 6 (4.5–6.5)

V82F Major 1.1 6 (5–6.5)

V82L Major 1.1 3 (1.5–4.5)

I54A Major 0.8 3.5 (3.2–3.7)

V82S Major 0.8 3 (3–3)

G48M Major 0.4 2 (2–2)

I54M Major 0.4 5 (5–5)

I54S Major 0.4 2 (2–2)

I54T Major 0.4 2 (2–2)

V82C Major 0.4 4 (4–4)

N88T Major 0.4 3 (3–3)

L33F Accessory 20.8 4 (2–5)

Q58E Accessory 15.9 3 (1–5)

K20T Accessory 14.4 2 (1–4)
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Table 3. Cont.

DRM 1 Classification 2 % in the 264 Patients with a PI-Associated DRM Median # Co-Occurring DRMs (IQR)

G73S Accessory 11.7 3 (1–4)

L10F Accessory 9.8 4 (2–5)

F53L Accessory 9.8 3.5 (2–5)

K43T Accessory 8.7 4 (2–5)

L24I Accessory 6.1 4 (2–4.2)

L23I Accessory 4.2 3 (1.5–4.5)

T74P Accessory 3 3 (2–4)

G73T Accessory 1.5 3.5 (2.7–4.5)

L89V Accessory 1.5 3.5 (2–5.2)

N83D Accessory 1.1 3 (3–4)

N88D Accessory 1.1 3 (2.5–6.5)

G73C Accessory 0.8 3.5 (2.2–4.7)

L24F Accessory 0.4 0 (0–0)

M46V Accessory 0.4 2 (2–2)

G73A Accessory 0.4 6 (6–6)

G73V Accessory 0.4 8 (8–8)
1 DRMs were defined as those with a Stanford HIVDB drug resistance program penalty score for ≥1 PI. 2 See the
method for DRM classification.

Of the 264 sequences with 1 or more PI-associated DRMs, the proportions of the
sequences containing 1 DRM, 2–3 DRMs and ≥4 DRMs were 33.7%, 31.4% and 34.9%,
respectively. The distribution of DRMs differed according to the total number of DRMs
per sequence (Figure 1). Among sequences with a single DRM, the most common major
DRMs were I50L, M46I/L, L90M, and N88S, while the most common accessory DRMs
were Q58E, K20T, G73S, and L33F. In contrast, among sequences with ≥4 DRMs, the most
common major DRMs were M46I/L, V82A, L90M, I54V, I50L, and N88S, while the most
common accessory DRMs were unchanged. The major DRMs V32I and I84V occurred in
approximately 5% to 6% of sequences regardless of the total number of DRMs.

An additional 197 mutations, previously classified as nonpolymorphic treatment
selected mutations (NP-TSMs), occurred in 149 sequences, including in 109 of the 264 se-
quences containing a PI-associated DRM and 40 of the 1215 sequences without a PI-
associated DRM. There were 33 different NP-TSMs of which the most common were
L89T (34.9% of 149 sequences), K55R (15.4%), I85V (11.4%), A71I (9.4%), and E34Q (7.4%)
(Table S2). These mutations were not classified as DRMs because they do not receive an
HIVDB mutation penalty score.

2.3. Unboosted versus Boosted Atazanavir

PI-associated DRMs occurred in 21.0% of 558 patients receiving unboosted atazanavir
and 15.7% of 939 patients receiving boosted atazanavir (p = 0.01) (Table 2). However, among
patients with a DRM, the median number of DRMs was not significantly greater in those
receiving unboosted atazanavir (3 DRMs; IQR: 1–4) compared with boosted atazanavir
(2 DRMs; IQR: 1–4; p = 0.1). Of the 48 reported DRMs, I50L was the only DRM that occurred
more commonly in patients receiving unboosted as compared with boosted atazanavir
(10.4% vs. 3.4%; adjusted p < 0.001).

Sequences from patients receiving unboosted atazanavir were also slightly more likely
to have one or more NP-TSMs compared with sequences from patients receiving boosted
atazanavir (12.2% of 558 vs. 8.6% of 939; p = 0.03). Each of the 33 reported NP-TSMs
occurred in similar proportions in patients receiving unboosted and boosted atazanavir.
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Figure 1. Prevalence of PI-associated drug-resistance mutations (DRMs) in 264 sequences containing
1 or more DRMs from previously PI-naïve patients receiving a boosted or unboosted atazanavir-
containing regimen. The distribution of DRMs is plotted separately according to the number of
PI-associated DRMs in the sequence: (A) 1 DRM, (B) 2 to 3 DRMs, and (C) ≥4 DRMs. The DRMs
shown are those occurring in ≥5% of the sequences, including 9 major DRMs indicated in red and
8 accessory DRMs indicated in yellow.
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2.4. Subtypes

The proportion of sequences containing one or more PI-associated DRMs was similar
in subtype B (20.0% of 570) versus non-subtype B (16.2% of 927; p = 0.07) sequences (Table 2).
Of the 48 reported PI-associated DRMs, G73S was significantly more common in subtype
B (3.1% of 927) than non-subtype B (0.4% of 570; adjusted p = 0.005) sequences. Of the
33 reported NP-TSMs, only L/M89T was significantly more common in non-subtype B
than in subtype B sequences (8.4% of 570 vs. 0.4% of 927; adjusted p < 0.001). In subtypes
A, C, G, CRF01_AE, and CRF02_AG, the consensus amino acid at position 89 is methionine
(M) [41] and 89T requires just a single transition in these subtypes (ATG => ACG). In
contrast, changing to 89T requires a one transition plus one transversion change in subtype
B (CTN or TTR => ACN).

2.5. ART Experience

Among the 1497 patients receiving atazanavir, 907 (60.6%) were previously ART-naïve
and 590 (39.4%) were ART-experienced (Table 2). The proportion of sequences containing
one or more PI-associated DRMs was 21.7% in previously ART-experienced patients and
15.0% in previously ART-naïve patients (p = 0.001). Among those with one or more
PI-associated DRMs, the number of DRMs was not significantly different in previously
ART-experienced patients (median 2 DRMs; IQR: 1–4 DRMs) compared with previously
ART-naïve patients (median 3 DRMs; IQR: 1–4 DRMs; p = 0.3).

Among the 907 previously ART-naïve patients, atazanavir was administered with
2 nucleoside RT inhibitors (NRTIs) in 840 (92.6%) patients. Among the remaining 67 patients,
the co-administered antiretroviral drugs (ARVs) were not provided for 44 (4.9%), while
23 (2.5%) received a variety of other ARVs.

Among the 590 previously ART-experienced patients, atazanavir was administered
with 2 NRTIs in 345 (58.5%) patients. Among the remaining 245 patients, the co-administered
ARVs were not provided for 163 (27.6%), while 82 (13.9%) received a variety of other ARVs.
Only four patients received atazanavir plus one additional ARV.

The year of ART-initiation was available for 1127 (75.3%) of all patients. The patients
could be pooled into four time periods containing approximately equal numbers spanning
the years between 1993 and 2018 (Table 2). The proportion of patients with one or more PI-
associated DRMs decreased over time (binomial coefficient = −0.26; 95% CI: −0.45 to −0.07;
p = 0.007), but the number of DRMs in patients with one or more DRMs did not change.

Using just those patients for whom the year of ART initiation was available, a multi-
variate logistic regression analysis was performed to assess the association between four
factors and the development of a PI-associated DRM. The four factors included the year of
ART initiation, subtype (B vs. non-subtype B), the use boosted vs. unboosted atazanavir,
and previous ART (naïve vs. experienced). The analysis found that a later year of ART initi-
ation (OR: 0.62; 95%CI: 0.49–0.79; p = 0.0001) and the administration of boosted atazanavir
(OR: 0.57; 95%CI: 0.35–0.93; p = 0.02) were associated with a decreased risk of developing a
PI-associated DRM.

2.6. Bayesian Network Analysis of Correlated Mutations

We used the 1437 (96%) sequences containing 0 to 4 PI-associated DRMs (i.e., sequences
with ≥5 PI-associated DRMs were excluded) to calculate Jaccard similarity coefficients and
their standard Z scores for all pairs of DRMs and NP-TSMs. Eleven pairs of mutations
comprising six major DRMs (M46I, I50L, I54V, V82A, N88S and L90M), three accessory
DRMs (K20T, L33F and G73S), and the NP-TSM L89T participated in one or more signif-
icant pairwise correlations (p < 0.01). We then performed a Bayesian network analysis
to determine the conditional dependency between the mutations in each of the pairwise
correlations (Figure 2).
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Figure 2. Bayesian network analysis of positively correlated mutation pairs with a hill-climbing
search. The Bayesian network analysis yielded 11 mutation pairs, including 6 major DRMs (red),
3 accessory DRMs (yellow), and an additional nonpolymorphic treatment-selected mutation (light
blue) with a significant Jaccard correlation coefficient (p < 0.01). The thickness of the arrows indicates
the strength of the probabilistic relationship of the two mutations. The direction of the probabilistic
causation is shown with an arrowhead. For the direction between V82A and I54V for which the
probabilistic causation is not greater than the probabilistic causation of the opposite direction by 0.1,
the arrowhead is not shown.

2.7. Estimated Cross Resistance to LPV/r and DRV/r

Among the 264 sequences with 1 or more PI-associated DRMs, there were 182 distinct
DRM patterns, including 124 patterns (164 sequences; 62.1% of 264) interpreted by HIVDB
as causing high-level atazanavir resistance, 19 patterns (20 sequences; 7.6% of 264) as
causing intermediate atazanavir resistance, and 29 patterns (51 sequences; 19.3% of 264) as
causing low- or potential low-level atazanavir resistance. The remaining 10 DRM patterns
(n = 29 sequences patterns; 11.0% of 264) consisting primarily of singe accessory DRMs
(e.g., K20T, Q58E) were not interpreted as causing reduced atazanavir susceptibility.

A total of 56 distinct DRM patterns (58 sequences; 22.0% of 264) were interpreted as
causing high-level lopinavir resistance, 40 patterns (43 sequences; 16.3% of 264) as causing
intermediate lopinavir resistance, and 44 patterns (62 sequences; 23.5% of 264) as causing
low- or potential low-level lopinavir resistance. A total of 3 distinct DRM patterns (3 se-
quences; 1.1% of 264) were interpreted as causing high-level darunavir resistance, 14 patterns
(14 sequences; 5.3% of 264) as causing intermediate darunavir resistance, and 32 patterns
(34 sequences; 12.9% of 264) as causing low- or potential low-level darunavir resistance.
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2.8. Virological Failure with Resistance

Five of the thirty studies included participants from three clinical trials and from two
clinical cohorts for which genotypic resistance testing was routinely available (Table 1).
Together, these five studies included 1037 (69.3%) of all 1497 patients from whom sequences
were available. Of these 1037 patients, 63.0% and 37.0% received boosted and unboosted
atazanavir, respectively. In these studies, the proportion of sequences containing one
or more PI-associated DRMs ranged from 2.9% to 14.5% and the overall proportion of
sequences containing one or more PI-associated DRMs in patients receiving boosted and
unboosted atazanavir were 7.2% and 13.5%, respectively.

2.9. Studies Not Included in the Analysis

We identified 32 additional studies reporting sequences from 1089 previously PI-
naïve patients receiving boosted or unboosted atazanavir-containing regimens (Table S3).
Approximately 10% of the sequences in these studies were reported to contain one or
more PI-associated DRMs. However, as the sequences were not available and as different
mutations were reported in different studies, we did not include the data from these studies
in our analysis.

3. Discussion

The spectrum of atazanavir-selected mutations has been largely influenced by data
published in the earliest in vitro passage experiments and clinical trials. During in vitro
passage experiments with three subtype B clones, the most commonly emerging DRMs
were V32I, M46I, I50L, I84V, and N88S [42]. The initial reports of the in vivo selection
of PI-associated DRMs, based on the use of unboosted atazanavir in ART-naïve patients,
demonstrated that I50L and G73S were the most commonly occurring mutations in patients
with VF [24,43]. A few cases of VF and emergent PI-associated DRMs have been reported
in the clinical trials of ART-naïve patients receiving boosted atazanavir [16,44], consistent
with the hypothesis that PI-resistance mutations develop only in viruses exposed to a
narrow window of suboptimal drug concentrations that both exert selective pressure on
the virus and allow virus replication [45]. Nonetheless, PI resistance in previously PI-
naïve patients receiving lopinavir/r for second-line therapy has increasingly been reported,
usually beginning after 12–18 months of therapy [46]. In addition, phenotypic studies have
shown that DRMs selected by other PIs confer atazanavir cross resistance particularly when
they occur in combination [47,48].

In the years since atazanavir has been introduced, there has been a gradual accumula-
tion of data on the spectrum of mutations emerging in previously PI-naïve patients with
VF on an ART-regimen containing boosted and less commonly unboosted atazanavir. In
contrast to the earliest clinical trials of boosted atazanavir, these studies included cohorts of
patients who were ART experienced at the time atazanavir was administered and who may
not have been monitored as closely for VF thus enabling their viruses to evolve for longer
period of time under atazanavir selection pressure. Moreover, these studies have included
an increasing proportion of sequences from patients with non-subtype B viruses.

Our analysis confirmed that the five major DRMs selected in vitro by atazanavir (V32I,
M46I, I50L, I84V, and N88S) were among the most commonly occurring major DRMs. Four
additional DRMs also occurred commonly, including M46L, I54V, V82A, and L90M. I50L
is a signature atazanavir-associated DRM because it has only been reported in patients
receiving atazanavir and it increases susceptibility to PIs other than atazanavir [48,49]. N88S
is also considered a signature atazanavir-associated DRM because it is rarely selected by
other PIs and it does not significantly reduce susceptibility to other PIs, with the exception
of nelfinavir and indinavir [48]. L/M89T may also be a signature atazanavir-associated
mutation because it appears to occur more commonly in patients receiving atazanavir than
in patients receiving any other PI; for example, it has only been reported in three previously
PI-naïve patients receiving lopinavir/r (https://hivdb.stanford.edu/cgi-bin/Mutations.

https://hivdb.stanford.edu/cgi-bin/Mutations.cgi?Gene=PR
https://hivdb.stanford.edu/cgi-bin/Mutations.cgi?Gene=PR
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cgi?Gene=PR; accessed on 1 November 2021). In contrast, each of the remaining atazanavir-
selected mutations appear to be commonly selected by other PIs, in particular lopinavir/r.

With the exception of L10F and L33F, each of the above 17 most commonly selected ma-
jor or accessory DRMs was significantly associated with reduced atazanavir susceptibility
in a previously published weighted least squares regression analysis of 1644 sequences [48].
Few published phenotypic data are available on sequences containing L89T.

Some limitations of our review should be discussed. First, most of the sequences that
we reviewed were obtained from retrospective cohort studies and case series. For these
studies, the duration of therapy, accompanying ARVs, frequency of virological monitoring
and genotypic resistance testing, and duration of virological failure were generally not
available. Therefore, the extent to which these factors were associated with emergent
PI-associated DRMs could not be explored. Second, the dataset contained an under-
representation of subtypes other than subtype B. Third, we could not be sure that every
sequence was obtained from a patient receiving atazanavir as his/her first PI as treatment
histories are often incomplete. Nonetheless, we emailed the authors of those studies
containing the largest numbers of DRMs and received confirmation that, to the authors’
knowledge, the patients had just received atazanavir. Fourth, at least 32 studies in PubMed
that contained sequences from 1000 patients receiving boosted or unboosted atazanavir
could not be included in our analysis because the primary sequence data and complete list
of protease mutations were not available.

In conclusion, to our knowledge, this is the only comprehensive analysis of atazanavir-
selected mutations. Our analysis shows that the spectrum of atazanavir-selected mutations
extends beyond those mutations observed in the earliest clinical trials in which patients
received either boosted or unboosted atazanavir. The expanded spectrum is likely due
to the large number of sequences in our analysis and the likelihood that many of the
patients in the studies we reviewed had prolonged VF and ongoing replication while
receiving atazanavir. The study also identified one novel nonpolymorphic atazanavir-
selected mutation that predominantly occurred in non-subtype B sequences. The relatively
low cross-resistance to darunavir/r combined with preliminary data suggests that boosted
atazanavir can be an efficacious regimen for second-line therapy. However, comparative
clinical trials are required to determine the optimal boosted PI to use for second-line and
potentially later-line therapy in LMICs.

4. Materials and Methods
4.1. Study Selection Criteria

We analyzed publicly available HIV-1 group M protease nucleotide sequences obtained
from previously PI-naïve patients receiving boosted or unboosted atazanavir. Sequences
were obtained from HIVDB, which is populated with sequences from GenBank annotated
with the ART history of the patients from whom the sequences were obtained [13]. The
analysis was last updated 31 December 2021. We supplemented the data in HIVDB with
previously unpublished sequences performed at SUH and with previously unpublished
sequences from two collaborating research groups: the EIDB [14] and the RHIVDB [15].
Additionally, we performed a PubMed search to identify studies describing HIV-1 group
M protease sequences that were not present either in HIVDB or GenBank.

Publications reporting eligible protease sequences were reviewed to determine the
treatment history of the patient from whom each sequence was obtained to confirm that the
patient had received no PI prior to atazanavir and to distinguish those patients receiving
unboosted atazanavir from boosted atazanavir. Each sequence was annotated with the
year and country of virus isolation, the type of sample (e.g., PBMCs), the sequencing
method (Sanger dideoxynucleoside sequencing versus NGS), and the nature of the study
population. HIV-1 subtype was determined using the HIVDB subtyping program [50].

We also characterized each study according to whether it included patients in a clinical
trial or in a treatment cohort for whom genotypic resistance testing was routinely available
for patients with VF as opposed to a case series or case reports for which the indications for

https://hivdb.stanford.edu/cgi-bin/Mutations.cgi?Gene=PR
https://hivdb.stanford.edu/cgi-bin/Mutations.cgi?Gene=PR
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genotypic resistance testing were not reported. Studies that performed routine genotypic
resistance testing on all patients with VF provide information on how often PI resistance
arises in patients receiving atazanavir. In contrast, the remaining studies were considered
likely to be enriched for patients with acquired PI resistance.

4.2. Mutations

PI-associated DRMs were defined as those with an HIVDB drug resistance program
penalty score for ≥1 PI as of December 31, 2021 [51]. The DRMs included 57 mutations at
24 positions: L10F, K20T, L23I, L24I/F/M, D30N, V32I, L33F, K43T, M46I/L/V, I47A/V,
G48A/L/M/Q/S/T/V, I50I/L, F53L, I54A/L/M/S/T/V, Q58E, G73A/C/D/S/T/V, T74P,
L76V, V82A/C/F/L/M/S/T, N83D, I84A/C/V, N88D/G/S/T, L89V, and L90M. Major mu-
tations were defined as those with a greater effect on the susceptibility to one or more PIs, an
increased occurrence in patients with VF on PI-containing regimens, and a low likelihood of
occurring without selective drug pressure. Additional PI-associated NP-TSMs that are not
classified as DRMs were also examined [52]. The NP-TSMs included 56 mutations at 31 posi-
tions: L10R/Y, V11L, K20A, A22V, L33M, E34D/N/Q/R/V, M36A, L38W, K43I/N/P/Q/S,
K45I/Q/V, G48E, G51A, F53I/W/Y, K55R/N, I66F/L/V, C67F/L, A71I/L, I72K/L, G73I/N,
T74E, P79N, V82G, N83S, I85V, L89P/T, T91C/S, Q92R, C95F/L/V, and T96S.

4.3. Analyses

The Fisher’s Exact Test was used to compare the proportion of each mutation in
sequences from patients receiving boosted versus unboosted atazanavir, from patients
who were previously ART-naïve versus ART-experienced, and from patients according to
whether they had subtype B versus non-subtype B sequences. The Wilcoxon Rank Sum
Test was used to compare the median number of mutations between two groups. The
Holm’s method was used to control for the familywise error rate for multiple hypothesis
testing [53].

A binomial regression model was used to examine the relationship between the year of
ART initiation and the presence or absence of PI-associated DRMs. To assess the association
of covariates with the presence or absence of PI-associated DRMs, a multivariate general-
ized linear mixed logistic regression analysis was performed using the R package lme4. To
account for study heterogeneity, study was included in the model as a random effect.

To identify the patterns of covariation among DRMs and NP-TSMs, we calculated
Jaccard similarity coefficients and their standard Z scores for all pair of mutations [54].
To capture conditional dependency among the significantly co-occurring mutation pairs,
defined as those pairs that had Jaccard similarity coefficient p < 0.01, we constructed a
Bayesian network with a hill-climbing search using the R package bnlearn [55] and created a
directed edge network graph using the R package visNetwork [56]. To learn the structure of
the Bayesian network of core mutations associated with atazanavir, we excluded sequences
containing more than four DRMs in this analysis.

For each sequence containing one or more DRMs, we determined the level of predicted
resistance to atazanavir and the levels of predicted cross resistance to lopinavir/r and
darunavir/r using the HIVDB drug resistance interpretation system.

4.4. Accession Numbers

Sequences in this study had been submitted to GenBank (accession numbers ON058287-
ON058987).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/pathogens11050546/s1, Text S1: The EuResist Network Study
Group; Table S1: The complete set of 1497 one-per-person HIV-1 group M protease sequences from
persons receiving atazanavir; Table S2: Nonpolymorphic PI treatment-selected mutations (NP-TSMs)
occurring in ≥1 sequences from patients receiving boosted or unboosted atazanavir (ATV) as their
first PI; Table S3: Studies in PubMed containing sequences from previously PI-naïve patients receiving
boosted or unboosted atazanavir (ATV) for which the sequences were not available.
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