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Cancer has been generally defined as a cluster of systematic malignant pathogenesis
involving abnormal cell growth. Genetic mutations derived from environmental factors
and inherited genetics trigger the initiation and progression of cancers. Although several
well-known factors affect cancer, mutation features and rules that affect cancers
are relatively unknown due to limited related studies. In this study, a computational
investigation on mutation profiles of cancer samples in 27 types was given. These
profiles were first analyzed by the Monte Carlo Feature Selection (MCFS) method.
A feature list was thus obtained. Then, the incremental feature selection (IFS) method
adopted such list to extract essential mutation features related to 27 cancer types,
find out 207 mutation rules and construct efficient classifiers. The top 37 mutation
features corresponding to different cancer types were discussed. All the qualitatively
analyzed gene mutation features contribute to the distinction of different types of
cancers, and most of such mutation rules are supported by recent literature. Therefore,
our computational investigation could identify potential biomarkers and prediction rules
for cancers in the mutation signature level.

Keywords: cancer, subtype, mutation signature, pattern, rule, classification

INTRODUCTION

Cancer is generally defined as a systematic disease with abnormal cell proliferation and invasion
potentials. The general symptoms of cancer include cough, weight loss, lump, and abnormal
bleeding, depending on the pathological regions of cancer. Such symptoms are common but not
specific in cancers, which may also be shared in other diseases. Genetic factors from either noxious
environmental factors or inherited variations trigger the initiation and progression of cancers
(Anand et al., 2008; Tang et al., 2018). The regulation and functioning of genetic alterations vary at
different omics levels with alternative pathological potentials. However, one of the shared and most
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common pathological alterations at the phenotypic level is
abnormal cell proliferation, which is consistently regulated at
the transcriptomics and proteomics level, apart from genomic
regulations (Feitelson et al., 2015; Li Z. et al., 2020). Generated
from and regulated by tumor microenvironment, cancer is
consistently shaped by surrounding cells and tissues, making
tumor microenvironment a crucial factor for tumorigenesis
in most kinds of cancers, including lung, colorectal, cervical,
and breast cancers.

Various biological or pathological behavior affect cancer
during initiation, progression, and metastasis. For instance, a
bidirectional functioning has been identified on autophagy, one
of the most common biological behavior during tumorigenesis.
Autophagy suppresses malignant transformation during cancer
initiation (Kondo et al., 2005); however, with the invasion and
progression of cancer, autophagy may promote the malignant
proliferation of cancer cells (de Visser et al., 2006; Nadia
and Ramana, 2020). Apart from biological processes, such
as autophagy, cancer immune responses are another key
factor affecting cancer initiation, progression, and metastasis.
Complicated relationships between immune cells and general
tumor biological processes, such as initiation, progression, and
metastasis, have been recognized in multiple cancer subtypes.
Similarly, oxygen-mediated cell damage (Srinivas et al., 2019),
growth factor abnormality (Normanno et al., 2017; Umino
et al., 2018), and various similar malignant alterations have
been recognized during tumorigenesis, describing a complicated
profiling of tumor biology at different omics levels.

Clustering cancer related SNPs have been one of the most
important research fields in cancer biology for a long time.
Multiple previous clustering methods have been presented
to summarize the mutational patterns of different cancers.
According to one of the most famous cancer mutation databases,
COSMIC (Catalogue of Somatic Mutations In Cancer) (Tate
et al., 2019), three groups of mutational signatures, including
Single Base Substitution (SBS), Doublet Base Substitution
(DBS), and Small insertions and deletions (ID), have been
summarized. However, such clustering only involves in the
molecular biological features of cancer mutations without
functional interpretation. Furthermore, in 2019, investigators
from University Medical Centre Utrecht summarized current
contribution of cancer mutations on clinical diagnosis and
identified functional interpretations of existed identified cancer
mutation biomarkers (Van Hoeck et al., 2019). However, such
results only summarized the effects of mutations with validated
functional interpretation. As for computational contribution of
cancer mutation clustering, few methods have been presented
and these algorithms can only recognize single nucleotide
variants (SNVs) and copy number variants (CNVs) (Maura et al.,
2019), but not mutation patterns involving multiple base pairs.
Therefore, as a summary, the method we presented here have
two major innovations: (1) we are targeting essential malignant
signatures at the level of mutation patterns not just SNVs or
just CNVs; (2) we established quantitative rules to evaluate the
contribution of mutation patterns to tumorigenesis.

Among such biological characteristics, cancer-associated
genetic mutations are one of the key and essential malignant

signatures related to the initiation, invasion, and metastasis of
cancers. Specific mutation patterns (ACA to AAA, ACC to
AAC, ACG to AAG, etc.) on target regions/genes of the genome
have been widely reported to participate in tumorigenesis.
For instance, mutant KAI1, regulating a batch of downstream
tumor-associated genes, has been observed during metastasis
in human prostate cancer (Dong et al., 1996; Yang L. et al.,
2020). hMLH1 functioning in DNA mismatch repair is one of
the most important molecular biomarkers for hereditary non-
polyposis colon cancer at the genomics level (Bronner et al.,
1994; Ran et al., 2020). The frequency of Smad4 gene mutation
in human colorectal cancer is higher than in any type of cancer
(Miyaki et al., 1999; Zhang et al., 2020). Other genes, such as
P53 (Fujimoto et al., 1992) and VHL (Kim and Kaelin, 2004),
influence cancer development to some extent. However, studies
on the mutation features and rules that affect cancers are limited.
In the present study, we gave a computational investigation on
mutation profiles of cancer samples in 27 types. The powerful
feature selection method, Monte Carlo Feature Selection (MCFS)
(Dramiński et al., 2007), was adopted to analyze such profiles.
A feature list was generated. Then, the incremental feature
selection (IFS) (Liu and Setiono, 1998) was applied to this list
to extract essential mutation features, find out interesting rules
and construct efficient classifiers. As a result, 207 rules and many
mutation features related to the 27 types of cancers were obtained.
We discussed the top 37 mutation features corresponding to
different types of cancers. Our study may serve as a reference
in establishing a novel qualitative and quantitative standard
in identifying tumor type-specific mutation patterns for tumor
classification, and thus provide a new tool for the study of
tumorigenesis mechanism based on mutation signatures.

MATERIALS AND METHODS

Datasets
We downloaded the relative mutation frequency of 96 mutation
types in 2,892 patients from 27 cancer types (Lawrence et al.,
2013). The sample sizes of each cancer type are listed in Table 1.
The relative mutation frequency of each mutation type in each
cancer patient was calculated by Lawrence et al. (2013) and
defined as Rcs = ( ncs

Ncs
)/(

∑
c ncs/

∑
c Ncs), where s is the sample,

c is the mutation type, ncs is the number of observed mutations,
and Ncs is the number of bases with enough coverage (≥14
reads in tumor cases and ≥8 reads in normal cases) to observe
mutation. The mutation types were summarized according to
their base pair changes identified in a data set of 3,083 tumor–
normal pairs across 27 tumor types (Lawrence et al., 2013).
Mutations were specified in the middle of three base pair patterns
with all possible mutational directions. The detailed mutation
types are provided in Supplementary Table 1. Several studies
have suggested that the mutation signatures of different cancers
vary and involve combinations of the above mutation types
(Alexandrov et al., 2013; Lawrence et al., 2013; Huang et al., 2018;
Wojtowicz et al., 2019). We investigated the cancer mutation
signatures quantitatively through advanced machine learning
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methods and identified the mutation rules for explaining and
understanding each cancer type.

Feature Selection
We applied feature selection to discriminate influential mutation
types from the unrelated ones in the dataset. First, MCFS
(Dramiński et al., 2007) was used to evaluate the importance of
each mutation type. A feature list was generated. Then, a set of
optimal mutation types with strong distinctions between different
cancer types was obtained by applying IFS (Liu and Setiono, 1998;
Ma et al., 2020) with a supervised classifier on such list.

Monte Carlo Feature Selection
In this study, we used the MCFS method to assess the importance
of mutation types. MCFS is a feature selection method based on
the random features of the original features (Dramiński et al.,
2007). Given a dataset with d features (in this study, 96 mutation
types were deemed as features), MCFS first randomly constructed
p feature subsets, each of which contains m features, where m is
much smaller than d. Second, for each feature subset, t decision
trees are built. Each tree is constructed based on 66% samples
that are randomly selected from the original dataset, and the
rest samples are used to test such tree. Thus, p × t trees can
be constructed in total. Based on these trees, the importance of
each feature, called relative importance (RI) score in MCFS, is

TABLE 1 | Sample sizes of 27 cancer types.

Index Cancer type Sample size

1 Acute myeloid leukemia 119

2 Bladder 35

3 Breast 120

4 Carcinoid 21

5 Cervical 20

6 Chronic lymphocytic leukemia 87

7 Colorectal 230

8 Diffuse large B-cell lymphoma 49

9 Esophageal adenocarcinoma 76

10 Ewing sarcoma 9

11 Glioblastoma multiforme 213

12 Head and neck 165

13 Kidney clear cell 212

14 Kidney papillary cell 11

15 Low-grade glioma 55

16 Lung adenocarcinoma 327

17 Lung squamous cell carcinoma 177

18 Medulloblastoma 16

19 Melanoma 121

20 Multiple myeloma 62

21 Neuroblastoma 61

22 Ovarian 382

23 Pancreas 9

24 Prostate 196

25 Rhabdoid tumor 3

26 Stomach 87

27 Thyroid 29

evaluated by the following equation

RIf =

pt∑
τ=1

(wAcc)uIG(nf (τ))(
no.in nf (τ)

no.in τ
)v, (1)

where wAcc is the weighted accuracy of the decision tree τ and
nf (τ) is a node of feature f in decision tree τ. The information
gain of nf (τ) is expressed as IG(nf (τ)), and no.in nf (τ) is the
number of training samples in nf (τ). u and v are two different
weighting factors.

The MCFS program used in this study was retrieved from http:
//www.ipipan.eu/staff/m.draminski/mcfs.html. For convenience,
default parameters were adopted. In detail, u = v = 1, p = 3,000,
t = 5, m = 5. The 96 features (mutation types) were analyzed
by the MCFS program. Each feature was assigned a RI score.
Evidently, a feature with a high RI score was more important than
that with a low RI score. Thus, we sorted all 96 features with the
decreasing order of their RI scores. For formulation, this list was
denoted by F.

Incremental Feature Selection
Incremental Feature Selection (IFS) (Liu and Setiono, 1998) is a
feature selection method that filters out a set of optimal features
to accurately distinguish different sample classes. As mentioned
in section “Monte Carlo Feature Selection,” a feature list F was
generated by MCFS method. Clearly, the high-ranked features
should have positive contributions to classification and can help
the classification algorithm to produce good performance. To
perform IFS, we first created a series of feature subsets with a step
1 from the feature list F. In detail, the first feature subset included
the top feature in the list F, the second feature subset contained
the top two features, and so forth. For each constructed feature
subset, a random forest (RF) classifier was built based on samples
represented by features in the subset and it was further evaluated
by 10-fold cross-validation (Kohavi, 1995; Li J. et al., 2020; Zhou
et al., 2020; Liu et al., 2021; Pan et al., 2021; Zhang et al., 2021a,b,c;
Zhu et al., 2021). After testing all feature subsets, we obtained the
optimal feature subset with the optimal performance. This feature
subset was termed as the optimal feature subset and the classifier
with such subset was called the optimal classifier.

Synthetic Minority Over-Sampling
Technique
Synthetic Minority Over-Sampling Technique (SMOTE)
(Chawla et al., 2002; Chao et al., 2019; Yang X.F. et al., 2020)
is a classic technology used to address the potential sample
imbalance issue during classification learning. SMOTE can
add new samples into the minority class as the same number
of samples in the majority class, in an oversampling manner.
SMOTE includes several computational steps: (1) it randomly
selects a sample x in the minority class; (2) it finds k neighboring
samples in such class with x; (3) it randomly select again a sample
y from these neighboring samples to generate a new sample z by
a linear combination of x and y; (4) it places each new sample
z into the minority class; and (5) it repeats the above steps
with predefined times. We directly adopted SMOTE in WEKA
(Witten and Frank, 2005).
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When evaluating the performance of classifiers in the
IFS method, SMOTE was used to decrease the influence of
imbalanced problem. In detail, in each round of 10-fold cross-
validation, the training dataset was processed by SMOTE so that
all classes had same number of samples. The classifier was built
on such dataset and further used to predict testing samples.

Random Forest
A RF is a classifier that is a predictive model for establishing
classification and regression problems. It determines the output
class for one sample by aggregating votes from different decision
trees (Breiman, 2001). As one of the common methods of
machine learning, we built a RF by constructing a large number
of decision trees. Averaging the predictions of all decision trees
to reduce the variance will slightly increase the bias of the
predictions, but at the same time, the performance of the model
will be considerably improved while avoiding over-learning. As
one of the common methods in the field of machine learning,
it has wide applications in tackling different biological problems
(Pugalenthi et al., 2011; Pan et al., 2014; Marques et al., 2016;
Zhao X. et al., 2018; Ru et al., 2019; Zhang et al., 2019; Zhao R.
et al., 2019; Zhao X. et al., 2019; Jia et al., 2020; Liang et al., 2020).
In this study, we used the tool “RandomForest” in Weka (Witten
and Frank, 2005), which implements the RF. Default parameters
were used, where the number of decision tree was 10.

Rule Learning
In this study, we also used the interpretable machine learning
method repeated incremental pruning to produce error reduction
(RIPPER) (Cohen, 1995) to learn the classification rules. In
RIPPER, each rule is an IF-ELSE statement; for instance, if
gene1 > 1.3 and gene2 < 5, then breast cancer occurs. The
learned rules can be used to make predictions for new samples.
We used the RIPPER implemented tool “JRip” in WEKA.

Performance Measurement
Matthew’s Correlation Coefficient (MCC) (Matthews, 1975)
is a commonly used method for estimating performance
measurements of classification models (Chen et al., 2017a,b, 2018;
Cui and Chen, 2019). However, the original MCC was designed
for binary classification problem. In this study, 27 cancer types
were involved. Thus, we used the MCC in multi-class version,
which was proposed by Gorodkin (2004). To calculate such
MCC, two matrices X and Y must be constructed first, where
X stands for the true labels of all samples and Y represents the
predicted labels of all samples. Then, the MCC in multi-class can
be computed by

MCC =
cov(X, Y)

√
cov(X, X)cov(Y, Y)

, (2)

where cov(·) indicates the correlation coefficient of two matrices.
Similar to the original MCC, MCC in multi-class ranges between
–1 and 1. A high MCC implies the good performance. For
convenience, we still called MCC in multi-class as MCC in
the following text.

Besides, we also reported the accuracy of each cancer type and
overall accuracy to give a complete picture on the performance of
each classifier.

RESULTS

In this study, several machine learning methods were adopted to
investigate the mutation profiles of cancer samples in 27 types.
The entire procedures are illustrated in Figure 1.

Results of MCFS Method
The mutation profiles were first analyzed by the MCFS method
to assess the importance of each mutation type. Each mutation
type was assigned a RI score, which is listed in Supplementary
Table 2. Then, all mutation types were sorted by the decreasing
order of their RI scores, resulting in a feature list F. Such list is
also provided in Supplementary Table 2.

Results of IFS Method
A feature list F was generated according to the results of
MCFS. Such list was fed into the IFS method. Two classification
algorithms: RF and RIPPER, were integrated in the IFS method.
For RF, its performance on each feature subset is provided in
Supplementary Table 3. An IFS curve was plotted, as shown
in Figure 2, for an easy observation. The number of features
was set as X-axis and MCC was set as the Y-axis. It can be
observed that the highest MCC was 0.772 when top 96 features
were adopted. Surprisingly, all mutation features were used
in this case, indicating that each mutation type gave less or
more contributions to the distinction of different cancer types.
Accordingly, all mutation features comprised the optimal feature
subset for RF and the RF classifier with these features was
called the optimal RF classifier. The overall accuracy of such
classifier was 0.784, as listed in Table 2. Its detailed performance
on 27 cancer types is illustrated in Figure 3. 14 cancer types
received the accuracies higher than 0.900. All these suggested
the good performance of such RF classifier. Furthermore, we
also employed the rule learning algorithm, RIPPER, to do the
same procedures. The performance of RIPPER on all feature
subsets is also available in Supplementary Table 3. Likewise,
an IFS curve was plotted, as illustrated in Figure 2. Evidently,
the highest MCC was 0.408 when top 61 features were adopted.
Subsequently, the optimal RIPPER classifier was constructed
using these 61 features and these features constituted the optimal
feature subset for RIPPER. The MCC (0.408) was much lower
than that of the optimal RF classifier (0.772). The overall accuracy
was 0.443, as listed in Table 2, also much lower than that of
the optimal RF classifier (0.784). The detailed performance of
the optimal RIPPER classifier on all cancer types is illustrated
in Figure 3. It can be observed that almost all cancer types
received lower accuracies than those of the optimal RF classifier.
Thus, the optimal RF classifier was much superior to the
optimal RIPPER classifier. However, the optimal RF classifier was
an absolute black-box classifier, few insights can be extracted
from such classifier. The RIPPER classifier was much better
in this regard because it can learn some classification rules
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FIGURE 1 | Entire procedures for the investigation on mutation profiles of cancer samples in 27 types. The profiles are analyzed by the MCFS method, resulting in a
feature list. Such list is fed into the incremental feature selection, incorporating random forest or RIPPER as the classification algorithm, to extract essential mutation
types, build efficient classifiers and construct classification rules.

FIGURE 2 | Performance of RF and RIPPER on different feature subsets. The RF yields the highest MCC of 0.772 when all features are used, whereas RIPPER
generates the highest MCC of 0.408 when top 61 features are used.

for explaining and understanding particular cancer differences.
In detail, generally, several mutation features were involved in
one classification rule that can be used to predict one cancer
type. These mutation features together with their corresponding
thresholds can comprise a mutation pattern on such cancer type.
Further investigation on such pattern was helpful to understand
the mechanism of this cancer type in the mutation signature level.

From Table 1, we can see that some cancer types contained
much more samples than other types, that is, the type sizes were
of great differences. Here, we investigated the performance of
two optimal classifiers on cancer types with different sizes. To
this end, we classified 27 cancer types into three categories. The
first category contained types with less than 10 samples, the
second category included the types with 10–100 samples, and

TABLE 2 | Performance of IFS with RF and RIPPER for classifying samples from
different cancers.

Classifier Number of features Overall accuracy MCC

RF 96 0.784 0.772

RIPPER 61 0.443 0.408

the third category contained types with more than 100 samples.
For convenience, these three categories were called small, middle
and large cancer types. The performance of the optimal RF and
RIPPER classifiers on three categories is illustrated in Figure 4.
It can be observed that the middle cancer type received relative
higher accuracies, whereas the small cancer type received slightly
higher accuracies than the large cancer type. The reason may be
the application of SMOTE. It can increase the performance on
minor classes (small cancer type) and decrease the performance
on major classes (large cancer type).

Classification Rules
The optimal RIPPER classifier used the top 61 mutation features.
Accordingly, the RIPPER was applied on all cancer samples that
were represented by these 61 features. As a result, 207 rules were
obtained, which are provided in Supplementary Table 4. Each
cancer type had at least one rules. The number of rules on each
cancer type is shown in Figure 5. The cancer types “Esophageal
adenocarcinoma” and “Neuroblastoma” had most rules, whereas
“Kidney clear cell” and “Rhabdoid tumor” had only one rule.
In section “Mutation Pattern Rules Associated With Cancer
Subgrouping,” some representative rules would be discussed.
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FIGURE 3 | Accuracy on each cancer type yielded by the optimal RF and RIPPER classifiers. The optimal RF classifier gives high performance (accuracy > 0.900)
on 14 cancer types, indicating its good performance. The optimal RIPPER classifier provides much lower performance.

DISCUSSION

We summarized optimal features describing the distinct
mutation types to generate an applicable classifier for all the 27
cancer subtypes. The contribution of typical mutation patterns
was functionally connected to certain cancer biological behavior,
such as the initiation and progression of tumorigenesis. The top
37 features were supported by previous studies as biomarker
candidates. In addition to these potential cancer biomarkers,
we identified 27 rules of mutation types associated with these
27 cancers. Such group of quantitative rules may contribute to
the detailed classification of cancers and serve as guidance in
future research.

Mutation Patterns Associated With
Cancer Subgrouping
First, we screened a group of functional mutation patterns
with different distributions in various cancer types. Recent
publications confirmed such mutation patterns consistent with
our prediction. Here, we selected the top five mutation patterns
for following detailed discussions.

The top mutation pattern ACG to ATG refers to amino acid
substitution from Thr to Met. Recent publications indicated that
such mutation pattern exists in multiple cancer-associated genes,
including TP53, PRSS1, and XRCC3. For TP53, such mutation
pattern has been recognized in multiple tumor types, especially
for head and neck cancer (Boyle et al., 1993) and lung cancer
(Veldore et al., 2015), rather than other malignant proliferative
diseases, such as esophageal adenocarcinoma and melanoma;
this finding reflects the distinctive potentials of such mutation
pattern. For PRSS1, such mutation pattern has only been found
in pancreatic cancer, validating our prediction (Yi et al., 2016).
Similarly, XRCC3 has such a mutation pattern in multiple cancer
types, including thyroid cancer (Wang et al., 2015) and breast
cancer (Lee et al., 2007). Therefore, as we have mentioned above,
this mutation pattern has been discovered in limited tumor types
but not in all tumor categories, validating our prediction of
mutation pattern distinctive with certain tumor types.

CCG to CTG, indicating the transition from Pro to Leu, is
another mutation pattern we identified. According to previous
studies, such mutation pattern in protein IL-10 contributes
to the anti-tumor immune responses in prostate cancer but
not in other tumor types, corresponding with our prediction
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FIGURE 4 | Box plot to show the performance of the optimal RF and RIPPER classifier on three different cancer types. Small cancer type includes the types with
less than 10 samples; middle cancer type contains types containing 10–100 samples; larger cancer type contains types with more than 100 samples. (A) Box plot
for the optimal RF classifier; (B) Box plot for the optimal RIPPER classifier. The performance on middle cancer type of two optimal classifiers is best.

FIGURE 5 | Pie chart to show the number of rules on each cancer type.

(Bandil et al., 2017). Such mutation pattern has also been
identified in the gene p16 in multiple tumor types but not in all
of our candidate tumor types (Zhang and Peng, 2002), further
validating our analysis.

The mutation pattern TCG to TTG describes the amino
acid transition from serine to leucine. According to recent
reports, such mutation pattern may also distinguish certain
tumor types from the other ones, which has been validated to
be pathogenic in a specific oncogene named RET for thyroid
carcinoma (Colombo-Benkmann et al., 2008), confirming our
prediction. Further, SMAD2 and SMAD4 as the two essential
components of the TGF beta-Smad signaling pathway also have
such variant pattern contributing to the tumorigenesis of head
and neck squamous cell carcinoma (Qiu et al., 2007) in contrast
with other tumor types.

Apart from the optimal mutation patterns analyzed above,
the mutation patterns from GCG to GTG (i.e., from alanine

to valine) and from TCA to TTA (i.e., from serine to leucine)
(Zhang and Peng, 2002; Bandil et al., 2017) have been distinctively
identified in different tumor types, which is consistent with
to our prediction.

Mutation Pattern Rules Associated With
Cancer Subgrouping
A total of 207 mutation rules are related to 27 cancers. This
work focused on a few representative cancer types and several top
mutation rules for each cancer.

Melanoma
The first rule is the mutation of codon CCC to CTC (Leu to Pro).
In 1998, it was reported that the case of melanoma is particularly
peculiar, showing Leu-to-Pro mutations in codons 31 and 35,
both of which are located in the highly conserved regions (Kumar
et al., 1998). P53 mutations in melanoma cell lines, metastases,
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and primary tumors include the Leu-to-Pro mutations (Zerp
et al., 1999). The second rule is the mutations of codons from
CCC to CTC, TCC to TTC, TAA to TTA, and the third rule
includes the mutations from CCC to CTC, and CCG to CTG,
which are some refinements of the first rule.

Head and Neck
With typical symptoms as a lump or sore, head and neck cancer
is a general description of all cancers related to mouth, nose,
and other accessory organs around the head. The first rule for
head and neck cancer involves mutations of codons TCA to TTA
(Ser to Leu), CAG to CGG (Glu to Arg), and TAT to TGT (Cys
to Tyr). In 2007, researchers identified an effective variation on
SMAD2. Such variation located in exon 8 at codon 276 (Ser to
Leu) contributes to the progression of human head and neck
squamous cell carcinoma. The mutations of SMAD2 disrupts a
famous tumor associated pathway named transforming growth
factor β-Smad signaling pathway (Qiu et al., 2007). The second
rule in head and neck cancer involves the mutation of codons
TCA to TGA (Ser to a stop codon), ACG to ATG (Thr to Met),
AAG to AGG (Lys to Arg), GAG to GGG (Glu to Gly), and
TCC to TTC (Ser to Phe). TP53 mutation rate increases following
the development and progression of head and neck cancer, and
Thr to Met is a well-known p53 mutation (Boyle et al., 1993).
The third rule in head and neck cancer includes mutations from
codons CCG to CAG, GAC to GGC, and GCT to GTT; these
mutations are especially related to CYP1 gene, and the genetic
polymorphisms of CYP are associated with head and neck cancer
(Gattás et al., 2010).

Esophageal Adenocarcinoma
Arising from the esophagus, esophageal adenocarcinoma is one
of the most common subtypes of malignancies affecting the
digestive tract. The clinical symptoms of such cancer include
difficulty in swallowing and weight loss. The first rule in
esophageal cancer involves six mutations, such as AAG to ACG,
CAT to CGT, GCC to GGC, CCG to CAG, GCA to GAA, and
ACA to ATA. A highly significant association exists between
P53 mutations in the molecular pathogenesis of esophageal
adenocarcinoma and esophageal malignancy, and AAG to ACG
is a remarkable type of TP53 mutation (Vaninetti et al., 2008). The
second rule in esophageal adenocarcinoma comprises mutations,
such as TAA to TTA, TCT to TGT, GCT to GTT, and CCT
to CAT. The third rule involves mutations, such as AAG to
AGG, CAT to CGT, CAG to CTG, TCG to TAG, and ACC
to AAC. The missense polymorphism of human AGT gene (at
codon 276, Ser to Leu) is pathogenic for such disease, revealing
the specific characteristics of such diseases at the mutational
pattern level. In addition, we confirmed the existence of a codon
84 genetic polymorphism previously, which converts leucine to
phenylalanine (Deng et al., 1999).

Neuroblastoma
With cancer-associated bone pain, neck, and chest lump as typical
clinical symptoms, neuroblastoma derives from nerve tissues
with high cellular diversity. The first rule in neuroblastoma is
the involvement of five mutations, including ACG to ATG, GCA

to GAA, CAC to CCC, CCA to CTA, and TCC to TTC. The
second rule comprises the mutations, such as CAC to CCC, TCC
to TAC, ACA to ATA, and CCA to CAA. The third comprises
the mutations ACA to AAA, TCA to TTA, TCT to TAT, GCC to
GTC, and ACC to ATC.

Comparison With COSMIC Database
Here, we further compared our results with previously reported
effective mutation patterns in COSMIC database with solid
publication supports. Although in COSMIC, the mutations are
summarized based on single base not a combination of three
constitutive bases, we did find the consistency of COSMIC
validated mutation patterns and our results.

For instance, in melanoma, we identified CCC to CTC, TCC to
TTC, and CCG to CTG as three typical mutation patterns, which
all involved specific cosmic mutation type as C > T. In COSMIC
database, more than 23% of patients have such mutation pattern
in melanoma associated genomic regions (Tate et al., 2019).
Apart from that, such mutation patterns have been identified in
melanoma associated genes, like OR4F5 and SAMD11, validating
the specific role of such mutational patterns in melanoma.

Furthermore, as for esophageal adenocarcinoma, mutation
patterns like GCA to GAA, CCT to CAT, and TCG to TAG are
significant mutations identified in this study with the same single
base pair alterations as C > A. According to COSMIC database,
C > A pattern has been shown to be identified in more than 54%
of all patients associated with esophageal adenocarcinoma (Tate
et al., 2019), indicating the specific biological functions of such
mutation patterns on such cancer subtypes.

Apart from mutation patterns associated with specific cancer
subtypes, we also identified a group of effective mutation
patterns associated with APOBEC (Chen et al., 2019). As an
apolipoprotein B mRNA editing enzyme, APOBEC family has
been shown to be associated with multiple cancer mutations
and contribute to the variety of cancer mutation burdens. In
our study, we also identified some specific APOBEC associated
mutation patterns like TCG > TTG and TCA > TTA, validating
that identified mutation patterns are associated with the initiation
and progression of different cancer subtypes.

Therefore, the mutation patterns identified in this study to be
associated with different cancer subtypes have been validated by
COSMIC database, implying reliability of our results.

CONCLUSION

All of the qualitatively analyzed mutation signatures contribute
to the distinction of different types of cancers. Most of the
quantitative analyzed mutation rules are supported by recent
literature. Our computational approach could efficiently identify
mutation signatures and rules for cancers.
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