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Background: Ultrasound is essential for detecting breast lesions. The American College of Radiology’s 
Breast Imaging Reporting and Data System (BI-RADS) classification system is widely used, but its 
subjectivity can lead to inconsistency in diagnostic outcomes. Artificial intelligence (AI) models, such as 
ChatGPT-3.5, may potentially enhance diagnostic accuracy and efficiency in medical settings. This study 
aimed to assess the utility of the ChatGPT-3.5 model in generating BI-RADS classifications for breast 
ultrasound reports and its ability to replicate the “chain of thought” (CoT) in clinical decision-making to 
improve model interpretability.
Methods: Breast ultrasound reports were collected, and ChatGPT-3.5 was used to generate diagnoses 
and treatment plans. We evaluated GPT-4’s performance by comparing its generated reports to those from 
doctors with various levels of experience. We also conducted a Turing test and a consistency analysis. To 
enhance the interpretability of the model, we applied the CoT method to deconstruct the decision-making 
chain of the GPT model.
Results: A total of 131 patients were evaluated, with 57 doctors participating in the experiment. 
ChatGPT-3.5 showed promising performance in structure and organization (S&O), professional 
terminology and expression (PTE), treatment recommendations (TR), and clarity and comprehensibility 
(C&C). However, improvements are needed in BI-RADS classification, malignancy diagnosis (MD), 
likelihood of being written by a physician (LWBP), and ultrasound doctor artificial intelligence acceptance 
(UDAIA). Turing test results indicated that AI-generated reports convincingly resembled human-authored 
reports. Reproducibility experiments displayed consistent performance. Erroneous report analysis revealed 
issues related to incorrect diagnosis, inconsistencies, and overdiagnosis. The CoT investigation supports 
the potential of ChatGPT to replicate the clinical decision-making process and offers insights into AI 
interpretability.
Conclusions: The ChatGPT-3.5 model holds potential as a valuable tool for assisting in the efficient 
determination of BI-RADS classifications and enhancing diagnostic performance. 
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Introduction

Breast cancer is one of the most common malignancies 
among women, with its incidence and mortality rates on the 
rise globally (1). Ultrasound plays a vital role in detecting 
breast lesions, serving as a first-line screening tool. In 
China, where many women have dense breast tissue, 
ultrasound is often the preferred imaging modality (2).  
The American College of Radiology’s Breast Imaging 
Reporting and Data System (BI-RADS) (3) provides a clear 
classification of breast tumor malignancy, which is essential 
for devising treatment plans and assessing prognosis, and 
is widely applied in clinical practice. However, due to 
its subjective nature, diagnostic results may vary across 
physicians with different levels of experience and from 
different regions (4).

In recent years, artificial intelligence (AI) has demonstrated 
outstanding performance in cognitive tasks (5-10). The 
introduction of the large language model (LLM) ChatGPT 
by OpenAI represents a significant advancement in natural 
language (6) processing, offering substantial potential 
for improving diagnostic accuracy and efficiency (9)  
while reducing human errors in the medical field (11). 

Despite the potential benefits, AI models face limitations 
in specialized domains such as medical diagnosis, including 
the scarcity of training data, which can impair the 
model’s capacity for generalization and precise prediction  
making (12). Furthermore, AI models may not be 
sufficiently effective or dependable for use in difficult 
medical diagnostic tasks (13). Moreover, the “black box” 
nature of AI models, particularly in the context of medicine, 
can present significant challenges due to the lack of 
transparency in decision-making (14). This opacity can lead 
to mistrust and hinder the wider adoption of AI technologies 
in critical areas such as healthcare. Consequently, research 
into model interpretability is not only essential, but also 
timely (15). The “chain of thought” (CoT) methodology 
we employed in our previous study represents an attempt 
at improving model interpretability (16). This method 
provides a visual breakdown of the AI’s decision-making 
process, thereby enhancing our understanding of how the 
AI model arrives at a given conclusion. Illuminating the 
AI decision-making process can improve AI performance, 
foster trust, and facilitate the smoother integration of AI 
into healthcare by addressing one of the major concerns of 
healthcare professionals—the unpredictability and opacity 
of AI decision-making.

This study aimed to clarify the potential of the 

ChatGPT-3.5 model to help ultrasound doctors effectively 
determine BI-RADS classification, improve diagnostic 
performance in clinical settings, and analyze the causes of 
misdiagnosis, to better understand the limitations of LLM 
in this context. We present this article in accordance with 
the STROBE reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-141/rc).

Methods

Data collection

From March 2023 to April 2023, we retrospectively 
collected data from patients with breast cancer treated at 
Beijing Friendship Hospital, Capital Medical University. 
All patients with breast masses classified as BI-RADS 4a 
or higher underwent either core needle biopsy or surgical 
pathology to confirm their diagnosis. Patients with BI-
RADS 2 and 3 lesions were followed up for 3–5 years as 
typical benign cases. In total, 131 ultrasound reports from 
131 patients were included, all of whom were female, with 
an average age of 43 (range, 21–78) years. Benign cases 
included breast cysts, fibroadenomas, and mammary gland 
diseases, while malignant cases were all invasive breast 
cancers. This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and received 
ethical approval from the Medical Ethics Committee of 
Beijing Friendship Hospital, Capital Medical University 
(No. 2022-P2-060-01). The requirement for individual 
consent was waived due to the retrospective nature of the 
analysis.

A total of 57 evaluating doctors participated in the study, 
including 20 junior doctors (1–5 years of experience), 18 
intermediate doctors (6–10 years of experience), and 19 
senior doctors (>10 years of experience). They were from  
57 hospitals, including Binzhou Central Hospital in 
Shandong Province, Beijing Children’s Hospital Affiliated 
with Capital Medical University, and Beijing Friendship 
Hospital Affiliated with Capital Medical University.

Diagnostic results generated by ChatGPT

The ChatGPT (17) series, created by OpenAI, is a 
cutting-edge pretrained language model that is capable 
of performing intricate natural language processing tasks, 
including generating articles, answering questions (18), 
translating languages, and producing code. The workflow 
of this study is illustrated in Figure 1. In our analysis, we 

https://qims.amegroups.com/article/view/10.21037/qims-24-141/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-141/rc
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input breast ultrasound medical reports into ChatGPT-3.5 
and prompted it to generate diagnoses and treatment 
recommendations (TR). We subsequently collected the 
output reports for evaluation. Figure S1 shows the process 
of question and answer collection. The prompt provided 
was as follows: “Based on the following breast ultrasound 
description, please provide a comprehensive diagnosis 
(BI-RADS classification) and corresponding treatment 
recommendations”.

Evaluation of report performance

In order to gain deeper insights into ChatGPT’s 
effectiveness in producing diagnostic reports for breast 
cancer, we gathered and assessed the ratings of these reports 
based on a specific set of evaluation criteria (see Table S1). 
These criteria included structure and organization (S&O), 
professional terminology and expression (PTE), BI-RADS 
classification, malignancy diagnosis (MD), TR, clarity 
and comprehensibility (C&C), likelihood of being written 
by a physician (LWBP), ultrasound doctor AI acceptance 
(UDAIA), and overall evaluation (OE). Each criterion was 
rated on a scale of 1 to 5, with 1 indicating completely 
incorrect or unsatisfactory and 5 indicating completely 

correct or satisfactory. The details of the scoring table 
can be found in the supplementary materials (Table S2). 
Furthermore, we assessed the proficiency of AI-generated 
reports by juxtaposing their evaluations with those provided 
by physicians possessing varying degrees of clinical 
experience.

Turing test and reproducibility experiment

To evaluate doctors’ ability to distinguish between human-
written and AI-generated reports (19), we incorporated 
50% of the ChatGPT-generated reports into the evaluation 
set. Doctors assessed the likelihood that each report 
was authored by a physician, and we calculated the rate 
of accurate identifications. If their accuracy surpassed 
random guessing (50%), it would indicate that ChatGPT 
successfully passed the Turing test.

To evaluate the consistency of ChatGPT’s responses, 
we conducted a comparison of two outputs produced by 
distinct transient model instances (20). For each inquiry, 
we analyzed the scores allocated to both responses and 
conducted a statistical assessment to identify significant 
disparities (21), thereby offering insights into the reliability 
of ChatGPT’s performance.

Ultrasound
description

Generated
report 1

Generated
diagnosis and

treatment
report

Written
diagnosis and

treatment
report

Generated
report 2

Report
assessing

Erroneous
report

analysis

Same patient

ChatGPT

Reproducibility

Turing test

Doctor
report

Generated
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Figure 1 Overview of the experimental workflow. The procedure begins with data collection and the acquisition of ultrasound reports 
and progresses to the generation of diagnoses and treatment outcomes using ChatGPT-3.5. The results underwent four experimental 
evaluations: (I) physician assessment of AI-generated reports; (II) a Turing test to evaluate reports created by doctors versus those produced 
by AI; (III) a reproducibility experiment involving the generation of reports twice and a comparison of differences; and (IV) an analysis of 
erroneous reports. AI, artificial intelligence.

https://cdn.amegroups.cn/static/public/QIMS-24-141-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-141-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-141-Supplementary.pdf
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Erroneous report analysis

We collected and examined misdiagnosed reports, defined 
as those with low scores (1–2 points). Two doctors with  
12 years of experience analyzed and categorized the reasons 
for these errors (22). This analysis aimed to identify patterns 
and potential weaknesses in the ChatGPT model in order 
to guide future improvements and training strategies (23).

GPT CoT visualization

The CoT (16) method breaks down the decision-making 
process of the GPT model into several stages, depicting it 
as a flowchart. This method provides a clear and insightful 
means to scrutinizing the model’s decision-making patterns, 
enhancing our understanding of its diagnostic process. 
The visual representation elucidates the decisions made 
by ChatGPT-3.5 in assigning a BI-RADS score, assessing 
malignancy, suggesting a treatment plan, and generating a 
diagnostic report.

Statistical analyses

The statistical analysis was carried out using the Mann-
Whitney test (24), provided by the SciPy package (25) 
with all code written in Python 3.8 (Python Software 
Foundation, Wilmington, DE, USA). A P value lower than 
0.05 was deemed to be statistically significant.

Results

Report generation performance evaluation result

The mean values of the ChatGPT-3.5 performance in 
medical reports for different metrics were as follows: S&O, 
4.08 [95% confidence interval (CI): 3.99–4.17], PTE, 4.08 
(95% CI: 3.99–4.18); BI-RADS classification, 3.77 (95% 
CI: 3.64–3.90); MD, 3.86 (95% CI: 3.74–3.98); TR, 4.03 
(95% CI: 3.93–4.14); C&C, 4.00 (95% CI: 3.89–4.10); 
UDAIA, 3.92 (95% CI: 3.81–4.03); and OE, 3.89 (95% 
CI: 3.77–4.00). The results can be found in Figure 2A. 
ChatGPT-3.5 exhibited remarkable performance in S&O, 
PTE, TR, and C&C, with scores approaching or surpassing 
4. However, the scores for BI-RADS, MD, LWBP, and 
UDAIA were slightly lower, indicating areas in need of 
improvement. In summary, ChatGPT-3.5 achieved an 
OE score of 3.89, indicating that its performance was 
deemed generally acceptable. We employed a radar chart 
to exhibit the performance of various types of physicians 

and the AI system (see Figure 2B), which indicated that 
ChatGPT-3.5 has comparable performance to doctors in 
multiple aspects, particularly excelling in S&O, PTE, TR, 
and C&C. We conducted statistical analyses to compare 
the performance of ChatGPT-3.5 with that of doctors. 
The Mann-Whitney test indicated that the differences 
between the AI and doctors were statistically significant for 
BI-RADS classification (P value =0.028) and MD (P value 
=0.033). These findings suggest that while ChatGPT-3.5 
performs well, there are certain areas in which expertise still 
outperforms AI.

Agreement analysis

To further evaluate the agreement between doctors and 
ChatGPT, we performed Cohen kappa analysis. The 
Cohen kappa coefficient for BI-RADS Classification was 
0.68, indicating substantial agreement between the AI and 
physicians. This suggests that while there are discrepancies, 
the AI-generated reports are generally in alignment with 
those written by doctors.

Turing test results

We used comparative bar charts and pie charts to evaluate 
the distinctions between AI-generated reports and those 
authored by human doctors (with a score of 5 representing 
a high likelihood of being human written and a score of 1 
denoting a very low likelihood). The proportion of doctor-
written reports that garnered a score of 5 was 33.70%, 
whereas AI-generated reports exhibited a marginally 
higher proportion in this category at 35.34%. This 
observation suggests that AI-generated reports convincingly 
approximate the characteristics of reports composed by 
medical professionals.

Reproducibility analysis

Figure 3 Boxplot illustrating the score distribution of 
ChatGPT-generated reports for the same patient across 
various time intervals. The results indicated consistent a 
performance across various evaluation criteria. The key 
mean scores for both experiments included those for S&O 
(4.12 and 4.07; P=0.59), PTE (4.18 and 4.00; P=0.19), and 
C&C (4.09 and 3.63; P=0.048). The AI-generated medical 
reports showed consistent performance throughout the 
experiments, with high mean scores being maintained for 
most criteria. Although some variations were observed 
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in specific areas, such as in BI-RADS classification (3.88 
and 3.37; P=0.06) and MD (3.91 and 3.40; P=0.047), the 
overall performance of the AI in generating medical reports 
remains promising. The consistency in scores across most 
of the evaluation criteria warrants further investigation into 
the potential applications and development of AI-generated 
medical reports.

Erroneous report analysis 

The following is a summary of results for the erroneous 

reports generated by ChatGPT and reviewed by clinical 
doctors: For incorrect diagnoses, cases with low scores (score 
1–2) indicated errors in distinguishing between benign 
and malignant diagnoses. For example, a benign case was 
diagnosed as BI-RADS 4b even though we defined 4a and 
above as malignant.

In terms of inconsistencies, the BI-RADS classification 
did not always correspond with the appropriate clinical 
recommendations, leading to inconsistencies in the 
generated report’s content. For instance, a report indicated a 
benign diagnosis but suggested a biopsy. This inconsistency 

Malignancy diagnosis

P values: JD vs. AI: 0.784, ID vs. AI: 0.081, SD vs. AI: 0.306, Dr. vs. AI: 0.828

JD: Mean =3.80 (95% CI: 3.58–4.01)
ID: Mean =4.15 (95% CI: 3.91–4.39)
SD: Mean =3.63 (95% CI: 3.18–4.09)
Dr.: Mean =3.86 (95% CI: 3.70–4.02)
Al: Mean =3.86 (95% CI: 3.74–3.98)

JD: Mean =3.96 (95% CI: 3.78–4.14)
ID: Mean =4.27 (95% CI: 4.06–4.49)
SD: Mean =4.00 (95% CI: 3.63–4.37)
Dr.: Mean =4.05 (95% CI: 3.91–4.18)
Al: Mean =4.08 (95% CI: 3.99–4.18)

JD: Mean =3.77 (95% CI: 3.55–3.99)
ID: Mean =4.09 (95% CI: 3.83–4.35)
SD: Mean =3.74 (95% CI: 3.29–4.18)
Dr.: Mean =3.85 (95% CI: 3.69–4.01)
Al: Mean =3.77 (95% CI: 3.64–3.90)

JD: Mean =3.92 (95% CI: 3.74–4.11)
ID: Mean =4.12 (95% CI: 3.87–4.37)
SD: Mean =4.00 (95% CI: 3.60–4.40)
Dr.: Mean =3.98 (95% CI: 3.84–4.13)
Al: Mean =4.08 (95% CI: 3.99–4.17)

JD: Mean =3.94 (95% CI: 3.73–4.14)
ID: Mean =4.27 (95% CI: 4.06–4.49)
SD: Mean =4.00 (95% CI: 3.63–4.37)
Dr.: Mean =4.03 (95% CI: 3.88–4.18)
Al: Mean =4.03 (95% CI: 3.93–4.14)

JD: Mean =3.87 (95% CI: 3.67–4.07)
ID: Mean =4.12 (95% CI: 3.88–4.36)
SD: Mean =3.84 (95% CI: 3.41–4.27)
Dr.: Mean =3.93 (95% CI: 3.78–4.08)
Al: Mean =3.89 (95% CI: 3.77–4.00)

JD: Mean =3.82 (95% CI: 3.62–4.02)
ID: Mean =4.06 (95% CI: 3.82–4.30)
SD: Mean =3.74 (95% CI: 3.34–4.13)
Dr.: Mean =3.87 (95% CI: 3.72–4.02)
Al: Mean =3.92 (95% CI: 3.81–4.03)

JD: Mean =4.09 (95% CI: 3.92–4.25)
ID: Mean =4.12 (95% CI: 3.90–4.34)
SD: Mean =3.89 (95% CI: 3.53–4.26)
Dr.: Mean =4.07 (95% CI: 3.94–4.19)
Al: Mean =4.00 (95% CI: 3.89–4.10)

BI-RADS classification

P values: JD vs. AI: 0.951, ID vs. AI: 0.089, SD vs. AI: 0.890, Dr. vs. AI: 0.473

Structure and organization

P values: JD vs. AI: 0.233, ID vs. AI: 0.649, SD vs. AI: 0.806, Dr. vs. AI: 0.464

Treatment recommendations

P values: JD vs. AI: 0.696, ID vs. AI: 0.102, SD vs. AI: 0.919, Dr. vs. AI: 0.70

Overall evaluation

P values: JD vs. AI: 0.886, ID vs. AI: 0.164, SD vs. AI: 0.773, Dr. vs. AI: 0.55

Ultrasound doctor AI acceptance

P values: JD vs. AI: 0.529, ID vs. AI: 0.360, SD vs. AI: 0.290, Dr. vs. AI: 0.692

Clarity and comprehensibility

P values: JD vs. AI: 0.334, ID vs. AI: 0.487, SD vs. AI: 0.575, Dr. vs. AI: 0.419

Professional terminology and expression

P values: JD vs. AI: 0.397, ID vs. AI: 0.143, SD vs. AI: 0.768, Dr. vs. AI: 0.938
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Figure 2 Assessment of report quality and accuracy by physicians at various experience levels and by AI. (A) Distribution of ratings for 
accuracy and additional evaluation criteria among reports from JD, ID, SD, the collective Dr group, and ChatGPT (AI). (B) Radar chart 
showing average ratings for evaluation metrics based on varying experience levels of doctor- and AI-generated reports. JD, junior doctor; AI, 
artificial intelligence; ID, intermediate doctor; SD, senior doctor; Dr, doctor; CI, confidence interval; BI-RADS, Breast Imaging Reporting 
and Data System; PTE, professional terminology and expression; S&O, structure and organization; OE, overall evaluation; UDAIA, 
ultrasound doctor AI acceptance; LWBP, likelihood of being written by physician; C&C, clarity and comprehensibility; TR, treatment 
recommendations; MD, malignancy diagnosis.
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Figure 3 Boxplot illustrating the score distribution of ChatGPT-generated reports for the same patient across various time intervals. The 
differences in P values are as follows: S&O, 0.586; PTE, 0.195; BI-RADS classification, 0.058; MD, 0.047; TR, 0.067; C&C, 0.049; LWBP, 
0.093; UDAIA, 0.044; and OE, 0.016. S&O, structure and organization; PTE, professional terminology and expression; BI-RADS, Breast 
Imaging Reporting and Data System; MD, malignancy diagnosis; TR, treatment recommendation; C&C, clarity and comprehensibility; 
LWBP, likelihood of being written by physician; UDAIA, ultrasound doctor artificial intelligence acceptance; OE, overall evaluation.

may be due to the model’s inability to fully understand the 
context and relationships between different sections of the 
report. For overdiagnosis, there was overdiagnosis in some 
benign lesions. 

CoT visualization 

The visualization results in Figure 4 depict the key steps 
and considerations in the decision-making process of 
the ChatGPT model. First, the model extracts crucial 
information from the patient’s ultrasound reports, such 
as breast echogenicity, presence or absence of masses 
and abnormal blood flow in the breasts, characteristics of 
any nodules found, and axillary lymph node status. Next, 
with this data, the model calculates the BI-RADS score, a 
crucial metric in assessing breast cancer. The calculation 
involves an evaluation of the breast echogenicity, structural 
disorder, presence or absence of masses and abnormal blood 
flow, characteristics of nodules, and lymph node status. 
Further, the model combines the previously calculated 
BI-RADS score. This step is not merely an evaluation of 
individual parameters but also an integrated risk assessment 
that computes the likelihood of cancer. Finally, based on 
the above information and diagnosis result, the model 

synthesizes all this information to provide a suggestion on 
what treatment might be suitable. This implies that the final 
suggestion is not solely dependent on a single parameter or 
result but is a comprehensive consideration of the risk level 
of breast cancer. Our visualization chart provides a clear and 
explicit representation of this process, enabling us to better 
understand the decision-making logic of the model in the 
diagnostic and treatment suggestion process. Key nodes 
in the model’s thought chain, such as BI-RADS score and 
nodule characteristics, are clearly highlighted. This research 
offers insight into the cognitive processes underlying the 
decision-making framework of the ChatGPT model in the 
diagnosis and recommendation of therapeutic interventions 
for breast cancer.

Discussion

In this study, we assessed ChatGPT’s performance in 
generating breast cancer diagnosis reports, concentrating 
on report scoring, quality comparisons among doctors 
with varying experience levels, Turing test outcomes, 
reproducibility analysis, and erroneous report examination. 
Our findings offer valuable insights into ChatGPT’s present 
capabilities, highlighting potential areas for improvement 
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Figure 4 Visualization of the CoT for breast cancer diagnosis and treatment suggestions. This CoT consists of several steps. The “Extract 
Data ()” function extracts essential patient information from ultrasound reports. The “BI-RADS score calculation” operation evaluates the 
breast lesions according to the BI-RADS based on the extracted information. Finally, the “Treatment recommendations” function suggests 
what treatment might be advisable based on the matched results. BI-RADS, Breast Imaging Reporting and Data System; CoT, chain of 
thought.

and practical applications within the medical domain.

Report performance

The evaluation of ChatGPT-3.5’s performance in 

generating medical reports, based on metrics such as S&O, 
PTE, TR, and C&C, yielded promising results. With mean 
scores around or above 4, the AI demonstrated potential for 
producing high-quality reports comparable to those written 
by radiologists. Literature also supports the promise of 
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automated systems in medical documentation (26,27).
H o w e v e r,  t h e  A I ’s  p e r f o r m a n c e  i n  B I - R A D S 

classification, MD, and UDAIA needs improvement. This 
aligns with the findings of Pang et al. (28), who noted issues 
in AI’s accuracy in specific medical classification tasks, and 
of Zhou et al. (29), who identified challenges in complex 
decision support and multidimensional data analysis. 
Thus, while ChatGPT-3.5 excels in various areas, further 
development is needed for comprehensive and accurate 
performance.

The radar chart comparison (Figure 2B) between 
different doctors and the AI highlights its potential in 
medical report generation. The literature suggests AI’s 
significant promise in assisting healthcare professionals (30), 
supporting these findings.

Turning test and reproducibility 

The Turing test results provide valuable insights into 
AI’s ability emulate reports written by human physicians.  
Figure 5 shows that 35.34% of AI-generated reports 
achieved a score of 5, indicating a high likelihood of being 
perceived as human written. This slightly surpassed the 
33.70% for doctor-authored reports, suggesting that AI-
generated reports can closely resemble doctor-authored 
reports and sometimes even surpass them in perceived 
authenticity. Thus, AI could streamline the medical 
reporting process, reduce healthcare professionals’ 
workload, and allow more time for patient care (30-32).

The reproducibility of experiment results (Figure 3) 
further demonstrated the consistency and reliability of AI-

Figure 5 Evaluation of the perceived human authorship of reports created by physicians at various experience levels and those generated by 
AI. [1, extremely unlikely; 2, somewhat unlikely; 3, moderately likely; 4, likely; 5, extremely likely (to be human written)]. (A) A histogram 
showing the probability distribution of reports evaluated by the Dr group. (B) A pie chart showing the distribution of Turing test scores for 
reports authored by AI and doctors. AI, artificial intelligence; Dr, doctor.
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generated reports across multiple evaluation criteria. The 
AI’s performance showed high consistency in S&O, PTE, 
and C&C, underscoring its potential in maintaining high 
quality in medical reporting (31,32).

However, the inconsistency in BI-RADS classification 
and MD still needs to be addressed. Previous studies have 
noted similar challenges, where AI systems exhibited 
variability in accuracy for certain medical tasks (32,33). 
Resolving these issue will improve AI-generated report 
quality and bolster healthcare professionals’ confidence in 
in them for decision-making.

Erroneous reports

The results of erroneous reports indicated several 
shortcomings in ChatGPT’s handling of medical texts. 
First, the inconsistencies suggest that the model struggles 
with long-text comprehension, leading to context and 
relationship discrepancies within reports (34,35). Improving 
attention mechanisms could mitigate these issues. Second, 
ChatGPT’s reliance on physician descriptions without 
independent image analysis resulted in overdiagnosis in 
benign cases. Integrating computer vision techniques could 
improve diagnostic accuracy (36).

Finally, the model often overlooked details in cases with 
multiple lesions, focusing on high-malignancy descriptions 
and missing others. Enhancing multisource information 
processing could address this flaw (37). 

CoT

The interpretability of AI models is crucial in healthcare, 
as it allows doctors and patients to understand and trust 
AI decisions, significantly improving patient outcomes. 
The CoT concept helps trace the AI’s thought process, 
identifying potential weaknesses and biases, thereby 
enhancing performance and building user trust. This is vital 
for the integration of AI into healthcare settings (38,39). 

Explainability involves understanding why the model 
makes a given classification, such as assigning a BI-RADS 
score. This requires evaluating features such as nodule 
size, shape, margins, and microcalcifications to provide a 
clear rationale behind recommendations. Previous studies 
emphasize the importance of explainability in AI for 
healthcare, highlighting its role in improving trust and 
acceptance among users (40,41).

Limitations and future work

ChatGPT still has several limitations in the medical 
context. First, the model’s inability to analyze images 
directly, relying solely on physician-provided text, suggests 
there is a need to integrate computer vision techniques  
(42-44). Second, longer texts can lead to inconsistencies, 
and addressing this requires improving the comprehension 
and generation of longer texts. Third, specialized fields such 
as ultrasound report analysis require more domain-specific 
knowledge. Future research should focus on incorporating 
expert knowledge and clinical guidelines (36,45). Fourth, 
potential biases should be considered, as physicians’ 
familiarity with AI-generated reports might influence their 
assessments. Ensuring trust and transparency involves robust 
validation processes, clear documentation, and human 
oversight (46,47). Finally, the generalizability of this study 
may be limited to breast cancer diagnosis. Further research 
should explore AI-generated reports in other medical 
domains (23,48).

Conclusions 

The findings of this study support ChatGPT’s potential in 
analyzing breast ultrasound reports and providing diagnostic 
and TR. It exhibited strong performance across various 
evaluation criteria and convincingly emulated reports written 
by physicians. Moreover, the reproducibility results indicate 
a high level of consistency in essential aspects of medical 
reporting. However, the analysis of erroneous reports 
suggests that there are several areas where improvements are 
needed, including model understanding and context, image 
analysis, and the handling of multiple lesions. Furthermore, 
the visual dissection of the AI’s CoT provides invaluable 
insights into the decision-making process, highlighting 
the importance of model interpretability for enhancing 
performance, building user trust, and effectively integrating 
AI into healthcare environments.
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