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ABSTRACT

Objective: We developed an application (https://rush-covid19.herokuapp.com/) to aid US hospitals in planning

their response to the ongoing Coronavirus Disease 2019 (COVID-19) pandemic.

Materials and Methods: Our application forecasts hospital visits, admits, discharges, and needs for hospital

beds, ventilators, and personal protective equipment by coupling COVID-19 predictions to models of time lags,

patient carry-over, and length-of-stay. Users can choose from 7 COVID-19 models, customize 23 parameters, ex-

amine trends in testing and hospitalization, and download forecast data.

Results: Our application accurately predicts the spread of COVID-19 across states and territories. Its hospital-

level forecasts are in continuous use by our home institution and others.

Discussion: Our application is versatile, easy-to-use, and can help hospitals plan their response to the changing

dynamics of COVID-19, while providing a platform for deeper study.

Conclusion: Empowering healthcare responses to COVID-19 is as crucial as understanding the epidemiology of

the disease. Our application will continue to evolve to meet this need.
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LAY SUMMARY

Hospitals have been continually faced with anticipating the resurgent

spread of COVID-19 and its effects on visits, admissions, bed needs,

and crucial supplies. However, few open-source tools are available to

aid hospitals in planning. We developed a web application (https://

rush-covid19.herokuapp.com/) for US states and territories to predict

the spread of COVID-19 and to provide forecasts for hospital visits,

admissions, discharges and to anticipate needs for intensive care unit

(ICU) and non-ICU beds, ventilators, and personal protective equip-

ment. Users can choose from a suite of models to predict the spread

of COVID-19, some of which explain >99% of variation in COVID-

19 cases within states. Users can modify a large set of inputs to obtain

forecasts for their institution, examine variability in forecasts over

time, download forecast data for further analysis, and explore trends

in hospitalization and testing. We designed our application to be in-

teractive, insightful, and easy to use for hospital leaders, healthcare

workers, and government officials. However, specialists can use our

models, open-source code, and aggregated data for deeper study. As

the dynamics of COVID-19 change, our application will also change

to meet emerging needs of the healthcare community.
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INTRODUCTION

Healthcare enterprises are grappling with the challenges of prepar-

ing for the resurgence of Coronavirus Disease 2019 (COVID-19)

and appropriation of resources needed to treat patients while pro-

tecting healthcare workers. We developed an open-source applica-

tion that generates hospital-specific forecasts of COVID-19 patient

needs and related supplies. Our application (https://rush-covid19.

herokuapp.com/) allows users to employ a suite of models to predict

the spread of COVID-19 and to generate forecasts for COVID-19

visits, admits, discharges, and needs for intensive care unit (ICU)

and non-ICU beds, ventilators, and personal protective equipment

(PPE). Users can also examine trends in hospitalization and testing.

We describe our application in detail, focusing on the data and

models it uses, interactive inputs, and provided forecasts. We ex-

plain the use of our application and the caveats of our approach and

discuss its value in aiding the needs of the healthcare community

and its potential for generating novel insights. Our efforts were pri-

marily aimed at addressing urgent healthcare demands and enabling

informed decision-making. Our application uses open-source soft-

ware and it source code and aggregated data are publicly available.

DATA, MODELING, AND USE

Application development
We developed our application in response to the needs of our home

institution—Rush University System for Health—in anticipation of

COVID-19 cases and subsequent surges. A COVID-19 command

center staffed by senior hospital administrators served as a real-time

focus group for initial requirements and choice of user-defined vari-

ables. Feedback from the Illinois Hospital Association hospitals

aided further refinement.

Data
Our application aggregates reports of cumulative cases across US

states and territories from the Johns Hopkins University Center for

Systems Science and Engineering repository,1 state and territory

population sizes based on US Census Bureau data (2010–2019),

dates of COVID-19 arrival from state and territory health agencies,

and testing and hospitalization levels from The Atlantic’s COVID

Tracking Project.2

Forecasting cumulative COVID-19 cases
We developed 7 models to forecast COVID-19 case volumes up to

60 days past the present day.

Exponential growth
Initial spread of infection may be limited primarily by inherent

growth rate (r), which proceeds multiplicatively according to the

function, Nt ¼ N0ert. Here, N0 is the initial infected population size,

t is the change in time, and Nt is the infected population size at t.

This model was widely used to characterize the spread of COVID-

19 during initial weeks of infection.3–5 Our application uses a re-

gression on the log-linear transformation, log(Nt) ¼ log(N0) þ t � r,
to predict the expected number (N) of cumulative cases.

Quadratic growth
Initial growth may be more rapid than expected from the exponen-

tial model and also characterized by a constant change in growth

rate (Figure 1). In this case, growth may be quadratic. Early

COVID-19 studies implicated quadratic growth of COVID-19.6,7

The quadratic function is a second-order polynomial that applies to

population growth as Nt ¼ b1t2 þ b2t þ N0. Our application pre-

dicts values for (N) using numerical optimization of b1 and b2. Like

the exponential model, this model does not account for eventual

leveling-off.

Logistic growth
The spread of a contagious disease must eventually slow as limita-

tions are encountered (eg, immunity). The logistic model captures

this dynamic and produces an s-shaped curve8,9 (Figure 1). Early

COVID-19 studies implicated logistic growth in the spread of the

disease.11,12 The logistic model takes a simple functional form, Nt ¼
a/1þ e�rt, where a is the upper limit of N and r is the intrinsic rate

of increase. Our application uses numerical optimization of a and r

to find the best fit logistic function and predicted values for Nt.

Gaussian growth
The Gaussian (ie, normal) distribution can provide a fast approxi-

mation to some epidemiological models.13 The Gaussian distribu-

tion has 2 parameters, mean (l), standard deviation (r) (Figure 1).

When used to model the spread of disease, Gaussian curves are sym-

metrical around a climax day. Gaussian models have successful in

approximating the spread of COVID-19.14 Our application finds

the best fit cumulative Gaussian function via numerical optimization

of l and r.

SEIR-SD
COVID-19 modeling has often used refinements to the SEIR

model,4,15–18 which accounts for changes in fractions of susceptible

persons (S), persons exposed but not exhibiting infection (E), infec-

tious persons (I), and those recovered (R), where SþE þ IþR¼1.

These subpopulations are modeled in a set of differential equations:

dS

dt
¼ bSI;

dE

dt
¼ bSI � aE;

dI

dt
¼ aE� cI;

dR

dt
¼ cI:

Here, a is the inverse of the latent period, c is the inverse of the

mean infectious period, and b is the mean number of effective con-

tacts (ie, contacts resulting in secondary infection). Our application

imputes the initial value of b from a relationship between c and the

basic reproductive number (R0), that is, b¼ cR0 (Table 1).26–28 It

then allows b to decrease in proportion to I, from which an implicit

frequency-dependent degree social distancing emerges. Our model

also simulates social distancing (k) as an explicit response to public

policy by including a time-iterative modification to b, that is, btþ1 ¼
bt/(kI þ 1), where b remains unchanged when I or k equal 0. When k
equals 1, the daily change in b is governed by the effect of I. The

product of I and k then determines the daily change in b: kI ¼
(bt�btþ1)/btþ1. Finally, our model captures lags in testing by allow-

ing the apparent size of I to lag behind the actual magnitude via use

of a logistic function: It/1þe�f(t), where f(t) � st.

Our application performs 200 000 iterations on combinations of

SEIR parameter values, within reported ranges (Table 1). It then

chooses the set of parameters that maximize the explained variation

in observed data, which avoids the challenges of applying numerical

optimizers to complex models.

Two-phase logistic growth
Many US states have experienced a resurgence in COVID-19, lead-

ing to increases that simple models and classic epidemiological mod-
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els fail to capture. To capture resurgence, we expanded the logistic

model to include 2 phases. Using the functional form of the logistic

model, our application iteratively searches across time series to find

the point where 2 phases of logistic growth best explain the varia-

tion in cumulative cases.

Two-phase sine-logistic growth
An extension of the two-phase logistic, this model assumes periodic

fluctuations in the increase of cumulative cases by including sine-

wave dynamics to the logistic equation: Nt ¼ a/1þ e�rf(t), where f(t)

� t þ sine(t). As with the two-phase logistic model, our application

searches across the time series to find the point where 2 phases of

growth best explain variation in observed data.

Forecasting hospital visits and admits via time lags
Users can obtain interactive forecasts for hospital visits and admists

by entering expected daily values for percent of state-wide COVID-

19 cases visiting their hospital, percent of those admitted, and the

Figure 1. Top row: General forms of our application’s models. Rows 2–4: 95, 75, and 65% confidence interval (CI) hulls for the performance of models across US

states and territories from March 16 to August 1. The Johns Hopkins University Center for Systems Science and Engineering data shows most states beginning

to report COVID-19 cases by March 10 and we allowed the models a week of data before fitting them. The x-axis is in days since the first reported case, occurring

on or after March 10. Lightly colored hulls are 95% CI, hulls of intermediate darkness are 75%, and the darkest hulls are 65% CI. Performance is measured via a

modified r2 of observed versus predicted values where the y-intercept is forced through 0.10 The y-axes are scaled to show the greatest resolution for each model

and are not scaled similarly across all models. Lower right: Mean r2 values across states for all models.
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number of transfer patients accepted (Figure 2). We accounted for

the tendency of infected persons to not seek immediate attention by

modeling time lags as Poisson random variables, whereby newly

infected persons wait 0, 1, etc., days to visit the hospital. The Pois-

son model is a discrete probability distribution where the mean cor-

responds to the expected average time lag. This approach avoided

overburdening users by not requiring parameter values for which

data may not be readily available.

Forecasting hospital bed, ICU needs, and discharges via

daily carry-over
Users can obtain interactive forecasts for hospital bed, ICU needs,

and discharges by entering parameter values for the number of ICU

and non-ICU beds in house and choose expected values for the per-

cent of COVID-19 patients admitted to ICU, average length of stay

(LOS) for ICU and non-ICU patients, percent of ICU patients on

ventilators, and ICU mortality (Figure 2). These inputs drive calcula-

tions for newly admitted ICU, non-ICU, and ICU-ventilator patients

expected each day, as well as numbers of discharges. Our applica-

tion models the daily patient carry-over using a binomial model, a

probability distribution for binary outcomes (eg, patients leave or

stay for an additional day) that requires 2 parameters (p, n). We set

the value of p to 0.5 and set the value of n to be twice the LOS,

which produces a probability mass function (pmf) with a mean

equal to the LOS. This pmf is converted to a cumulative distribution

function to obtain estimates for the fraction of 1-day, 2-day, etc.,

patients discharged on the present day. Patients not discharged are

iteratively carried over to the following days. Like the Poisson, the

binomial does not overburden the user with parameters based on

data they may not readily have.

Forecasting supply needs
Users can obtain forecasts for PPE needs after entering expected per

patient daily values for surgical gloves, nitrile exam gloves, vinyl

exam gloves, anti-fog procedural face masks, fluid resistant proce-

dural face masks, extra-large yellow isolation gowns, anti-fog surgi-

cal face masks, anti-fog full face shields, and particulate filter

respirators (Figure 2). Multiplying the expected PPE values by their

respective patient type across the forecasted census produces PPE

forecasts.

Table 1. Parameters for the SEIR-SD model

Parameter Description Reported range References

Average latent period Days during which an exposed individual cannot infect others 5–6 days 18–22

Average infectious period Days over which a person remains infective 1.6–13 days 18,23–25

Basic reproductive number (R0) Average number of secondary infections generated by a pri-

mary infection in a totally susceptible population

2.1–6.5 4,18,20,23,24

Note: Our application attempts to optimize the following SEIR-SD parameters within ranges of reported values for the average latent period, the average infec-

tious period, and the basic reproductive number.

Figure 2. Interactive forecast plots generated by our application, using fits of the two-phase sine-logistic model to Illinois data as an example. (A) Forecast for cu-

mulative COVID-19 cases. Black dots are observed data. Colored lines are forecasts. Values for coefficients of determination (r2) pertain to observed versus pre-

dicted values, where the y-intercept is forced through 0.10 (B) Forecasted patient census. (C) Forecasted personal protective equipment supply needs. (D)

Forecasted discharges. When using the application, users can pan across, zoom in, select and de-select data, hover over data points and lines for additional infor-

mation, and download plots as a png files. The application also presents information in B–D as tables, which users can download as csv files.
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Downloadable forecast data
Users can download data pertaining to each forecast. These csv files

are dynamically updated upon any changes to their associated

graphs or tables.

Source code and Data
We developed our application using open-source software (python

3.7, plotly dash) and the Heroku web-hosting service. Source code,

data, and README file for our application and for reproducing

analyses herein are available at https://github.com/Rush-Quality-

Analytics/SupplyDemand and via the Dryad Digital Repository at

https://doi.org/10.5061/dryad.1ns1rn8rx.29

RESULTS

COVID-19 predictions
The exponential model explained >90% of variation in cases during

initial weeks of infection but quickly began to fail (Figure 1). Its per-

formance then increased with the onset of resurgence. The logistic,

quadratic, Gaussian, and SEIR-SD models explained >95% of vari-

ation in cases among states but suffered with the onset of resurgence

(Figure 1). Because of their design to capture resurgence, the two-

phase logistic and sine-logistic models generally explained >99% of

variation in cases (Figure 1).

Use upon release
Our application has been in continuous use by our home institution

to forecast our patient census and PPE needs or to examine observed

trends against forecasts. Our application was also used on a daily

basis by a NY hospital, whose frequent feedback led to several mod-

ifications.

DISCUSSION

We expect forecasting tools to continue informing operational

responses until a vaccine is available and the spread of COVID-19

subsides. Because we intend for the usefulness of our application to

extend throughout the pandemic, we recently implemented accurate

Figure 3. A subset of interactive maps and statistical relationships from our application’s Trends in Hospitalization and Trend in Testing tabs. Users can pan

across, zoom in, select and de-select data, and hover over data for additional information. (A) Map of testing rate (tests per 100 000 persons). (B) Time series of

testing rates across US states and territories. (C) Map of hospitalization rate (total number of persons hospitalized/no. of confirmed cases). (D) A strong power-

law (y � xz) relationship between positive test results and number of tests conducted, where the slope (z) indicates that greater testing reveals disproportionately

greater positive results. (E and F) Strong linear relationships between the number of patients in intensive care unit (ICU) versus the number hospitalized and the

number of patients on ventilators versus those in ICU. These latter relationships may be used to aid in parameterizing forecast variables.
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resurgence models, analyses of testing and hospitalization, and nu-

merous modifications from user feedback. Because different hospi-

tals in different states may experience resurgence at different times,

the demand for our application at individual hospitals will vary as

local areas experience peaks and valleys in COVID-19 infections.

Our application also provides insights beyond its primary use.

First, few SEIR models account for social distancing as a combina-

tion of an emergent social response and public policy, or account for

time lags in testing. Second, our two-phase resurgence models offer

novel extensions of the popular logistic model. Both can be extended

to any number of phases and the two-phase sine-logistic represents a

novel combination of logistic growth, resurgence, and periodic fluc-

tuations. Third, our application revealed strong statistical relation-

ships in testing and hospitalization that have otherwise received

little attention (Figure 3). Finally, researchers could conduct future

studies using the downloadable data from our application, its aggre-

gated source data, or by modifying the source code.

Hospitals should weigh the accuracy of our tool against the

knowledge of their system’s needs to avoid over/under allocation of

resources. The following should also be considered when using our

application: first, we used a popular COVID-19 dataset that may

not reflect true prevalence; second, values of input parameters such

as LOS and PPE needs likely vary across time; third, LOS may not

necessarily be binomially distributed and time lags in hospital visits

may not necessarily be Poisson distributed; finally, our application

does not account for differences in susceptibility to COVID-19 with

respect to age, comorbidities, and sociodemographic factors.

CONCLUSION

The worst pandemic in a century has coincided with a revolution in

open-source tools and data science and has been met with numerous

public-facing applications. Continued efforts should leverage a vari-

ety of models and deliver actionable predictions to prevent over-

reliance on a single model and to couple the regional spread of

COVID-19 to local healthcare needs.
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