Bioinformatics, 37(4), 2021, 464-472

doi: 10.1093/bioinformatics/btaa779

Advance Access Publication Date: 14 September 2020
Original Paper

Sequence analysis
Shark: fishing relevant reads in an RNA-Seq sample

T Yuri Pirola ® *', Marco Previtali ® T, Tamara Ceccato,
, Raffaella Rizzi and Paola Bonizzoni

Luca Denti
Gianluca Della Vedova

Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy

*To whom correspondence should be addressed.
"The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors.

Associate Editor: Yann Ponty
Received on April 1, 2020; revised on August 17, 2020; editorial decision on August 31, 2020; accepted on September 2, 2020

Abstract

Motivation: Recent advances in high-throughput RNA-Seq technologies allow to produce massive datasets. When a
study focuses only on a handful of genes, most reads are not relevant and degrade the performance of the tools
used to analyze the data. Removing irrelevant reads from the input dataset leads to improved efficiency without
compromising the results of the study.

Results: We introduce a novel computational problem, called gene assignment and we propose an efficient
alignment-free approach to solve it. Given an RNA-Seq sample and a panel of genes, a gene assignment consists in
extracting from the sample, the reads that most probably were sequenced from those genes. The problem becomes
more complicated when the sample exhibits evidence of novel alternative splicing events. We implemented our ap-
proach in a tool called Shark and assessed its effectiveness in speeding up differential splicing analysis pipelines.
This evaluation shows that Shark is able to significantly improve the performance of RNA-Seq analysis tools without
having any impact on the final results.

Availability and implementation: The tool is distributed as a stand-alone module and the software is freely available

at https://github.com/AlgoLab/shark.
Contact: yuri.pirola@unimib.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-Seq analysis plays an important role in the biological and med-
ical research aimed at deepening our understanding of cellular bio-
logical processes and their relationships with pathological
conditions. As such, several research initiatives had the objective of
producing RNA-Seq data, while a number of tools have been pro-
posed to analyze such datasets and have gained widespread adop-
tion in the community (Beretta et al., 2017; Bray et al., 2016; Denti
et al., 2018; Patro et al., 2017; Sacomoto et al., 2012; Shen et al.,
2014; Trincado et al., 2018). Traditional approaches generally rely
on RNA-Seq read mapping to the annotated gene isoforms or on the
spliced alignment of reads to the genome. In the second case, spliced
aligners, such as STAR (Dobin et al., 2013), employ gene annota-
tions to obtain more accurate results. While gene annotations, espe-
cially for humans, are readily available, they are not complete as
they are built from healthy individuals. Thus, aberrant isoforms,
which play an important role in the development of human diseases
(Kahles et al., 2018; Tazi et al., 2009), are usually not annotated. As
a consequence, de novo (or assembly-first) approaches (Haas et al.,
2013; Sacomoto et al., 2012), which potentially detect novel splicing
events, have been developed and have gained popularity, even for
studying well-annotated organisms (Benoit-Pilven et al., 2018).

©The Author(s) 2020. Published by Oxford University Press.

These approaches are more computationally demanding than trad-
itional annotation-guided ones and pose challenging issues when
facing the huge amount of RNA-Seq data that is now available.
Furthermore, high-coverage samples are needed for obtaining accur-
ate results with de novo approaches, especially for reconstructing
low-abundance isoforms.

When the study is focused on the analysis of a pre-identified set
of genes — e.g. those that are known to have a role in tumor pro-
gression — a preprocessing step that filters the input RNA-Seq
reads, retaining only those likely originated by the genes of interest,
could greatly reduce the size of the dataset that must be analyzed
(hence speeding up the analysis) without significantly affecting the
final results. Existing spliced aligners, such as STAR, could be theor-
etically adapted to perform the preprocessing step. However, they
are aimed at obtaining accurate alignments; hence, they are not fast
enough to give a significant speedup of the analysis. For example, if
we trivially apply STAR using as a reference the selected gene
sequences, the alignment process will take longer than using the full
reference genome, since numerous attempts to align the reads
sequenced from not-selected genes are performed before discarding
it. Other approaches, such as some recently proposed transcript
quantification tools (Bray et al., 2016; Patro et al., 2014, 2017) or
quasi-mappers (Srivastava et al., 2016), are fast enough to be
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adapted as preprocessing filters but they rely on isoform annota-
tions, hence they might make errors if novel splicing events are sup-
ported by the sample, influencing any downstream analysis (Conesa
et al., 2016). Other k-mer-based approaches are promising
(Almodaresi et al., 2019; Sun et al., 2018) but they have been
designed toward different applications (e.g. indexing and searching
large sequencing experiments) hence they achieve a different trade-
off between computational efficiency and resulting accuracy.

For this reason, we propose an alignment-free method that solves
the gene-read assignment problem without relying on existing iso-
form annotations: given a set of genes of interest (gene panel) and a
genome-wide RNA-Seq dataset, the goal is to retain only those reads
(called relevant reads) originating from a gene in the selected set,
thus, discarding a potentially huge set of reads not relevant for the
downstream analyses. We implemented the method in the tool
Shark that, by relying on succinct data structures and multi-
threading, is able to quickly analyze huge RNA-Seq datasets on a
standard PC. We replicated two studies (Benoit-Pilven et al., 2018;
Trincado et al., 2018) aimed at detecting differentially expressed al-
ternative splicing events — one of the most complex and most com-
mon tasks in RNA-Seq analysis — and we found that Shark
provides a preprocessing step that significantly reduces the running
time and/or the memory requirements of computationally intensive
downstream analyses, while not negatively impacting their results.
We note that, although our method has been specifically designed
for RNA-Seq data, it can also be used for genomic reads if, e.g. one
is interested in finding variants located on a specific subset of genes.

2 Materials and methods

2.1 The gene assignment problem

Let X be a finite alphabet of size ¢ and let s =¢q,...,¢, be an
ordered sequence of 7 characters drawn from X; we say that s is a
string over £ of length 7. From a computational point of view, a
genome, a gene locus and a transcript are strings over the alphabet
{a,C,G, T}. A gene locus is a substring of the genome, whereas a
transcript is a concatenation of pieces (exons) of a gene locus; an
RNA-Seq sample is a set of strings (called reads) over the same al-
phabet. A RNA-Seq read is a substring of a transcript, and it is in a
1-to-1 correspondence with a gene locus, referred in the following as
the origin of the read. Given a string s and a positive integer k, we
say that a substring of s of length k is a k-mer. We denote by
KMER(s), the multiset of all the k-mers of s (observe that the same k-
mer might occur multiple times). As usual (Belazzougui et al., 2016;
Denti et al., 2019; Kokot et al., 2017; Marcais and Kingsford,
2011), to account for the double stranded nature of the human gen-
ome, when we refer to a k-mer, we implicitly refer to its canonical
form, that is the lexicographically smaller sequence between the
k-mer and its reverse-complement. Given a read s =c¢;---¢,, we
refer to the pair (c;,7) with the term base. Note that, the same char-
acter appearing at two different positions of s are two distinct bases.
Moreover, we say that a base b of the read s is shared with the gene
g if there exists a k-mer of s that includes b and is equal to a k-mer
of g. We denote by SHARED(s, g), the set of the bases of s shared by
g. In other words, SHARED(s, g) is the set of all the bases of s such
that there exists a k-mer in the intersection between KMER(g) and
KMER(s) that includes the base.

To assign a read to its origin gene, we adapt the following criterion
as a proxy. A gene g is the putative origin of a read s if and only if the
ratio |[SHARED(s, g)|/|s| is greater or equal than a given threshold t
and for no other gene g, |SHARED(s,g')| > |SHARED(s, g)|. The ra-
tionale behind this criterion is to have a measure of similarity between
a read and a gene without aligning them, which takes into account
that introns are spliced out from transcripts and therefore from an
RNA-Seq read. Observe that by this definition, and due to genome
repetitions, a read may have multiple origin genes. We denote as
ORIGIN(s), the set of putative origin genes of a read s.

We now provide a formal definition of the problem, we tackle in
this article, namely the Gene Assignment Problem.

Problem 1 (Gene Assignment Problem). Let S be a set of RNA-
Seq reads sequenced from a set G of genes, let G = {g1,...,8} € G
be a gene panel, i.e. a set of genes of interest. The gene assignment
of S with respect to G and parameters k& and t is a set A=
{81,...,8/¢|} of |G| elements such that S; C S is the set of reads
that originate from g, i.e. for each s in S; the following conditions
hold: (i) [SHARED(s,g)|/|s| >, (i) for no other gene gj
|SHARED(s, gj)| > |SHARED(s, g;)|, and the SHARED(:,-) sets have
been computed on k-mers.

Note that, a gene assignment is not necessarily a partition of the
input sample. Indeed, a read may have more than one origin gene
and some read may have no origin gene. For ease of presentation, in
the rest of the article, we will refer to this problem as the gene as-
signment of § with respect to G, without specifying k and t.

Note also that the Gene Assignment Problem here defined is ro-
bust to sequence polymorphisms. Indeed, from the viewpoint of the
definition of the problem, sequence polymorphisms are indistin-
guishable from sequencing errors, and parameters k and 7 allow (as
we show in Section 3) to tweak the accuracy toward better specifi-
city (allowing less errors) or better sensitivity (allowing more
errors).

The algorithmic approach, we propose to solve this problem uses
two well-known data structures that we will now briefly introduce.
A bit vector is a sequence of binary values that supports rank and se-
lect queries in constant time using additional sublinear space. Let B
be a bit vector and let i be a positive integer, ranky(B, i) is the num-
ber of values equal to d in the portion B[l,i) of B, whereas
selecty(B, i) is the position of the i-th value of B set to d. Clearly,
ranky(B,i) is not defined if i is greater than the size of B and
selecty(B,i) is not defined if fewer than i values of B are set to d. A
Bloom filter (Bloom, 1970) is a probabilistic data structure used to
answer membership queries. It consists of a bit vector of fixed size m
and z hash functions, each one mapping an object to a position of
the bit vector. Adding an object to a Bloom filter consists in setting
to 1 the bits at the positions of the bit vector computed by the hash
functions for that object. Testing if an object is in the set consists in
checking whether all the bits at the positions computed by the hash
functions for that object are set to 1. Due to hash collisions, an elem-
ent may be reported as present even though it is not in the set, result-
ing in a false positive. Anyway, a low false positive rate can be
achieved via a suitable choice of the bit vector size and the number
of hash functions.

2.2 Algorithm

In this section, we describe the algorithmic approach, we propose to
solve the computational problem introduced in the previous section.
The algorithm for computing the gene assignment of an RNA-Seq
sample S with respect to a set G of genes is composed of two steps:
first, for each read s in the sample, we compute the set ORIGIN(s) of
its origin genes, then, we derive the gene assignment of S from those
sets by grouping together reads with the same origin gene.

An efficient solution to this problem essentially requires that we
index the gene sequences. A simple procedure stores a dictionary
that maps each k-mer appearing in at least one gene to the genes in
which it occur, and then use it to map the k-mers of the reads to the
genes, determining the origin genes read by read. Although effective,
this approach would require an excessive amount of memory to
store the dictionary if we need to track a significant amount of
k-mers of the genes, especially since we have to store explicitly the
k-mers sequences. For this reason, we designed a novel data struc-
ture that couples efficient access with small space usage, albeit intro-
ducing some false positives.

The data structure we propose to efficiently compute a gene as-
signment consists of a Bloom filter BF, a bit vector P and a vector of
integers I. We use the three components of the data structure as fol-
lows: the Bloom filter stores the set of k-mers of the genes in G, the
vector of integers compactly stores the subset of genes in which each
k-mer appears and the bit vector tags the boundaries of the different
subsets in the integer vector.
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To build this data structure, we designed a three-step process,
also presented in Algorithm 1. First, we associate to each gene in G
an incremental ID and store the gene-ID mapping in a dictionary
GENEMAP, which is then given as argument to Algorithm 1.
Notice that, we achieve an important reduction in memory usage by
storing only the gene-ID instead of its entire sequence.

Then, we scan the gene sequences and we store each k-mer in BF
by using a single hash function H, mapping each k-mer to a specific
position in the Bloom filter BF (lines 1-5). Once we complete this
scan, BF stores the set of k-mers of all input genes. Since the number
of k-mers indexed in the Bloom filter is significantly smaller than the
size of the Bloom filter, using a single hash function improves effi-
ciency and only slightly degrades accuracy, as shown by various
works (Denti ef al., 2019; Sun et al., 2018). Efficiency improves in
this setting because using multiple hash functions increases the num-
ber of random memory accesses, thus increasing the amount of
cache misses.

For each 1 in BF, we create an empty list L, (lines 6-7), where L,
corresponds to the r-th bit stored in the Bloom filter. We will then
use L, to store a set of back-references to the genes where each asso-
ciated k-mer appears. At the end of this step, each 1 in BF is associ-
ated with a subset of genes back-references (represented as a list of
IDs) stored in memory. Then, we scan all the k-mers in each gene of
G, we compute the corresponding 1 in BF and (via a rank) the corre-
sponding list L, to which the gene-ID must be appended (lines
8-12). Finally all duplicates are removed from the lists L,.

The third step consists of concatenating the lists L, to obtain the
integer vector I that contains all back-references. At the same time
(lines 15-19), we build the boundary vector P, which has a 1 in each
position >_;_; |L;| where 7 < ¢ (i.e. the 1s mark the end of each list).

The example in Figure 1 describes how this data structure is
queried to retrieve the identifiers of the genes associated to a given
k-mer. First, the hash function H maps the 5-mer gactgg to position
bh. Since a 1 is at position b of BF, we suppose that the k-mer is in it
and we compute how many 1s appear before » computing in con-
stant time rank; (BF, h). Then, since the 1 stored in b is the v-th 1 of
BF, i.e. the k-mer is the v-th element according to the order of
k-mers given by H, we retrieve the positions of the (v — 1)-th and
the v-th 1 in P using selecty. Those positions are the boundaries
on I of the subset of genes mapped to the k-mer.

Read s

Algorithm 1: Compute Bloom filter BF', integer vector I, and

boundary vector P from the set G = {g1, g2, . . ., gp } of genes.

s gp} of genes, a size m, a function
GENEMAP mapping genes in G to distinct values in [1, |G|]

Output: A Bloom filter BF', an integer vector I, and a boundary

Input :AsetG = {g1,92,...

vector P

BF <« asequence of m zeroes;
foreach g € G do
foreach e € KMER(g) do
h < H(e);
BF[h] + 1;
£ < rankq(BF,m);
Create ¢ empty lists L1, ..., Ly;
foreach g € G do
foreach e € KMER(g) do
h < H(e);
r <— ranki(BF,h);
Append GENEMAP(g) to L;

// Number of ls in BF

Remove duplicates from each list L1, Lo, . .., Ly;
I < the concatenation Ly, Lo, ..., Ly;
P < asequence of |I| zeroes;
b+ 0;
foreach L € Lq,..., L, do
b<b+|L;
Pb] + 1;

return (BF', P, I)

Once we have built the data structure D(G) = (BF,P,I), as
described above, we iterate over each read of the sample and we
query D(G) to compute the set of its origin genes. For each read s,
the procedure scans the multiset KMER(s) of k-mers of s from left to
right and maintains, for each gene g, the rightmost position posg of
a base of s shared by g (or —1 if such a base does not exist) and the
variable card, that contains the number of bases of g that are shared
with some k-mers of s seen so far — at the end, card, will be equal
to |SHARED(s,g)|. Let e be the i-th leftmost k-mer of s and let

gacttg

k-mer e

rh = H(e)

BF 1 1

1 1 1

_—— \_ v=ranki(BF,h)

Y

4

[
p1 = select1(P,v—1)

1 1
ﬁg:: selecty (P, v)

I GENES(e) —]

Fig. 1. Relation between the Bloom filter BF, the bit vector P, and the vector I. To retrieve the identifiers of the genes containing a k-mer e (gacttg in the figure), we compute its
image b through H and, if BF[h] is the v-th 1 of BF, the positions of the (v — 1)-th and the v-th 1 of P, denoted as p; and p,, respectively, can be found via rank and select oper-
ations. The interval of I from p; + 1 to p; stores the set GENES(e) of the indices of the genes containing the k-mer e
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GENES(e) be the set of genes containing e [obtained by querying
D(G) as illustrated in Fig. 1]. Then, for each gene g in GENES(e), the
procedure updates card, by adding the number of new bases covered
by e and shared between s and g (computed as
min{k,i+ k — pos,}), and sets pos, to the last position in s that is in
e, equal to i + k. At the end of the scan, each card, is clearly the car-
dinality of SHARED(s, g) and computing the origin gene of the read
is trivial.

2.3 Computational complexity

Let us assume that H is computed in constant time since k is fixed
and, for practical purposes, it is not >32 (hence each k-mer can be
represented in a single memory word). Constructing the index data
structure  D(G) = (BF,P,I) requires O(|BF|+ >, lgl) time
(assuming that rank; is computed in constant time) since duplicates
(if any) in each list L; are adjacent. Querying D(G) for the set of ori-
gin genes of a single k-mer e requires O(|GENES(e)|) (assuming that
also select; is computed in constant time). Computing the origin
gene of a read s requires O(>_,cxmpr(s) |GENES(e)]) that is trivially
upper bounded by O(Js| - |G|).

2.4 Implementation

The method described in Section 2.2 has been implemented in C+-+
and is freely available at https://github.com/AlgoLab/shark and pub-
lished on BioConda (Griining et al., 2018). The program uses the
implementation of bit vectors and of the associated rank and select
operations provided by sdsl (Gog et al., 2014).

The tool, called Shark, takes as input a FASTA file containing
the set of gene regions of interest and an RNA-Seq sample in
FASTQ format. For each read of the sample, the tool computes its
set of (putative) origin genes (computing the gene assignment is then
trivial). It is possible to tune the computation of the gene assignment
by setting the following parameters: the k-mer size k, the confidence
7 and the size m of the Bloom filter. The tool also allows to discard
k-mers spanning bases whose quality is less than a given threshold g.

3 Results

To assess our method, we performed two different experimental
analyses on simulated and real data. A first exploratory analysis on
simulated data was performed to test the accuracy and the efficiency
of Shark, especially with respect to its input parameters k, t and g.
Furthermore, we also investigated the influence of read length and
gene size on the accuracy of Shark. The goal of the second part of
the analysis was to evaluate, on real data, the effectiveness of Shark
in speeding up four different pipelines (three mapping-first pipelines,
Section 3.2, and an assembly-first pipeline, Section 3.3) for a com-
mon task in RNA-Seq data analysis, namely differential analysis of
alternative splicing events, without affecting the results on the
selected genes. All the experiments were performed on a 64 bit
Linux (Kernel 4.4.0) system equipped with four 8-core Intel® Xeon
2.30 GHz processors and 256 GB of RAM. Information on how to
reproduce the experiments are available at https:/github.com/
AlgoLab/shark_experiments in the form of a Conda environment
and several Snakemake workflows (Koster and Rahmann, 2012). To
reproduce the assembly-first experiments, we refer the reader to
http://kissplice.prabi.fr/pipeline_ks_farline/.

3.1 Simulated data

We performed an exploratory analysis on simulated data to test the
accuracy and the efficiency of our method, especially with respect to
its input parameters k, T and q. To this aim, we considered the 9403
genes of Human chromosomes 1, 17 and 21 (Ensembl release 97)
(Cunningham et al., 2019) and we simulated an RNA-Seq sample of
10 million 100 bp-long single-end reads using Flux Simulator
(Griebel et al., 2012) (see Supplementary Fig. S2 for the simulation
parameters). From the full set of genes, we selected 10 random sub-
sets of 100 genes, producing 10 different instances. For each in-
stance, Shark indexed the gene panel, consisting of the 100

considered genes, and then filtered the entire simulated RNA-Seq
sample with respect to it. To assess accuracy and efficiency of Shark
with respect to input parameters, we ran Shark with any combin-
ation of ke {13,17,23,27,31}, 1€ {0.2,0.4,0.6,0.8}  and
q € {0,10,20}. Furthermore, we tested Shark also by dropping
reads that are assigned to more than one origin gene (‘single mode’).
In such a mode, Shark completely discards ambiguous assignments
(if a read can be assigned to two or more genes, then no association
at all is given) and it is useful in these experiments to better under-
stand the accuracy of Shark. The size of the Bloom filter was set to
1 GB (preliminary experiments showed that larger Bloom filters did
not improve the accuracy of the prediction). Shark was allowed to
use four threads to speed up the computation.

The accuracy of Shark in computing the gene assignment was
measured in terms of precision and recall as follows. Since the input
reads have been simulated, we know the actual origin gene of each
read. Let G C G be the subset of genes of interest and G be the set of
genes which the set of reads S have been simulated from. Let A =
{S1,...,8g|} be the output of Shark on S and G (we recall that S; C §
is the subset of reads assigned to G; by Shark). Then, each s € S; is a
true positive (tp) if s was simulated from g;, and it is a false positive
(fp) otherwise. Finally, each read s’ € S simulated from gene g; such
that &' € S, is a false negative (fn). More intuitively, we consider
each read associated to the correct origin gene of interest as a true
positive and each read assigned to a gene of interest that was not
simulated from that gene as a false positive. We note that with this
definition, false positives occur in two slightly different cases: (i)
when a read is simulated from a gene of interests and it is assigned
to a different gene of the panel and (ii) when a read is simulated
from a gene not in the gene panel and it is assigned to any gene in
the gene panel. Finally, we consider as false negative each read simu-
lated from a gene in the gene panel that was not assigned to the cor-
rect gene. Notice that, when Shark is run in multiple mode a read
might be assigned to more than one gene, thus a read with two
assignments (one to the correct gene and one to another gene) might
induce both a true positive and a false positive. Moreover, when a
read is assigned only to a wrong gene, it induces both a false positive
(because it was assigned to the wrong gene) and a false negative (be-
cause it was not assigned to the right gene). Then, precision is
defined as P = thpfp, while recall as R = ﬁ Efficiency was meas-
ured in terms otp running time and memory peak (using the/usr/bin/
time system tool).

Figure 2 reports the precision/recall curves for the different com-
binations of parameters (see Supplementary Table S1 for the entire
set of results). The first important observation is that Shark achieves
a good accuracy in terms of recall. Indeed, for sensible choices of the
parameters, the recall is at least 99%, i.e. on average at most 1% of
the reads that originated from the chosen subset of genes was dis-
carded. The second observation is that the choice of the values for
the parameters k and 7 allows to achieve different trade-offs between
precision and recall. Indeed, as k (or 1) increases, Shark becomes
more precise (at the expense of recall).

The third observation is that Shark (as expected, since it is a
k-mer-based approach) is sensitive to sequencing errors. Indeed, if
low-quality bases are not filtered out (g = 0), the recall rapidly
decreases under 98% as t increases. However, the simple approach
of filtering out low-quality bases allows to reduce the loss of recall
as the precision sensibly increases. For example, for g = 10 (i.e.
bases with quality <10 are not considered) and k = 17, when 1
increases from 0.4 to 0.6, we have that the precision gains 7.13 per-
centage points (from 21.67% to 28.80%) while the recall only
decreases of 0.21% points (from 99.67% to 99.46%). Interestingly,
an aggressive low-quality filter (g = 20) generally decreases the ac-
curacy of Shark. This is probably due to the fact that, under this set-
ting, the set of k-mers extracted from each read is too small for
reliably finding its origin gene.

As explained in Section 2.2, more than one gene can be assigned
to a single read. To assess how these ambiguous assignments influ-
ence the accuracy, we ran Shark excluding any multiple assignment
(‘single mode’). The accuracy of Shark in ‘single mode’ compared
with the original ‘multiple mode’ is sensibly higher in terms of
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Fig. 2. Accuracy results — exploratory analysis. Accuracy is shown in terms of average precision and average recall obtained across the 10 performed runs. Lines connect data

points with 7 = (0.2,0.4,0.6,0.8)

Table 1. Accuracy and efficiency results — varying gene panel sizes

Shark (multiple mode) Shark (single mode) RapMap Puffaligner

Gene panel P R Time RAM P R Time RAM P R Time RAM P R Time RAM
size (s) (GB) (s) (GB) (s) (GB) (s) (GB)

100 19.6 99.7 27 141 219 99.7 33 141 215 99.1 51 0.20 34 993 47 0.22
250 45.7 99.7 35 1.43 503 99.2 36 143  52.1 99.0 63 0.28 6.6 99.3 63 0.27
500 542 99.7 58 146 60.4 98.1 58 1.46 60.8 99.1 79 0.48 7.1 99.4 90 0.36
1000 58.6 99.6 103 1.57 66.6 98.4 96 1.57 65.6 98.9 110 0.87 9.1 993 120 0.43
2500 60.7 99.7 241 1.86 73.7 91.7 248 1.86 66.9 98.9 174 1.81 13.6 99.3 184 0.70
5000 652 99.6 441 247 84.7 85.0 492 247 719 988 325 3.79 262 99.3 277 1.00
10 000 68.9 99.6 898 3.38 999 751 934 3.38 75.5 98.7 526 6.37 64.7 99.3 431 1.55

Note: Accuracy is shown in terms of precision (P) and recall (R), while efficiency in terms of running time (Time, in seconds) and peak memory usage (RAM,

in GB).

precision and slightly lower in terms of recall. For example, for
k=17,7= 0.6 and g = 10, in multiple mode the precision is 28.8%
while in single mode it is 32.2%, whereas the recall is 99.46% and
99.28% in multiple and single mode, respectively. Also in this case,
keeping or discarding ambiguous assignments is a user’s choice, de-
pending on the choice between higher recall or higher precision.

This experiment shows how accuracy is determined by the choice
of the parameters. The results suggest that a good trade-off between
precision and recall can be achieved with & = 17, 1=0.6 and
g =10.

In terms of computational requirements, Shark never required
more than 1.5 GB of RAM (Supplementary Table S1), that is an
amount of memory nowadays available on any desktop or laptop
computer. Furthermore, using four threads, it never required more
than 1 min to complete and, in particular, it never required more

than 40 s for k > 17 (Supplementary Fig. S1). Albeit this experiment
has been performed on a server platform, we expect that the running
time will be practically negligible even on standard computers.

We also investigated the influence of read length and gene size
on the accuracy and on the computational requirements of Shark
(Supplementary Section S2). We observed that neither the read
length nor the gene size affects negatively the overall accuracy of
Shark. Furthermore, Shark never required more than 2 min and
5 GB of RAM to complete any analysis.

We also investigated how the number of genes of interest, i.e. the
size of the input gene panel, affects the accuracy and efficiency of
Shark. To this aim, we considered the 9403 genes from the 3 chro-
mosomes analyzed in the previous experiments and we created 7 dif-
ferent gene panels of increasing sizes: from 100 genes to 9403 genes.
We note that considering the largest gene panel is equivalent to
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filtering the reads with respect to the entire set of genes they were
sequenced from (indeed, in that case, G = G).

We filtered with Shark, the 10 M single-end read sample simu-
lated with Flux Simulator with respect to each panel and we eval-
uated the accuracy and efficiency of Shark as done in our previous
analysis. We ran Shark with four threads in both single and multiple
modes, setting k = 17, t = 0.6, ¢ = 10, and the size of the Bloom fil-
ter to 1 GB. Table 1 reports the results of this analysis. First of all,
we observe that, by increasing the input panel size, Shark behaves
differently if ran in single or multiple mode. Indeed, increasing the
number of genes of interest allows Shark (ran in multiple mode) to
increase its precision as well (from 20% to 69%), while not affecting
its recall, which remains really high (~99%). The increase in preci-
sion can be explained by the fact that, as the gene panel becomes
larger, Shark is able to associate each read to the correct gene, while,
if the correct origin gene is not in the panel, Shark associates the
read to a different (but similar) gene of the panel. This hypothesis is
further confirmed by the data on single mode. Indeed, as the gene
panel size increases, Shark (single mode) is able to achieve a high
level of precision (~99% with the largest gene panel tested) at the
expense of a lower recall that decreases from 99% to 75%. This was
expected since the gene panel also contains similar genes (e.g. over-
lapping genes, albeit on opposite strands), thus associations to those
genes become ambiguous and are discarded in single mode. A fur-
ther analysis of accuracy with respect to the similarity among the
genes of interest is presented in the accompanying repository
(https://github.com/AlgoLab/shark_experiments) but proved to be
elusive due to the interplay of relative expression of overlapping
genes (among the other factors).

The experiment confirmed that Shark is efficient: on the largest
gene panel, it required ~15 min and 3 GB of RAM, an amount now-
adays available on any PC.

To better evaluate Shark accuracy and efficiency, we compared
it against RapMap (Srivastava et al., 2016), a quasi-mapper, and
Puffaligner, an aligner based on compacted colored de Bruijn
graphs (Almodaresi et al., 2018). Although these tools are not
designed to directly compute a gene assignment and the corre-
sponding partitioning of the input RNA-Seq sample, they can be
used to perform very fast read alignment that can be post-processed
to extract the corresponding gene assignment. We provided the
gene sequences to RapMap whereas we provided both the gene
sequences and the gene transcripts to Puffaligner (as suggested in
the project documentation). We ran both the tools with four
threads. To compute their precision and recall, we adopted the
same measures used to evaluate Shark.

Table 1 reports the results of this comparison. First of all, we ob-
serve that RapMap and Puffaligner behave more similarly to Shark
ran in multiple mode than to Shark ran in single mode. Indeed, both
the aligners report primary and secondary alignments and in our
analysis, we considered both of them (but only an alignment per
gene). Instead, if we consider only the primary alignments (data not
shown), we observe a straight drop in the recall of the two tools:
most of the correct assignments are indeed derived from secondary
alignments. Furthermore, since RapMap and Puffaligner are not
able to compute spliced alignments, we relaxed any additional check
performed by these tools in order to accept even low-quality align-
ments (please refer to https:/github.com/AlgoLab/shark_experi
ments for the list of parameters that have been used). Otherwise, we
would have observed lower levels of recall.

In this non-standard setting, we were able to let RapMap and
Puffaligner achieve a very high recall (~99%). Anyway, Shark is
able to achieve even better recall than the other two tools for all
panel sizes.

Surprisingly, precision of Puffaligner is significantly lower than
that of Shark and RapMap (~6 times lower) for all panel sizes but
the largest one. In our opinion, this result suggests that Puffaligner,
in its current form and despite its merits as aligner, is not a suitable
choice for computing a gene assignment.

RapMap is slightly more precise than Shark for all panel sizes
but the smallest one, at the expense of a slightly less recall. We re-
mark that, for the specific purpose Shark has been designed,

achieving better recall is more important than achieving better preci-
sion, since discarding potentially relevant reads may introduce
biases in the downstream analysis whereas lower precision will only
lead to lower improvements in the running times.

In terms of memory, all the tools were able to complete the ana-
lysis using <4 GB of RAM. The only exception is RapMap on the
largest gene panel, which required more than 6 GB of memory
(while Shark and Puffaligner used 3.4 and 1.6 GB, respectively). On
gene panels composed by at most 1000 genes, Shark, which has
been designed for panels whose size is in this range, is slightly faster
than the other two tools.

We remark that RapMap and Puffaligner were run with non-
standard settings in order to achieve levels of recall comparable to
those of Shark. However, especially for RapMap, this means that
alignments of only a rather small portion of the read were accepted.
Otherwise, since neither RapMap nor Puffaligner computes spliced
alignments, they would not accept reads mapping to a splice junc-
tion. For this reason, we argue that, as the read length increases,
Shark would be able to assign reads more accurately than the other
twos. Indeed, Shark would map all the k-mers to the gene sequences,
whereas RapMap (and Puffaligner if novel exons are present) would
keep only a portion of the read falling inside an exon.

These results are promising and we believe that Shark can be ef-
fectively used to filter an RNA-Seq sample with respect to large gene
panels. However, we stress that the main goal of Shark is to filter a
set of reads with respect to a limited number of genes of interest in
order to speed up their downstream analysis. On this kind of instan-
ces, Shark is slightly faster and has consistently higher recall than
other approaches. Running Shark on a large gene panel (or even on
the entire set of annotated genes), though feasible, may not signifi-
cantly reduce the size of the input sample, thus not leading to any
speedup in the following RNA-Seq analysis, especially if the analysis
is based on fast and efficient pipelines.

3.2 Replication of a mapping-first differential AS

analysis

In the second part of our experimental evaluation, we partially repli-
cate the analysis of a real RNA-Seq dataset performed in Trincado
et al. (2018) in order to assess the effectiveness of our tool in speed-
ing up state-of-the-art pipelines for differential analysis of alterna-
tive splicing.

We considered the three pipelines based on SplAdder (Kahles
et al., 2016), rMATS (Shen et al., 2014) and SUPPA2 (Trincado et al.,
2018). The first two tools analyze the RNA-Seq alignments computed
by a spliced aligner, while the last one — SUPPA2 — analyzes the
transcript quantifications computed by Salmon. In the following,
we will refer to the three pipelines only by the name of the tools for
the differential analysis, i.e. SplAdder, rMATS and SUPPA2. We re-
mark that the aim of this part is not to evaluate the accuracy of the
results of these pipelines, but to verify (i) whether their findings are
affected by the preprocessing step performed by Shark and (ii) how
much Shark can speed up their analyses. As mentioned in Section 1,
pipelines based on STAR cannot be trivially speeded up by restrict-
ing the reference to the selected genes, while others — such as
SUPPA2 — likely run faster if the reference is restricted. However,
since SUPPA2 already uses a modest amount of computing resour-
ces, the benefits of restricting the reference (or of using Shark, as we
will show) will be less dramatic.

The dataset used in this evaluation consists of a set of six paired-
end RNA-Seq samples (GEO accession number GSE59335): three
samples obtained before and three obtained after the double knock-
down of two splicing regulatory proteins, namely TRA2A and
TRA2B (Best et al., 2014). Each sample contains between 22 and 25
million paired-end reads of length 101 bp. We decided to test the
tools on this dataset since in the study 83 exon skipping events have
been validated experimentally by RT-PCR, thus we can use such
events as a ground truth to assess the effect of using Shark as prepro-
cessing step.

In this analysis, we ran Shark setting k=17, t=0.6, g=10 and the
Bloom filter size to 1GB. We chose these values since, as proved in
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Table 2. Accuracy and efficiency of the three pipelines for differential
analysis of alternative splicing on the original samples compared with
those obtained on the samples filtered by Shark

Table 3. Accuracy and efficiency of the STAR-based pipelines for differ-
ential analysis of alternative splicing on the original samples compared
with those obtained on the samples filtered by Shark

RT-PCR events Time RAM RT-PCR events Time RAM
Pipeline All P — value < 0.05 (min) (GB) Pipeline All P — value < 0.05 (min) (GB)
rMATS 78 63 328 33.9 rMATS 78 63 632 15.7
Shark + rMATS 78 63 154 33.9 Shark + rMATS 78 63 138 15.7
SplAdder 56 — 915 33.9 SplAdder 56 — 1220 15.7
Shark + SplAdder 56 — 351 33.9 Shark + SplAdder 56 — 326 15.7
SUPPA2 66 44 117 1.7
Shark + SUPPA2 66 51 42 1.7 Note: The results have been obtained with --genomeSAsparseD=8 — a

Note: Accuracy is evaluated in terms of the number of RT-PCR validated
events detected by each pipeline (over a total of 83 RT-PCR validated events).

Efficiency is evaluated in terms of running time and maximum memory usage.

the previous analysis, they achieve a good trade-off between preci-
sion and recall. All tools were ran with their default parameters
(allowing up to four threads), while the spliced alignments required
by the first two pipelines were computed by STAR (Dobin et al.,
2013) in two-pass mode.

We initially computed the differentially spliced events with the
three aforementioned pipelines considering the original RNA-Seq
samples and then we repeated the analysis considering the RNA-Seq
samples preprocessed with Shark on the 82 different gene regions
involved in the 83 RT-PCR validated events. On average, the filtered
samples contain ~2.3% of the original reads. Supplementary Table
S3 reports the differences in terms of number of reads and uncom-
pressed file size between the original samples and the samples fil-
tered by Shark.

We considered the 83 alternative splicing events validated by
RT-PCR and we evaluated if the ability of the three pipelines in
detecting such events is affected by the preprocessing step performed
by Shark. Table 2 reports the results of this analysis.

The first observation is that all the pipelines detected the same
RT-PCR validated events in both the considered scenarios (i.e. on
the original samples and on the filtered ones), confirming that the
preprocessing step performed with Shark does not affect the accur-
acy of their differential splicing analysis. More precisely, out of the
83 RT-PCR validated events, rMATS detected 78 differentially
spliced events, SUPPA2 detected 66 events, and SplAdder detected
56 events, under both conditions.

If we restrict our analysis only to events reported as statistically
significant by each tool (i.e. the events with P-value smaller than
0.05), the results follow the same trend, further confirming that the
preprocessing step does not negatively impact the differential ana-
lysis. Indeed, rMATS reported the highest number of events (63) fol-
lowed by SUPPA2. Interestingly, SUPPA2 identified seven additional
significant events when considering the samples preprocessed by
Shark w.r.t. the 44 events detected on the original samples. A man-
ual inspection of the events in the two scenarios revealed that the
differences between the respective P-values were rather small. On
the other hand, in both scenarios SplAdder reported all the events
with a P-value close to 1 (hence not significant).

We also investigated the effect of filtering on the intermediate
results of the pipelines. As an example, Supplementary Figure S3
compares the outputs obtained by the transcript quantifier Salmon
(one of the steps of the SUPPA2 pipeline) on the full and on the fil-
tered dataset. Albeit the absolute values of the quantification differ
in magnitude, the Pearson’s correlation coefficient between all the
three pairs of series is high (> 0.998), confirming, as expected, that
the outcome of any differential analysis performed on the filtered
dataset should not be affected by the filtering process.

The second important observation is that, as expected, prepro-
cessing the input samples with Shark makes the three pipelines
faster. Indeed, Shark (which required <5 min to process each sam-
ple) allows all those pipelines to complete their analysis in around
half the time. More precisely, rMATS took 2.5 h (saving 3 h),

parameter that affects the sparsity of the index built and used by STAR.
Accuracy is evaluated in terms of the number of RT-PCR validated events
detected by each pipeline (over a total of 83 RT-PCR validated events).
Efficiency is evaluated in terms of running time and maximum memory usage.

SplAdder completed its analysis in <6 h (saving 9.5 h) and SUPPA2
took only 40 min instead of 2 h. The difference of the running times
in the two scenarios is important (especially for rMATS and
SplAdder), even on the relatively small dataset, we considered here.
Notice that, the running time of Shark is linear in the number of in-
put reads, and we only read once the set of reads. This fact implies
that larger datasets (e.g. with more replicates or across several con-
ditions or with higher-coverage samples) should show an even larger
(absolute) reduction of running times of the complete analyses.
While STAR and Salmon perform an indexing procedure only once,
Shark indexes the input gene regions for each sample — hence, a
more refined implementation that builds the index of the gene
sequences only once could save even more time, especially for a
larger number of samples.

Lastly, this experiment shows that peak memory usage is almost
unaffected by Shark. Indeed Shark required <1.5 GB of RAM to
process the input samples, which is significantly less than the peak
memory usage of rMATS and SplAdder (33.9 GB) and comparable
to that of SUPPA2 (1.7 GB). In particular, the peak memory usage
for rMATS and SplAdder is reached in the alignment step. In this
step, STAR loads the entire genome index in memory, hence its
memory usage is largely independent on the input sample size.

We then investigated how to reduce the memory usage of
STAR, that is the most memory intensive step of the pipelines
we tested, to allow any pipeline to be run on standard machines
typically equipped with <32 GB of RAM. When low memory
usage is required, it is possible to reduce the memory usage of
STAR by using its option for constructing a sparse index, namely
--genomeSAsparseD, at the expense of increasing its running
times (according to the tool documentation). However, since, we
showed that Shark greatly reduces the input sample size and
hence the time required by the alignment step, we expect that
the resulting pipeline should be still faster than the classic one on
the original samples. To evaluate our claim, we ran the two
STAR-based pipelines multiple times on both the original samples
and the samples preprocessed with Shark, each time increasing
the sparsity of the STAR index. Table 3 reports the results
obtained with sparsity equal to 8—the lowest value that allows
to keep memory usage under 16 GB, an amount nowadays com-
mon on standard PCs.

The first observation is that the sparsity of the index built by
STAR does not affect the accuracy of the downstream pipelines for
the differential analysis of alternative splicing. Indeed, both rMATS
and SplAdder detected the same RT-PCR validated events in all the
runs we performed.

The second observation is that increasing the sparsity of the
index allows to reduce the memory usage of each pipeline, from
more than 33 GB to <16 GB. Moreover, as expected, the sparsity of
the index greatly affects the overall running times of the pipelines
when they consider the original RNA-Seq dataset (+93% for
rMATS and +33% for SplAdder, see Table 3 compared with
Table 2). On the other hand, since the filtered dataset is
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considerably smaller than the original one, the sparsity of the index
does not sensibly affect the running times of the STAR alignment
step and, hence, of the pipelines when run on the filtered dataset.

3.3 Replication of an assembly-first differential as

analysis

In the third part of our experimental evaluation, we focused on the
replication of an assembly-first differential alternative splicing ana-
lysis. Assembly-first approaches are based on first assembling the
RNA-Seq reads depending on their overlaps and then aligning the
assembled sequences to the reference genome. Benoit-Pilven et al.
(2018) show that mapping-first approaches (as those considered in the
previous section) and assembly-first approaches (as the one considered
in this section) are complementary, in the sense that, while they agree
on the vast majority of their findings, each one is able to detect spe-
cific cases that the other one is not able to report (lowly-expressed
variants for mapping-first approaches and novel variants for
assembly-first approaches). We want to point out that assembly-first
approaches are, in general, computationally demanding, thus filter-
ing reads using Shark can be highly beneficial in order to speed up
such an analysis and reducing the peak memory usage. Furthermore,
we highlight that our filtering approach does not perform alignments
(or pseudo-alignments) to the transcript sequences. As a conse-
quence, Shark should not filter out reads supporting novel variants,
which are mainly detected by assembly-first approaches. Hence, it is
reasonable to use it as a preprocessing step of an assembly-first
pipeline.

To this aim, we partially replicated the analysis performed by
Benoit-Pilven et al. (2018) using the assembly-first KisSplice pipeline
on an RNA-Seq dataset of the MCF-7 breast cancer cell line (GEO ac-
cession number GSE94372). The dataset is composed of two biologic-
al replicates on two conditions: a control condition and the depletion
of two RNA helicases (DDXS and DDX17). Each sample contains be-
tween 32 and 35 million paired-end reads of length 125 bp.

Similarly as we did in the previous section, we focused on the
subset of 48 genes for which the authors performed an experimental
RT-PCR validation of a differential alternative splicing event
detected by at least one pipeline of the twos they used in the work.

As performed in the analysis we replicated, raw reads were pre-
processed by trimming and removing the adapters according to
standard quality control filters. The resulting dataset was then ana-
lyzed using the commands reported at http://kissplice.prabi.fr/pipe
line_ks_farline/ on the full dataset and on the dataset filtered with
Shark. Shark was ran setting k =17, t=0.6, g=10 and the Bloom fil-
ter size to 1 GB.

We considered all the differentially spliced events occurring in
the 48 genes for which an experimental validation has been

Full Shark

4

p-value < 0.05

p-value < 0.05

Fig. 3. Comparison of differential alternative splicing events mapping to one of the
48 selected genes as predicted by KisSplice on the full dataset (left oval) and on the
dataset filtered by Shark (right oval). Inner ovals represent the events predicted with
P —value < 0.05

performed. Notice that, differently from the previous section, we
did not consider only the RT-PCR validated events since they were
not unambiguously reported, hence it was not possible to focus only
on them.

Figure 3 reports the comparison between the events reported on the
full dataset (and then keeping only those mapping to one of the 48
selected genes) and those reported on the filtered dataset. The first im-
portant observation is that the predicted events almost perfectly coin-
cide. Indeed, 246 (97.6%) events were reported on both the full
dataset and on the filtered dataset. Only four (1.6%) events were pre-
dicted exclusively on the full dataset while two (0.8%) events were pre-
dicted exclusively on the filtered dataset. If we focus on the events
reported as statistically significant (P — value < 0.05), 81 of them
were reported on both dataset, a single event was reported as statistic-
ally significant on the full dataset but as not statistically significant on
the filtered dataset, while 4 were reported as statistically significant on
the filtered dataset but as not statistically significant on the full dataset.
Manual inspection of the differences revealed that the reported Percent
Spliced In ( APSI) for these events are highly similar. Interestingly, no
event reported as statistically significant on a dataset was missing in the
other dataset (albeit it could be reported as not statistically significant).

In terms of running times, Shark allows to achieve a considerable
speed up (Supplementary Table S4). Indeed, the total running time
on the full dataset (after trimming) is 26 h and 37 min, while on the
filtered dataset the pipeline (including the filtering step) took 3 h
and 30 min to complete (6.1x relative speedup).

4 Conclusion

In this work, we introduced the novel computational problem of
computing the gene assignment of an RNA-Seq sample with respect
to a set of genes. We also proposed an algorithmic approach to solve
this problem and we also implemented it, resulting in the tool,
Shark. To the best of our knowledge, Shark is the first tool specific-
ally designed for computing a gene assignment.

We performed an experimental analysis on real data where
we evaluated the effectiveness of Shark in speeding up state-of-
the-art pipelines for the differential analysis of alternative splic-
ing. Overall, Shark proved to be a preprocessing step that pre-
serves valuable information (i.e. reads) of the selected genes and
hence does not negatively affect any downstream pipeline for the
differential analysis of alternative splicing. On the other hand, it
allows to significantly reduce the size of the input samples, hence
it speeds up the pipelines, especially those based on read align-
ment and read assembly. Furthermore, the efficiency of Shark,
combined with an appropriate selection of the different parame-
ters that may be used to influence the performance of the down-
stream analyses (e.g. the sparsity of the index of STAR), allows
to bring all those analyses — nowadays performed on servers —
to modern desktop computers.

The accuracy and the efficiency of Shark depend on its parame-
ters k, T and g that are the k-mer size, the minimum confidence and
the base quality threshold, respectively. For this reason, future steps
will focus on allowing Shark to automatically estimate the best val-
ues of these parameters by exploiting extra information on the read
length and the error rate. Furthermore, including also the annotated
transcripts in the index or perform a preliminary filtering step using
transcript sequences could improve the running times, especially on
large gene panels, without affecting accuracy.

Since Shark can be used as a preliminary step in pipelines for the
detection of novel alternative splicing events from samples of RNA-
Seq data, future work will be devoted to an in-depth experimental
analysis of Shark as a preliminary step of a pipeline that includes
computationally demanding tools, such as ASGAL (Denti et al.,
2018), that relies on mapping reads against a splicing graph, and
Trinity (Haas et al., 2013), that assembles RNA-Seq reads, performs
transcript abundance estimation and identifies differentially
expressed transcripts across samples.
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