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ABSTRACT: The traditional approach for analyzing interaction data from biosensors instruments is based on the simplified
assumption that also larger biomolecules interactions are homogeneous. It was recently reported that the human receptor
angiotensin-converting enzyme 2 (ACE2) plays a key role for capturing SARS-CoV-2 into the human target body, and binding
studies were performed using biosensors techniques based on surface plasmon resonance and bio-layer interferometry. The
published affinity constants for the interactions, derived using the traditional approach, described a single interaction between ACE2
and the SARS-CoV-2 receptor binding domain (RBD). We reanalyzed these data sets using our advanced four-step approach based
on an adaptive interaction distribution algorithm (AIDA) that accounts for the great complexity of larger biomolecules and gives a
two-dimensional distribution of association and dissociation rate constants. Our results showed that in both cases the standard
assumption about a single interaction was erroneous, and in one of the cases, the value of the affinity constant KD differed more than
300% between the reported value and our calculation. This information can prove very useful in providing mechanistic information
and insights about the mechanism of interactions between ACE2 and SARS-CoV-2 RBD or similar systems.

After more than two decades of accelerating the technical
development of modern biosensor technologies such as

surface plasmon resonance (SPR), bio-layer interferometry
(BLI), and quartz crystal microbalance (QCM), interaction
data are still often analyzed using a single interaction model.1,2

This model works well when analyzing interactions involving
pure receptors and small-size drug candidates in biochemical
assays if the kinetics are not heterogonous and slow.1 However,
for detailed characterizations of interactions between more
complicated and larger biomolecules, for example, biological
drugs and their target receptors in biochemical assays, more
advanced data analysis approaches are crucial.3−5 These
approaches should not be considered a replacement for
carefully executed experiments but as a way to deal with
situations where more complicated interactions are present.
For instance, one of the more advanced approaches is based

on single interaction models that consider slow mass transfer,
bivalent binding, and conformal changes. These models do not
necessarily give a more accurate description of the system
studied but will give a better fit because they have more
degrees of freedom. Furthermore, there are usually several

permutations of these models that fit data equally well, so it is
hard to discriminate between them.6 Another advanced
approach, which in the authors’ opinions is more robust and
consistent, is to consider that the experimental data is the
result of multiple interactions. To analyze for multiple
interactions, the rate constant distribution (RCD) approach
has been proposed which does not require an a priori
assumption about any specific number of interactions.7,8 A
RCD is a surface with two-dimensional distributions of
association and dissociation rate constants where each
distribution in this space, represents an important interaction.
The RCD approach was recently used by Multia et al.3 to
investigate the interactions between antihuman apoB-100
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monoclonal antibody and lipoproteins. Recently, we developed
an improved RCD algorithm, the adaptive interaction
distribution algorithm (AIDA), for more refined processing
of complex biosensor data.4·
In late 2019, a pneumonia associated with a coronavirus

called severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) emerged in Wuhan, China,9,10 and rapidly spread
worldwide. Currently, there are no vaccines or any effective
specific therapeutic options available for combating the
infection. Meanwhile, it is crucial to obtain detailed knowledge
of COVID-19 pathogenesis, i.e., the biological mechanisms by
which the virus enters and causes the disease in the target
hosts.11 It has been shown that the recently discovered
angiotensin-converting enzyme 2 (ACE2), attached to the
outer cell membranes of cells in the lungs and in other organs,
is the main receptor responsible for SARS-CoV-2 entering the
human target body.12 It was earlier found that ACE2 is also the
entry port for the previous coronavirus known as SARS-CoV.13

Recent studies indicate that SARS-CoV-2 binds more strongly

to ACE2 than does SARS-CoV;14,15 providing a most
interesting starting point for further studies intended to
enhance our mechanistic understanding of COVID-19.
Recently, two studies used biosensor assays to determine the

interactions between the very complex biomolecules SARS-
CoV-2 receptor binding domain (RBD) and ACE2.15,16 One
of the reported findings was that the virus spike proteins have
higher affinity to ACE2 than did the previous SARS-CoV.15

However, biosensors data were analyzed using a simplified
model in the software packages that come with the biosensors
equipment. The validity of the reported findings therefore
needs to be tested using more advanced numerical data
processing approaches in order to validate the knowledge
gained about COVID-19 pathogenesis.11

The aim of this study is to reanalyze recently published
interaction data from two selected publications15,16 using our
recently validated four-step approach4 to see if the results
differ.

Figure 1. (a) Sensorgrams from the study by Lan et al.15 using SPR from human ACE2 as immobilized ligand and SARS-CoV-2 RBD as analyte, at
different analyte concentration levels; vertical line indicates injection duration. (b) Dissociation graph for the 62.5 nM injection. (c) RCD for a
31.25 nM injection, using the regularization factor λ = 1. (d) Clustered rate constants estimated from local fitting. The circle areas indicate mean
contribution of the two interactions to the total sensorgram response; the crosses indicate the median of the clustered rate constants with
corresponding 95% confidence intervals. The red star indicates the rate constants estimated using one interaction overall fitting, and the blue
triangles indicate the rate constants estimated using two interactions overall fitting. The corresponding rate constants are presented in Supporting
Information Table S1.
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■ THEORY

Calculations and Algorithms. The binding of analyte(s)

A to an immobilized ligand L on a biosensor chip is assumed to

proceed according to
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where ka and kd are the association and dissociation rate

constants, respectively.
The total response of the biosensor system, Rtot, at time t for

a system with n interactions can then be written
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where Rmax,i is the maximum analyte binding capacity (in
response units) for the ith interaction; RI,i is an optional “bulk
effect” parameter for the ith interaction (used to account for
the fact that the base response might change during analyte
injection); and K is a function that depends on time, the rate
constants ka,i and kd,i, and the initial analyte concentration Ci
(see refs 4, 17, and 18 for more details).
It is possible to show that in the dissociation phase, i.e.,

when t > tinj, where tinj is the injection duration, the natural
logarithm of the ratio between Rtot(t) and R0, where Rtot(t) is
the measured response during the dissociation phase and R0 is

Figure 2. (a) Sensorgrams from the study by Tian et al.16 using BLI from biotinylated 2019-nCov RBD as the ligand and ACE2 as analyte, at
different analyte concentration levels; vertical line indicates injection duration. (b) Dissociation graph for a 1 500 nM injection. (c) RCD for a 1500
nM injection, using the regularization factor λ = 1. (d) Clustered rate constants estimated from local fitting; one outlier (18.52 nM in the third
group) is removed. The circle areas indicate mean contribution of the three interactions to the total sensorgram response; the crosses indicate the
median of the clustered rate constants with corresponding 95% confidence intervals. The red star indicates the rate constants estimated using one
interaction overall fitting, and the blue triangles indicate the rate constants estimated using three interactions overall fitting. The corresponding rate
constants are presented in Supporting Information Table S2.
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the measured response at the end of injection phase, is a linear
function of time if and only if we have a single interaction.
Thus, by plotting the test function d(t), defined by eq 3,
against t, which is known as a dissociation graph, we can
determine if we have one or several interactions in the
biosensor system.

d t R t R R R t( ) ln( ( )/ ), ( )tot 0 0 tot inj= = (3)

If we let the number of interactions n in eq 2 → ∞, the
problem of estimating the rate constants becomes a Fredholm
integral equation of the first kind. This is an ill-posed inverse
problem, which requires a so-called regularization in order to
solve it, and the solution will depend on the type and amount
(indicated by the regularization parameter λ) of regularization
applied. The solution will be a rate constant distribution
(RCD) surface described above (for more details, see refs 4,
17, and 18).

■ RESULTS AND DISCUSSION

The measured SPR and BLI biosensor data used here were
provided by the authors of the original publications.15,16 The
data was analyzed by the four-step approach developed and
validated previously4 involving first (I) estimating the
heterogeneity of the interactions using dissociation graphs
and second (II) generating RCDs with AIDA. The two first
steps are for obtaining a complete census of all possible
existing interactions. In step III, we estimate the rate constants
by fitting a suitable interaction model to each sensorgram, and
in step IV, we cluster the individual rate constants to obtain
overall estimates.
Figure 1a shows the sensorgrams used in reanalyzing the

SPR data from Lan et al.15 Figure 1b shows the dissociation
plot for the 62.5 nM experiment, i.e., ln(R/R0) versus time, to
indicate potential heterogeneity. As discussed in the Theory
section, a single interaction would result in a linear dissociation
plot, while a heterogeneous interaction would result in concave
dissociation plots. In this case, the graph is slightly concave,
indicating that the interaction probably is heterogeneous.
However, the deviation from linearity is mild, indicating that
the contribution of potential secondary interactions to the total
observed response is only minor. The root mean square error
normalized (RMSEN) for a two-interaction model is 3.5%
compared with 5.0% for a one-interaction model. In this case,
the secondary interactions account for 13.5% of the overall
response (Supporting Information Table S1). The modest
improvement in the model fit from using a more complex
model indicate that while a one-interaction model is probably
sufficient to describe the system it does not provide
information about the system heterogeneity, and the system
heterogeneity can prove very important when characterizing
the system. The system heterogeneity was estimated by
calculating RCDs. The RCD for the 31.25 nM experiment
(Figure 1c) revealed a major interaction at approximately
log10(ka,1) ≈ 6, log10(kd,1) ≈ − 2.5 and a minor interaction at
log10(ka,2) ≈ 7.5, log10(kd,2) ≈ − 1. As can been seen from the
RCD, the minor interaction is small, but the most suitable
model should nevertheless be a two-interaction model. The
sensorgrams were therefore fitted individually to a two-
interaction model; the fits are shown in Supporting
Information Figure S1 together with overall fits for one- and
two-interaction models. The clustered estimated rate constants
are presented in Figure 1d. The circle areas are proportional to

the interaction’s contribution to the total response, i.e., the
larger the circle area the more the interaction contributes to
the total response. Inspecting the estimated rate constants, we
can identify two different clusters corresponding to the major
and minor interactions in the RCD (Figure 1c). The estimated
rate constants for the minor interaction are much more
scattered than those for the major interaction, probably
because this interaction contributes very little to the overall
response and is therefore very sensitive to system noise. The
red star in Figure 1d represents the rate constants determined
using a one-interaction overall fit (as the original author did)
with RI adjustment, and the blue triangles represents the rate
constants determined using the two-interactions model overall
fit with RI adjustment. To conclude, one interaction accounts
for almost 90% of the observed response, and a one-interaction
model could therefore be considered a valid model for this
system. However, it does not provide information about the
system heterogeneity that can be very important.
Figure 2a presents the raw data from Tian et al.16 To

investigate whether the data originates from a single interaction
or from more complicated heterogeneous interactions, the
dissociation plot, i.e., ln(R/R0) versus time, was calculated for
the 1500 nM experiment (Figure 2b). The graph is clearly
concave, indicating that the data describes more complicated
heterogeneous interactions. In the RCD for the 1500 nM
experiment, one can identify three different interactions. A
three-interaction individual model fit indicates that the major
interaction accounts for less than 70% of the overall response
(Supporting Information Table S2). In Supporting Informa-
tion Figure S2, the model fits are presented. In Figure 2d, the
clustered estimated rate constants are shown. As in the
previous case, the smaller the contribution to the total
response is, indicated in Figure 2d by the circle areas, the
larger the uncertainty of the determined rate constants
becomes. The red star in Figure 2d represents the rate
constants determined using the one-interaction overall fit with
the RI adjustment, and the blue triangles represent the rate
constants determined using the three-interactions overall fit
with the RI adjustment. What is very important here is that the
affinity constant KD, estimated using an overall fitting strategy
with a one-interaction model, and the affinity constant KD for
the interaction making the greatest contribution to the total
response, estimated using the four-step approach, differ
significantly (Supporting Information Table S2).

■ CONCLUSIONS
Before presenting our conclusions, it is worth mentioning that
when evaluating sensorgrams it is only possible to resolve the
interactions that give significant contribution to the response in
the studied time interval. For example, very slow interactions in
the presence of fast ones cannot be resolved unless the
association phase is long (for an example, see Supporting
Information Figure S). Ideally, one should reach steady state,
i.e., flat sensorgram curve, before ending the association phase.
As this can take hours or even days to achieve, very slow
interactions are often difficult/impractical to measure,
especially using SPR. However, the approach described in
this letter can easily detect very slow interactions if the studied
association phase is long enough.
Both experimental data sets reanalyzed here should describe

the same, or very similar, interactions, but the data were
generated using different biosensor technologies. Theoretically,
the technology used should not affect the interaction
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mechanism. However, although the estimated affinity constant
KD is similar in both systems (10−8.62 and 10−8.44 M,
respectively) the estimated rate constants ka and kd differ
significantly (Supporting Information Tables S1 and S2).
There could be many reasons for this. For example, the ligand
and analyte might not actually be the same in both systems and
that they are also switched; i.e., in the Lan et al. study,15 ACE2
was immobilized, whereas in the Tian et al.16 study, SARS-
CoV-2 RBD was immobilized instead.
However, investigating the reason for the differences

between the two studied biosensor systems was not our
intention with this work nor was it to speculate on the origin of
any potential secondary interactions. We leave the interpreting
of the result to the more capable scientists in pathogenesis who
have great knowledge of the interaction systems in question.
Our intention has been to demonstrate the importance of

the deeper analytical analysis of biosensors data, and we have
shown that such an analysis could give a more adequate
representation of reality. In contrast, the simplified approaches
at best provided an oversimplification and at worst completely
erroneous results. Wrong data interpretation may result in
wrong conclusions with potentially very serious consequences,
for example, regarding the SARS-CoV-2 binding mechanism.
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