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ABSTRACT: Traditionally, chemists have relied on years of training and
accumulated experience in order to discover new molecules. But the space of
possible molecules is so vast that only a limited exploration with the traditional
methods can be ever possible. This means that many opportunities for the discovery
of interesting phenomena have been missed, and in addition, the inherent variability
of these phenomena can make them difficult to control and understand. The current
state-of-the-art is moving toward the development of automated and eventually fully
autonomous systems coupled with in-line analytics and decision-making algorithms.
Yet even these, despite the substantial progress achieved recently, still cannot easily
tackle large combinatorial spaces, as they are limited by the lack of high-quality data. Herein, we explore the utility of active
learning methods for exploring the chemical space by comparing the collaboration between human experimenters with an
algorithm-based search against their performance individually to probe the self-assembly and crystallization of the
polyoxometalate cluster Na6[Mo120Ce6O366H12(H2O)78]·200H2O (1). We show that the robot-human teams are able to
increase the prediction accuracy to 75.6 ± 1.8%, from 71.8 ± 0.3% with the algorithm alone and 66.3 ± 1.8% from only the
human experimenters demonstrating that human-robot teams can beat robots or humans working alone.

■ INTRODUCTION

The scientific exploration of the vast chemical space for the
discovery of new molecules has always been a challenging
endeavor, since it is estimated that there are approximately
1060−10100 synthetically feasible molecules.1,2 As a result, the
discovery of new chemical reactions can be a time-consuming
process3 especially when relying in traditional synthesis
methods.4 A huge improvement in reactivity prediction came
with the development of computational methods (such as
density functional theory, DFT, and empirical force field
methods), which can screen a large number of candidate
compounds in silico, reducing the need for all experiments to
actually be carried out.2,5 However, these methods can be
computationally demanding as the system grows in complexity
and are limited in that only ground-state structures can be
calculated, ignoring metastable and transient species.5 The
emergence of artificial intelligence (AI) methods, and their
implementation in chemistry, offers another avenue of
exploration for chemical reactivity, see Figure 1. These
methods have been facilitated by the availability of both big
data6,7 and open-source code for the training of algorithms.8,9

A subfield of AI that has recently found applications in
chemistry is machine learning,5,10 which relies on data in order
to construct a model of the chemical space under investigation.
An advantage of machine learning is that the mechanistic
details of the system do not need to be explicitly known in
order to predict the probability of a given outcome or property
of interest. Recent progress in automated chemistry11 and
online analysis12,13 has allowed experimenters to build robots

capable of exploring for chemical reactivity in a more
autonomous way.14,15 This means that robotic platforms can
easily gather the data needed to implement machine learning
algorithms. Nevertheless, the vast majority of algorithms
(irrespective of their type) are not fully autonomous and
require some guidance from the user, ranging from the choice
of the internal parameters16 (hyperparameters) for training to
the selection of the algorithm for a specific chemical query10

and the selection of the variables by the experimental scientist.
Although deep-learning approaches (such as neural networks)
have shown promise for predicting rules-of-thumb17,18 in
chemical synthesis, they suffer from two major drawbacks:
First, they require large amounts of high-quality data in order
to learn effectively, and second, they have difficulty operating
outside their knowledge base.10 In the former case, the
problem stems from the fact that in chemistry, we are often
limited to a relatively small number of high-quality data points
(usually in the order of hundreds or thousands), while deep-
learning methods are more attuned to systems with millions of
data points (e.g., image recognition or text processing). In the
latter case, machine learning methods can be predictive but not
necessarily interpretable, since they tend to ignore molecular
context because of the way that the data is represented in their
model.10 Therefore, the interaction with experimental
scientists is important in order to assess these predictions,
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and in the end, it is chemical intuition that determines which
outcomes are valuable and which may be ignored.5,10,19

Intuition is generally described as heuristics, comprising
strategies that human experimenters employ in problem
solving and decision making by finding patterns, analogies,
similarities, and rules-of-thumb in their data.20,21 While
automation has allowed generating, collecting, and storing
data from scientific measurements in a very reliable and precise
way, the field lacks uniform ways to process this data into
concrete knowledge in the form of an analytical expression.
The most significant advantage of intuition is that it does not
require full information or knowledge of an unknown
situation,22−24 and in this way, it allows experimenters to
perform well even in areas of high uncertainty.25 Furthermore,
the human mind is not able to process situations with a
multitude of variables,26 and as a result, it resorts to intuition
and establishes a direction along which exploration can be
performed in a consistent and meaningful way without getting
lost in the details. In the context of chemistry, we can therefore
only have a general overview of the system we are studying.
Thus far, data mining methods are the closest approximations
that have been developed as a means to substitute for human
intuition in the experimental design.10

Within this framework, we propose that strategies based on
chemists’ intuition coupled with machine learning method-
ologies are a powerful alternative way to explore complex
problems that involve large combinatorial spaces or nonlinear
processes, where machine learning methods alone are
unsuitable. Additionally, we propose that human intuition
can help in guiding chemical synthesis, especially in cases
where there is a lack of high-quality data. To our knowledge,
there has been very little experimental work combining
heuristics and machine learning methods. An algorithmic
approach has been shown to detect nonlinear energy
conservation laws without any prior knowledge of physics,
kinematics, and geometry.19 To achieve this, the algorithm
automatically searched experimental motion-tracking data
captured from various physical systems (ranging from simple
harmonic oscillators to chaotic double-pendula) and built its
own model of the physical space. Depending on the types of
variables provided to the algorithm, different types of laws were
derived. This dependence suggests that any analytical
expression derived from a given computational method is

amenable to human interpretation, and so close collaboration
between the human factor and an algorithm can help in finding
interesting phenomena more rapidly than before.
In the field of chemistry, Raccuglia et al.,27 implemented

machine learning algorithms to predict reaction outcomes of
vanadium compounds by using data from unsuccessful and
unreported syntheses (labeled by the authors as “dark” data)
and compared the efficiency of the algorithms with the typical
strategies that human chemists apply. Additionally, they
demonstrated how the prediction accuracy of the model
provided by the algorithm is higher than that of the human
chemical intuition, both for single-crystalline and polycrystal-
line products. Nevertheless, the comparison is indirect, since
the authors use unreported data from their lab books as a
database for their analysis and did not actively compare the
methodologies that human experimenters employ when
searching the chemical space of a given compound.
In our previous work, we have demonstrated that we can

push the envelope of both the synthesis and the crystallization
process of a new polyoxometalate (POM) compound.28 Our
method is drawn from recent advances for active data
acquisition in the field of machine learning, known as active
learning. Active learning consists of methodologies that can
decide what experiments should be performed next in order to
improve the understanding of a system in the most efficient
way. We studied how human experimenters approach the
exploration and modeling of crystallization conditions for a
given POM compound and directly compared the performance
of their strategies to a machine learning approach. We
hypothesized that this could be a first step to developing a
new approach, which could combine the intuition of the
chemists with machine learning in order to explore complex
chemical systems and identify new phenomena. Additionally,
in the work of Granda et al.,15 and inspired by strategies based
on chemists’ intuition, it is demonstrated that a reaction system
controlled by a machine learning algorithm is capable of
exploring the space of chemical reactions quickly, especially if
trained by an expert. An organic synthesis robot can perform
chemical reactions and analyses faster than they can be
performed manually as well as predict the reactivity of possible
reagent combinations after conducting a small number of
experiments, thus effectively navigating a chemical reaction
space. By using real-time data from this robot, the predictions

Figure 1. The evolution process from the traditional synthesis of one-pot methods to the automated high-throughput methods and more recently
the advent of the increased use of machine learning methods for the exploration of the vast chemical space. For the case of the machine learning
methods, in the beginning a hypothesis is formed starting from the available data in the literature and theoretical calculations. Then, this
information is used to train an algorithm in recognizing patterns in the data and subsequently suggest a series of experiments to be performed. After
the data evaluation, it is possible to update the model of the chemical space, and the cycle can begin again with training of the algorithm in the new
acquired information.
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of reactivity are followed up manually by a chemist, leading to
the discovery of four reactions.
Herein, we build on that previously reported work28 of

comparing an algorithm against the human intuition of human
experimenters, and we attempt to combine them to explore the
chemical space of the compound with chemical formula
Na6[Mo120Ce6O366H12(H2O)78]·200H2O (1) (hereafter also
mentioned as {Mo120Ce6}). In this context, the key question is
whether we can quantify the way soft knowledge (i.e.,
heuristics and more concretely human intuition) and hard
knowledge (i.e., the increased computational capability of a
machine learning method) interact with each other as a team
and, potentially, gain some insights in how this collaboration
works. Ultimately, we want to benefit from these insights and
improve the way we explore the vast chemical space. In Figure
2, we illustrate in a simplified conceptual scheme of our

observations from the evolution of the prediction accuracy as a
result of our experiments previously done.28 There are two
areas of special interest for the performance of the combination
of human intuition and machine learning that can be observed:
area A and area B. In the case of the former, the resulting
performance from the experiments is better than by simply
utilizing an algorithm. In the case of the latter, the performance
lies between that of the human experimenters and the
algorithm.
Therefore, we aim to see how and if the team effort of

human intuition and machine learning is able to increase its
efficiency and lie in area A of Figure 2. The part of the machine
learning is expressed with the use of an algorithm as described
in the Supporting Information (SI), part 5. As for the reasons
that we are interested in crystallization, the first is because of
its broad implementation in the pharmaceutical industry and
materials chemistry (e.g., with the isolation of new molecules
that can be used as active pharmaceutical ingredients in drugs),
and the second is because the crystal structure presents some
inherent challenges as a result of the difficulty to find a format
able to represent a crystalline solid in such a way so that it can
be easily fed to a statistical learning procedure. We believe that
finding a way to digitalize intuition can have an impact on both
accelerating the discovery rate of new phenomena in more
complex systems and on how young chemists are trained, since
we can distill a vast body of seemingly random chemical
information into an organized and interconnected web of
knowledge.20,28,29

■ METHODS
In our previous work,28 we observed how the models
computed by an algorithm are able to improve their prediction
accuracy better than the models suggested by the human
experimenters (82.4% over 77.1%, respectively, with a baseline
performance of 68.1%). The algorithm we implemented is a
classifier assigning labels (e.g., crystal/no-crystal) to regions of
a parameters space; the human experimenters were volunteer
Ph.D. students in our group familiar with inorganic chemistry
synthesis; and the baseline method used as a control was a
random search, rendering it blind to both the initial and the
subsequently collected data. As a result, this difference in

Figure 2. A conceptual scheme which represents the general trends of
the evolution of the prediction accuracy based on our previous
study.28 In area A, the performances are higher than the ones
observed from the algorithm by itself. In area B, the performances lie
between that of the human experimenters and the algorithm. Lastly, in
area C, the performances are only marginally better than a random
search. Color scheme: algorithm, red line; human experimenters,
green line; and random search, blue line.

Figure 3. Experimental protocol describing the decision-making process during the exploration of the chemical space of {Mo120Ce6} that was
implemented during this work. An initial set of data serves as a starting point for experiments to perform next after analysis and model calculation.
The experiments are performed in a fully automated platform, and the outcome is observed and recorded in an updated version of the initial
database. Coloring code of the building units found in {Mo120Ce6}: {Mo2}, red; {Mo1}, yellow; {Mo8}, blue with central atom in cyan; Ce, green.
For the 3D plot of the initial set of data, the axes represent the following: A, Na2MoO4·2H2O 1 M and Ce(NO3)3·6H2O 0.1 M (mL); B, HClO4 1
M (mL); and C, NH2NH2·2HCl 0.25 M (mL).
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performance between algorithm and human experimenters
indicates the effect that the different strategies followed by the
human experimenters can have when they are based solely on
their intuition.
The basis for the current work is the formation and

crystallization of cluster (1), and the general experimental
procedure is depicted in Figure 3, where teams are formed
consisting of human experimenters and an algorithm with the
objective to explore chemical space together. In order to start
their exploration, these teams are provided with the
experimental conditions for the formation of (1): first, the
chemicals involved in its synthesis (SI, part 2); second, the
experimental protocol for the synthesis and crystallization
process; and third, an initial set of data consisting of successful
and unsuccessful crystallization experiments (SI, part 3).
The flowchart of Figure 4 describes the decision-making

process of the human experimenter and algorithm teams. In

the beginning, the initial set of data (SI, part 3 and Table S2)
serves as the starting information used to decide what
experiments to perform next. As a first step, the algorithm
evaluates these experiments and builds a model of the chemical
space. Based on that model, the algorithm provides us with a
list of 20 suggested experiments. Then, these experiments are
presented to the human experimenters, and they select 10 out
of them to perform in the platform. Finally, we perform the
experiments in an automated platform (SI, part 4) and receive
the information about the presence or the absence of crystals
for each of the requested experiments by illuminating the
samples under a strong white light-emitting diode (3300−3500
lux at a distance of 5 cm). The process is repeated 10 times per
method for a total of 100 experiments each. At each iteration,
all data collected previously are integrated in the decision
process for generating the next set of 20 experiments.
At this point, we should mention that our previous

experience with this chemical system allowed us to perform
10 experiments per day and wait overnight for crystallization of
the product.28 For the investigations described herein, we
needed to modify our experimental procedure, as shown in

Figure 4, in order to accommodate for the addition of the
intuition of the human experimenters (through their
suggestions) as an additional factor in the decision making
of the algorithm. Therefore, the algorithm was altered in order
to produce a list of 20 suggested experiments, and the human
experimenters were instructed to select 10 to be performed in
the platform. The machine learning parameters of the
algorithm used a 10-fold cross-validation to search the best
C and γ hyperparameters, where C is the regularization
parameter and γ is the kernel coefficient of the radial basis
function (ESI, part 6). To do this, we ran a cross-validation
with all possible combinations of C and γ within the set (10−5,
10−4.5, 10−4, ..., 104.5, 105) and selected the C and γ values
producing the smallest classification error, that is, the most
accurate model. In our case, these values are C = 100 and γ =
10−3/2, and they are the same ones as before28 since both are
extremely important in order to tune the model provided by
the algorithm. In the case where different values were used, it is
possible to get entirely different performance from the
algorithm,16 and this means we are unable to directly compare
the results across methods. To do this work, we use scikit-
learn,30,31 a machine learning library built for Python.

■ RESULTS AND DISCUSSION
The data from the experiments, unless presented as an average
result over multiple runs, are represented as H1 and H2 for the
human experimenters, A1 and A2 for the algorithm runs, R1
and R2 for the random search, and T1, T2, and T3 for the
teams of human experimenters and algorithm. The results
shown are after the end of the 100 experiments requested at
the beginning of our study. The exploration performed by all
methods is quantified by using metrics such as the evolution of
the prediction accuracy, the similarity of experiments, and the
volume exploration. A brief theoretical background behind
these metrics is provided in the SI, parts 8.1−8.4.

Prediction Accuracy. The evolution of the prediction
accuracy of each method trained on the data collected in each
run can be seen in Figure 5. The quality of the prediction (i.e.,
the percentage of time a crystal prediction is accurate) is
expected to increase as more data are collected. The initial

Figure 4. Decision-making process of the exploration protocol for the
collaboration between the algorithm and the human experimenter.
Starting from an initial set of data, the algorithm evaluates these
results and suggests 20 experiments. For the next stage, the human
experimenters select 10 experiments to run in the platform. The other
10 experiments that are not selected are discarded. After the reaction
is finished, we wait for the crystallization time, and the database of
experiments is updated with the outcome of the reaction before
starting again, giving a loop that is repeated 10 times.

Figure 5. Average of the prediction accuracies for all methods with
error bars as implemented by RandomForest. We can observe the
higher variability in the error of the team in comparison to the other
methods, which can be attributed to the different methodologies that
the human experimenters followed for their calculations during the
exploration of the chemical space (see ESI, part 8.3, Table S4 and
Figure S24).
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prediction quality based on the initial set of data provided to all
methods is 66.5%. We can observe that the team was able to
collect better quality data than the algorithm (75.6 ± 1.8%
over 71.8 ± 0.3%) and improved its classification accuracy the
most. Since we used 989 experimental points (ESI, part 8.5,
Tables S5 and S6) in order to compute the prediction quality,
this means that a 3.8% difference represents on average 38
additional experiments correctly predicted in our data set. This
difference is quite substantial both in terms of our model and
in machine learning grounds.
In light of Figure 5, we can observe that the interaction of

the human intuition and the algorithm manages to increase the
performance of the individual parts and achieve higher
efficiencies than the algorithm by itself. As for the existence
of the larger variability of the standard deviation for the teams,
we can only assume at this stage that it is the result of the
different methodologies from the human experimenters in their
interaction with the algorithm (see ESI, part 9).
Similarity of Experiments. For this metric, we calculate

how many other experiments lie within a specific radius R (we
use R = 2) in the parameters’ space (see ESI, part 8.4, Figure
S26). This distance is a similarity measure between experi-
ments: A large value indicates similar experiments, while a
small value indicates more explored chemical space. In Figure
6, we plot this similarity metric as more experiments are

performed. First, we note that in the initial set, 95% of the
experiments leading to crystals are within a radius of R = 2 of
each other in the chemical space.
We can observe that T1, T2, and T3 reduce this ratio faster

than any other method, indicating a wider exploration and thus
less data points in the vicinity of each other. A similar dynamic
can be observed in the algorithm runs A1 and A2 which follow
the same trend of fast exploration as the teams. As for the
random search (R1 and R2), there is no improvement in their
performance. In the case of the human experimenters H1 and
H2, we can observe two different behaviors: H1, who shares
the same trend as the algorithm and the teams, and H2, who is
closer to the random search (R1 and R2). We have previously
demonstrated29 that this broad difference between these runs
can be attributed to conservative strategies of exploration,

where small steps of exploration are performed, that can limit
the information that we can obtain about the chemical
landscape. At this stage, we can make a ranking of which
individual run is better in exploring the chemical space: T2 >
T1 > T3 > A1 > A2 > H1 ≫ H2 > R2 > R1. This ranking
resonates with the observations we made with the previous
metric in Figure 5 and is the first clear evidence that the
collaboration of the algorithm and the human intuition can
perform better than each of these two parts individually. In
light of this metric, we hypothesize that the effect of the
different strategies adopted by the human experimenters as
well as their inherent biases can be mitigated with the
collaboration of the machine learning methods in exploring the
chemical space.

Volume Exploration. Considering the crystallization area
as a proxy for the volume of the parameters’ space of the
chemicals involved in the experiments, a valuable metric is to
estimate how much of the crystallization volume has been
explored by each method. Following the results from our
experiments, we plotted the average explored volume as a
function of the number of experiments performed, see Figure
7. For the volume calculation, the volume of the experiments
leading to crystals was computed (ESI, part 8.2).

The y-axis in the results of Figure 7 corresponds to a four-
dimensional volume of all crystal points in the parameter space
of the chemical reagents. Since each parameter is in mL units,
the y-axis unit is strictly speaking mL4, which has no intuitive
meaning, and therefore the results should be interpreted
relative to each other as arbitrary units (a.u.) and not as
absolute values. The error bars of the standard deviation depict
the effect that the different methodologies can have in
collecting useful data for improving the calculated model of
the chemical space in each iteration. The respective values of
volume and standard deviation for each individual run are
provided in Table S3. From the values in this table, we can
observe that from the sixth run onward, the team increases the

Figure 6. Similarity metric of the experiments plotted as a comparison
of the average ratio of crystals found within a given distance of other
crystals. The faster this ratio drops, the wider the exploration. The
data are represented as H1 and H2 for the human experimenters, A1
and A2 for the algorithm runs, R1 and R2 for the random search, and
T1, T2, and T3 for the teams of human experimenters and algorithm.
Note how two different groups emerge from this data: The first group
consists of H2, R1, and R2, and the second group consists of H1, A1,
A2, T1, T2, and T3.

Figure 7. Average explored volume of the crystallization space by the
four methods (algorithm, human experimenter, random, and team)
along with their respective error bars. We can observe two areas of
interest between algorithm and team: area A (from the beginning
until experiment 50), where they follow a similar behavior, and area B
(experiments 50−100), where they start deviating from each other
and become distinct following a different path. The respective values
of volume and standard deviation are presented in the SI, part 8.2,
Table S3 and Figure S23.
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amount of space substantially it covers (from 1.08 × 10−2 a.u.
to 2.12 × 10−2 a.u.), while the algorithm exhibits a relatively
slower pace of exploration (from 0.91 × 10−2 a.u. to 1.56 ×
10−2 a.u.).
The difference between algorithm and human experimenters

can be explained by the fact that the algorithm is agnostic to
the chemical environment and untied to prior chemical
knowledge. This way it can perform jumps in the chemical
space straight into the believed boundaries between crystal and
no-crystal. On the contrary, human experimenters have
drastically varied strategies depending on personal perceptions
and biases of the particular chemistry involved in the system
under study. A noticeable feature of Figure 7 is that the
collaboration of the human experimenter and an algorithm
seem to lift this difference between the two and the team work
allows for more chemical space to be covered in the same
amount of time. Furthermore, the team work manages to
outperform the algorithm despite the differences of the
exploring strategies followed by the human experimenters.

Interaction between Human Experimenters and
Algorithm. We also attempted to understand the interaction
between the human experimenter and the algorithm in a
deeper level by depicting this interaction as a two-dimensional
(2D) contour plot of the experiments over the different
generations, see Figure 8. We observe that T1 is primarily
focused on the amount of reducing agent (NH2NH2·2HCl)
and perchloric acid (HClO4). In terms of the use of the
reducing agent, we can observe a direction toward areas of
higher amounts (left graph). Although the experimenter
reports the use of perchloric acid as important for their
protocol (SI, part 9, Team 1), it is not as evident from this plot
since the selection of perchloric acid appears to be evenly
distributed (middle graph). Additionally, the amounts of
perchloric acid that are used for the experiments remain
constrained between 2.5 and 7.5 mL. Another feature that we
notice is the decrease of the ratio of Na2MoO4·2H2O/
Ce(NO3)3·6H2O during the study (right graph). Given the
provided experimental protocol, we are not able to comment

Figure 8. 2D plot represents the choice of the selected experiments during the different runs of the teams. The data from the different runs are
plotted against the same surface, and the distinction is made by using a color scheme. The first run is represented in dark blue, while the last in dark
red. For Team 1 (T1), we can observe the strong preference for experiments with an increased amount of reducing agent (NH2NH2·2HCl) over
the course of the experiments (graphs in the left and right). For Team 2 (T2), the middle graph shows how the increasing amounts of perchloric
acid are selected during this study as also reported in the experimental protocol. For team 3 (T3), notice the similarity of behavior in relation to T1.
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whether this is a feature that was also taken into account from
the beginning but was not described, or if it occurred because
of the specific selection of the experimental variables (i.e., the
reducing agent and the perchloric acid) as guides for the
exploration.
In the case of T2, the reported key guides for the exploration

are the amount of reducing agent and the ratio of Mo/Ce (see
SI, part 9, Team 2). In Figure 8, we can observe a more
widespread search in terms of the reducing agent (graphs in
left and right). Furthermore, we can observe a tendency to use
more perchloric acid (middle graph), as it has also been
reported in their experimental protocol. As for the ratio of Mo/
Ce, it seems to be decreasing but still remaining in a region
between 4 and 8 mL (middle and right graph). Finally, for the
case of T3, there seems to be a lot of similarities with T1 in the
direction of the reagents, although the reported experimental
guide is only the ratio of Mo/Ce (SI, part 9, Team 3). A reason
behind the choice of these common variables by the human
experimenters is that small amounts of perchloric acid will not
provide a low enough pH in order to reduce the system,
whereas excessive amounts of NH2NH2·2HCl will cause
overreduction. On the other hand, a small ratio of Mo/Ce
will cause a deficiency in Mo, and the wheel will not be able to
form. The trends that we can observe in the nonselected
experiments of Figure 4 mirror the reasoning of the human
experimenters, as described in their protocols, and allow us as a
whole to derive preferred directions in the experimental
procedure as well as identify the specific variables used for the
exploration of the chemical space of {Mo120Ce6} by identifying
patterns in the experimental data. Nevertheless, it is not
possible to directly unveil the trends that we observed in
Figures 5−7 since Figure 8 is only a qualitative perspective of
the data.

■ CONCLUSIONS
In our previous study28 we hypothesized that the combination
of both machine learning and intuition could be the first step
to developing a new approach in order to explore complex
chemical systems. This work demonstrates the significant
impact that collaboration between human and machine can
have, as a significantly higher performance is achieved by
working together than either the algorithm or human
experimenter could achieve individually. The most important
advantage of intuition is its ability to perform well even in areas
of high uncertainty. One such area is the lack of high-quality
data in chemistry, and this is the framework around which this
work was developed. The increased computational power of a
machine learning model can allow us to identify hidden
patterns in the data, while the human intuition can develop the
direction for the experiments. In this way, the inherent
personal and chemical biases of the human experimenter can
be mitigated, and more “adventurous” studies of large
combinatorial spaces or nonlinear processes can be accom-
plished. We were able to observe and quantify the effects of the
team work between human and machine, but not without
many problems arising from the different ways in which
experimental procedures are documented. This reinforces the
imperative need to find a way to digitize this knowledge. We
believe that machine learning methods should be viewed as
tools in order to assist human experimenters rather than
replace them, and these results provide a proof of concept of
how this interaction can work. There is a lot more ground to
cover in this area, but we feel that bringing together advanced

machine learning with human intuition will be transformative
and lead to new methodologies in exploring complex problems.
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