
Article

Mindfulness-Based Programs Improve Psychological
Flexibility, Mental Health, Well-Being, and Time
Management in Academics

Gabriel A. B. Marais 1,2,3,* , Sophie Lantheaume 1,4, Robin Fiault 5 and Rebecca Shankland 1

1 LIP/PC2S-EA 4145, Université Grenoble Alpes, 38000 Grenoble, France; lantheaume.sophie@hotmail.fr (S.L.);
rebecca.shankland@univ-grenoble-alpes.fr (R.S.)

2 LBBE-UMR 5558, CNRS/Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
3 LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
4 Hôpital Privé Drôme Ardèche, 07500 Guilherand-Granges, France
5 Ecole des Psychologues Praticiens, 69003 Lyon, France; robin.fiault@gmail.com
* Correspondence: gabriel.marais@univ-lyon1.fr

Received: 4 September 2020; Accepted: 1 November 2020; Published: 3 November 2020
����������
�������

Abstract: (1) Background: Occupational stress is high in academia, and is partly related to time
pressure. Mindfulness-based programs are known to be effective in reducing stress and increasing
well-being. Recent work suggested that these programs may also improve time management.
This study tested the effects of a mindfulness-based program on academics’ psychological flexibility,
mental health, well-being, and time management. (2) Methods: The study was conducted in a
French research department. Participants were offered to join a mindfulness-based program (n = 21)
or to be on a wait-list control group (n = 22). Self-reported measures of psychological flexibility,
mental health (stress, anxiety, and depression symptoms), well-being, and time use were collected
before and after the eight week program. (3) Results: Results showed that psychological flexibility,
mental health, well-being, and efficient time use significantly increased in the intervention group
compared to the control condition. (4) Conclusions: The results suggested that the mindfulness-based
programs were effective in improving adaptive functioning, well-being, and optimal time use in
academia, thus underlining potential useful perspectives to help academics improve mental health
and time management.

Keywords: occupational stress; time management; well-being; mindfulness; academia

1. Introduction

About one third of workers experience mental health issues such as chronic stress in developed
countries, which results in significant human and financial costs [1,2]. Almost all sectors are affected and
academia is no exception. Surveys in UK, Australia, Canada, and other countries have revealed high
to very high levels of occupational stress in academia, a situation that is shared by all disciplines [3–10].
Occupational stress seems even higher in academics compared to the general population or other similar
“white-collar” (office) workers [3,10]. Identified stressors in academia are numerous [3,10,11] and
include cuts in funding and resources (e.g., [12]), job insecurity (e.g., [4,12]), pressure to publish and to
obtain external funding (e.g., [4,12,13]), increased student/staff ratio (e.g., [12–15]), increased workloads
(e.g., [4,12,13]), working outside office hours (e.g., [13]), work-life conflicts (e.g., [9]), slow career
advancement (e.g., [4,12]), lack of recognition (e.g., [12]), poor management practices (e.g., [12,13]),
and lack of trust in institutions (e.g., [12]). Exposure to stressors affects both the mental and physical
health of the academics (e.g., difficulties concentrating and making decisions, decreased self-esteem,
depression, sleep disturbances, headaches, stomachaches, susceptibility to infections), and also has
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Abstract: Missing item responses are prevalent in educational large-scale assessment studies such as
the programme for international student assessment (PISA). The current operational practice scores
missing item responses as wrong, but several psychometricians have advocated for a model-based
treatment based on latent ignorability assumption. In this approach, item responses and response
indicators are jointly modeled conditional on a latent ability and a latent response propensity
variable. Alternatively, imputation-based approaches can be used. The latent ignorability assumption
is weakened in the Mislevy-Wu model that characterizes a nonignorable missingness mechanism
and allows the missingness of an item to depend on the item itself. The scoring of missing item
responses as wrong and the latent ignorable model are submodels of the Mislevy-Wu model. In
an illustrative simulation study, it is shown that the Mislevy-Wu model provides unbiased model
parameters. Moreover, the simulation replicates the finding from various simulation studies from
the literature that scoring missing item responses as wrong provides biased estimates if the latent
ignorability assumption holds in the data-generating model. However, if missing item responses
are generated such that they can only be generated from incorrect item responses, applying an
item response model that relies on latent ignorability results in biased estimates. The Mislevy-Wu
model guarantees unbiased parameter estimates if the more general Mislevy-Wu model holds in
the data-generating model. In addition, this article uses the PISA 2018 mathematics dataset as a
case study to investigate the consequences of different missing data treatments on country means
and country standard deviations. Obtained country means and country standard deviations can
substantially differ for the different scaling models. In contrast to previous statements in the literature,
the scoring of missing item responses as incorrect provided a better model fit than a latent ignorable
model for most countries. Furthermore, the dependence of the missingness of an item from the
item itself after conditioning on the latent response propensity was much more pronounced for
constructed-response items than for multiple-choice items. As a consequence, scaling models that
presuppose latent ignorability should be refused from two perspectives. First, the Mislevy-Wu model
is preferred over the latent ignorable model for reasons of model fit. Second, in the discussion section,
we argue that model fit should only play a minor role in choosing psychometric models in large-scale
assessment studies because validity aspects are most relevant. Missing data treatments that countries
can simply manipulate (and, hence, their students) result in unfair country comparisons.

Keywords: missing item responses; multiple imputation; item response model; PISA; country
comparisons; Mislevy-Wu model; latent ignorability; nonignorable item responses

1. Introduction

It has frequently been argued that measured student performance in educational large-
scale assessment (LSA; [1–3]) studies is affected by test-taking strategies. In a recent paper
that was published in the highly ranked Science journal, researchers Steffi Pohl, Esther
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Ulitzsch and Matthias von Davier [4] argue that “current reporting practices, however, they
confound differences in test-taking behavior (such as working speed and item nonresponse)
with differences in competencies (ability). Furthermore, they do so in a different way
for different examinees, threatening the fairness of country comparisons” [4]. Hence,
the reported student performance (or, equivalently, student ability) is regarded by the
authors as a conflated composite of a “true” ability and test-taking strategies. Importantly,
Pohl et al. [4] question the validity of country comparisons that are currently reported
in LSA studies and argue for an approach that separates test-taking behavior (i.e., item
response propensity and working speed) from a purified ability measure. The core idea of
the Pohl et al. [4] approach is on how to model missing item responses in educational large-
scale assessment studies. In this article, we systematically investigate the consequences of
different treatments of missing item responses in the programme for international student
assessment (PISA) study conducted in 2018. Note that we do not focus on exploring or
modeling test-taking strategies in this article.

While the treatment of missing data in statistical analyses in social sciences is now
widely used [5–8], in recent literature, there are recommendations for treating missing
item responses in item response theory (IRT; [9]) models in LSA studies [10,11]. Typically,
the treatment of item responses can be distinguished between calibration (computation of
item parameters) and scaling (computation of ability distributions).

It is essential to distinguish the type of missing item responses. Missing item responses
at the end of the test are referred to as not reached items, while missing items within the
test are denoted as omitted items [12]. Since the PISA 2015 study, not reached items are no
longer scored as wrong and the proportion of not reached items is used as a predictor in the
latent background model [13]. Items that are not administered to students in test booklets
in a multiple-matrix design [13–15] lead to missingness completely at random (except in
multi-stage adaptive testing; see [16]). This kind of missingness is not the topic of this
article and typically does not cause issues in estimating population and item parameters.

Several psychometricians have repeatedly argued that missing item responses should
never be scored as wrong because such a treatment would produce biased item parameter
estimates and unfair country rankings [4,10,11,17,18]. In contrast, model-based treatments
of missing item responses that rely on latent ignorability [4,10,11,19] are advocated. Miss-
ing item responses can be ignored in this approach when including response indicators and
a latent response propensity [20,21]. Importantly, the missingness process is summarized
by the latent response variable. As an alternative, multiple imputation at the level of items
can be employed to handle missing item responses properly [22,23]. However, scoring
missing item responses as wrong could be defended for validity reasons [24–26]. Moreover,
it has been occasionally argued that simulation studies cannot provide information on the
proper treatment of missing item responses in a concrete empirical application because
the truth is unknown that would have generated the data [25,27]. Nevertheless, simula-
tion studies could be tremendously helpful in understanding and comparing competitive
statistical modeling approaches.

Our findings might only be generalizable to other low-stakes assessment studies
like PISA [28–30]. However, the underlying mechanisms for missing item responses can
strongly differ from high-stakes assessment studies [31].

Although several proposals of using alternative scaling models for abilities in LSA
studies like PISA have been made, previous work either did not report country means
in the metric of interest [10] such that consequences cannot be interpreted, or constituted
only a toy analysis consisting only a few countries [4] that did enable a generalization to
operational practice. Therefore, this article compares different scaling models that rely
on different treatments of missing item responses. We use the PISA 2018 mathematics
dataset as a showcase. We particularly contrast the scoring of missing item responses as
wrong with model-based approaches that rely on latent ignorability [4,10,11] and a more
flexible Mislevy-Wu model [32,33] containing the former two models as submodels. In the
framework of the Mislevy-Wu model, it is tested whether the scoring of missing item
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responses as wrong or treating them as latent ignorable are preferred in terms of model
fit. Moreover, it is studied whether the probability of responding to an item depends on
the item response itself (i.e., nonignorable missingness, [7]). In the most general model,
the missingness process is assumed to be item format-specific. Finally, we investigate the
variability across means from different models for a country.

The rest of the article is structured as follows. In Section 2, an overview of different
statistical modeling approaches for handling missing item responses is presented. Section 3
contains an illustrative simulation study that demonstrates the distinguishing features
of the different modeling approaches. In Section 4, the sample of persons and items
and the analysis strategy for the PISA 2018 mathematics case study are described. In
Section 5, the results of PISA 2018 mathematics are presented. Finally, the paper closes
with a discussion in Section 6.

2. Statistical Models for Handling Missing Item Responses

In this section, different statistical approaches for handling missing item responses are
discussed. These different approaches are utilized in the illustrative simulation study (see
Section 3) and the empirical case study involving PISA 2018 mathematics data (see Section 4).

For simplicity, we only consider the case of dichotomous items. The case of polyto-
mous items only requires more notation for the description of models but does not change
the general reasoning elaborated for dichotomous items. Let Xpi denote the dichotomous
item responses and the Rpi response indicators for person p and item i. The response
indicator Rpi takes the value one if Xpi is observed and zero if Xpi is missing. Consistent
with the operational practice since PISA 2015, the two-parameter logistic (2PL) model [34]
is used for scaling item responses [13,16]. The item response function is given as

P(Xpi = 1|θp) = Ψ(ai(θp − bi)), (1)

where Ψ denotes the logistic distribution function. The item parameters ai and bi are
item discriminations and difficulties, respectively. It holds that 1−Ψ(x) = Ψ(−x). Local
independence of item responses is posed; that is, item responses Xpi are conditionally
independent from each other given the ability variable θp. The latent ability θp follows a
standard normal distribution. If all item parameters are estimated, the mean of the ability
distribution is fixed to zero and the standard deviation is fixed to one. The one-parameter
logistic (1PL, [35]) model is obtained if all item discriminations are set equal to each other.

In Figure 1, the main distinctive features of the different missing data treatments are
shown. Three primary strategies can be distinguished [36,37]. These strategies differ in
how to include information from the response indicator variables.

First, response indicators Rp are unmodelled (using model labels starting with “U”),
and missing entries in item responses Xp are scored using some a priorily defined rule
resulting in item responses Xsco,p without missing entries. For example, missing item
responses can be scored as wrong or can be omitted in the estimation of the scaling model.
In a second step, the 2PL scaling model is applied to the dataset containing scored item
responses Xsco,p.

Second, model-based approaches (using model labels starting with “M”) pose a joint
IRT model for item responses Xp and response indicators Rp [19]. The 2PL scaling model
for the one-dimensional ability variable θp is part of this model. In addition, a further latent
variable ξp (i.e., the so-called response propensity) is included that describes the correla-
tional structure underlying the response indicators Rp. In most approaches discussed in
the literature, there is no path from Xpi to Rpi. After controlling for ability θp and response
propensity ξp, there is no modeled effect of the item response on the response indicator.
In this paper, we allow for this additional relation by using the Mislevy-Wu model and
empirically demonstrate that missingness on items depends on the item response itself.

Third, imputation-based approaches (using model labels starting with “I”) first gener-
ate multiply imputed datasets and fit the 2PL scaling model to the imputed datasets in a
second step [37,38]. Different imputation models can be employed. One can either use
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only the item responses Xp or use the item responses Xp and the response indicators Rp
in the imputation model. As an alternative, imputations can be generated based on an
IRT model that contains item responses Xp and missing indicators Rp. These imputation
models can coincide with IRT models that are employed as model-based approaches in
our overview. After fitting the IRT models for (Xp, Rp), the output contains a posterior
distribution P(θp, ξp|Xp, Rp) for each subject p. For each imputed dataset, one first simu-
lates latent variables θ∗p and ξ∗p from the posterior distribution [39]. For items with missing
item responses (i.e., Rpi = 0), one can simulate scores for Xpi according to the conditional
distribution P(Xpi = x|Rpi = 0, θ∗p, ξ∗p) (x = 0, 1). It holds that

P(Xpi = 1|Rpi = 0, θ∗p, ξ∗p) =
P(Rpi = 0|Xpi = 1, ξ∗p)P(Xpi = 1|θ∗p)

1

∑
x=0

P(Rpi = 0|Xpi = x, ξ∗p)P(Xpi = x|θ∗p)
(2)

The 2PL scaling model is applied to the imputed datasets Ximp,p in a second step. In
the analyses of this paper, we always created 5 imputed datasets to reduce the simula-
tion error associated with the imputation. We stack the 5 multiply imputed datasets into
one long dataset and applied the 2PL scaling model for the stacked dataset (see [40–42]).
The stacking approach does not result in biased item parameter estimates [41], but resam-
pling procedures are required for obtaining correct standard errors [40]. This article mainly
focuses on differences between results from different models and does not investigate the
accuracy of standard error computation methods based on resampling procedures.
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Figure 1. Overview of different statistical models for the treatment of missing item responses. The abbreviations of the
different modeling strategies (“U”, “M” and “I”) are printed in red.

In the next subsections, we describe the different models for treating missing item
responses. These models differ with regards to the missingness mechanism assumptions of
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missing item responses. Some of the model abbreviations in Figure 1 are already mentioned
in this section. Models that only appear in the case study PISA 2018 mathematics are
described in Section 4.1.

2.1. Scoring Missing Item Responses as Wrong

In a reference model, we scored all missing item responses (omitted and not reached
items) as wrong (model UW). The literature frequently argues that missing item responses
should never be scored as wrong [4,10,17,43]. However, we think that the arguments
against the scoring as wrong are flawed because these studies simulate missing item
responses based on response probabilities that do not depend on the item itself. We think
that these data-generating models are not plausible in applications (but see also [44] for a
more complex missing model; [25,26]). On the other hand, one can simulate missing item
responses such that missing item responses can only occur for incorrectly solved items
(i.e., for items with Xpi = 0). In this situation, all missing data treatments that do not score
missing item responses as wrong will provide biased estimates [27].

2.2. Scoring Missing Item Responses as Partially Correct

Missing responses for MC items can be scored as partially correct (also known as frac-
tional correct item responses; see [45]). The main idea is that a student could guess the MC
item if he or she does not know the answer. If an item i has Ki alternatives, a random guess of
an item option would provide a correct response with probability 1/Ki. In IRT estimation,
one can weigh probabilities P(Xpi = 1) with 1/Ki and P(Xpi = 0) with 1− 1/Ki [45]. This
weighing implements a scoring of a missing MC item as partially correct (model UP).
The maximum likelihood estimation is replaced by a pseudo-likelihood estimation that
allows non-integer item responses [45]. More formally, the log-likelihood function l for
estimating item parameters a = (a1, . . . , aI) and b = (b1, . . . , bI) can be written as

l(a, b; Xsco) =
N

∑
p=1

log

(∫ I

∏
i=1

{
Ψ(ai(θ − bi))

xpi [1−Ψ(ai(θ − bi))]
1−xpi

}
f (θ)dθ

)
, (3)

where f denotes the density of the standard normal distribution, and N denotes the sample
size. The entries xpi in the vector of scored item responses Xp can generally take values
between 0 and 1. The EM algorithm typically used in estimating IRT models [46,47] only
needs to be slightly modified for handling fractionally correct item responses. In the M-step
for computing expected counts, one must utilize the fractional item responses instead of
using only zero or one values. The estimation can be carried out in the R [48] package
sirt [49] (i.e., using the function rasch.mml2()).

It should be mentioned pseudo-likelihood estimation of IRT models that allow non-
integer item responses is not widely implemented in IRT software. However, the partially
correct scoring can be alternatively implemented by employing a multiple imputation
approach of item responses. For every missing item response of item i, a correct item
response is imputed with probability 1/Ki. No imputation algorithm is required because
only random guessing is assumed. This means that the guessing probability of 1/Ki is
constant for persons and items.

Missing item responses for CR items are scored as wrong in the partially correct scoring
approach because students in this situation cannot simply guess unknown answers.

2.3. Treating Missing Item Responses as Ignorable

As an alternative to scoring missing item responses as wrong, missing item responses
can be ignored in likelihood estimation. In model UO1, all missing item responses are
ignored in the scaling model. The student ability θp is extracted based on the observed
item responses only. The log-likelihood function l for this model can be written as

l(a, b; X, R) =
N

∑
p=1

log

(∫ I

∏
i=1

{
Ψ(ai(θ − bi))

rpixpi [1−Ψ(ai(θ − bi))]
rpi(1−xpi)

}
f (θ)dθ

)
. (4)
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It can be seen from Equation (4) that only observations with observed item responses
(i.e., rpi = 1) contribute to the likelihood function.

The method UO1 is valid if missing item responses can be regarded as ignorable [18].
If Xcom,p = (Xobs,p, Xmis,p) is a partitioning of the vector of complete item responses into
the observed and the missing part, the assumption that item responses are missing at
random [7] is given as

P(Rp|Xobs,p, Xmis,p) = P(Rp|Xobs,p). (5)

This means that the probability of omitting items only depends on observed items and not
the unobserved item responses. By integrating out missing item responses Xmis,p, the joint
distribution (Xcom,p, Rp) and using the MAR assumption (5) can be written as∫

P(Xobs,p, Xmis,p, Rp)dXmis,p = P(Rp|Xobs,p)P(Xobs,p). (6)

Hence, Equation (6) shows that likelihood inference for MAR data can entirely rely on
the probability distribution P(Xobs,p) of observed item responses. The notion of (manifest)
ignorability means that model parameters of the distributions P(Xobs,p) and P(Rp|Xobs,p)
are distinctive. This means that these distributions can be modeled independently.

It should be emphasized that the MAR assumption (5) does not involve the latent
ability θp. The probability of missingness must be inferred by (summaries of) observed
item responses only. This kind of missingness process might be violated in practice. In the
following subsection, a weakened version of ignorability is discussed.

2.4. Treating Missing Item Responses as Latent Ignorable

Latent ignorability [19,50–60] is one of the weakest nonignorable missingness mecha-
nisms. Latent ignorability weakens the assumption of ignorability for MAR data. In this
case, the existence of a latent variable ηp is assumed. The dimension of ηp is typically much
lower than the dimension of Xp. Latent ignorability is defined as (see [19])

P(Rp|Xobs,p, Xmis,p, ηp) = P(Rp|Xobs,p, ηp). (7)

That is, the probability of missing item responses depends on observed item responses
and the latent variable ηp, but not the unknown missing item responses Xmis,p itself.
By integrating out Xmis,p, we obtain∫

P(Rp, Xobs,p, Xmis,p|ηp)dXmis,p = P(Rp|Xobs,p, ηp)P(Xobs,p|ηp). (8)

The specification (7) is also known as a shared-parameter model [61,62]. In most
applications, conditional independence of item responses Xpi and response indicators Rpi
conditional on ηp is assumed [19]. In this case, Equation (8) simplifies to∫

P(Rp = rp, Xobs,p = xobs,p, Xmis,p|ηp)dXmis,p =
I

∏
i=1

[
P(Rpi = rpi|ηp)P(Xpi = xpi|ηp)

rpi
]
. (9)

In the rest of this paper, it is assumed that the latent variable ηp consists of a latent ability
θp and a latent response propensity ξp. The latent response propensity ξp is a unidimensional
latent variable that represents the dimensional structure of the response indicators Rp. The
probability of responding to an item is given by (model MO2; [10,20,44,63–66])

P(Rpi = 1|Xpi = xpi, θp, ξp) = P(Rpi = 1|ξp) =Ψ(ξp − βi). (10)

Note that the probability of responding to item i only depends on ξp and is inde-
pendent of Xpi and θp. The 2PL model is assumed for item responses Xpi (see Equation
(1)):

P(Xpi = 1|θp, ξp) = P(Xpi = 1|θp) = Ψ(ai(θp − bi)). (11)
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The model defined by Equations (10) and (11) is also referred to as the Holman–Glas
model [20,37]. In this article, a bivariate normal distribution for (θp, ξp) is assumed, where
SD(θp) is fixed to one, and SD(ξp), as well as Cor(θp, ξp), are estimated (see [67,68] for
more complex distributions).

The model UO1 (see Section 2.3) that presupposes ignorability (instead of latent
ignorability) can be tested as a nested model within model MO2 by setting Cor(θp, ξp) = 0.
This model is referred to as model MO1.

Note that the joint measurement model for item responses Xpi and response indicators
Rpi can be written as

P(Xpi = x, Rpi = r|θp, ξp) =


[
1−Ψ(ai(θp − bi))

]
Ψ(ξp − βi) if x = 0 and r = 1,

Ψ(ai(θp − bi))Ψ(ξp − βi) if x = 1 and r = 1,
1−Ψ(ξp − βi) if x = NA and r = 0.

(12)

Hence, the model defined in Equation (12) can be interpreted as an IRT model for a
variable Vpi that has three categories: Category 0 (observed incorrect): Xpi = 0, Rpi = 1,
Category 1 (observed correct): Xpi = 1, Rpi = 1, and Category 2 (missing item response):
Xpi = NA, Rpi = 0 (see [43,69,70]).

2.4.1. Generating Imputations from IRT Models Assuming Latent Ignorability

The IRT models MO1 and MO2 are also used for generating multiply imputed datasets.
Conditional on θp, missing item responses are imputed according to the response proba-
bility from the 2PL model (see Equation (11)). The stacked imputed dataset is scaled with
the unidimensional 2PL model. If models MO1 or MO2 were be the true data-generating
models, the results from multiple imputation (i.e., IO1 and IO2) would coincide with
model-based treatments (i.e., MO1 and MO2). However, results can differ in the case of
misspecified models [71,72].

2.4.2. Including Summaries of Response Indicators in the Latent Background Model

The IRT model for response indicators Rpi in Equation (10) is a 1PL model. Hence,
the sum score Rp• = ∑I

i=1 Rpi is a sufficient statistic for the response propensity ξp [73].
Then, the joint distribution can be written as

P(Rp, Xobs,p, θp, ξp)P(θp|ξp)P(ξp) = P(Xobs,p|θp)
{

P(θp|ξp)P(Rp•|ξp)P(ξp)
}

. (13)

Instead of estimating a joint distribution (θp, ξp), a conditional distribution θp|Rp• can
be specified in a latent background model (LBM; [74,75]). That is, one uses the proportion
of missing item responses Zp = 1− Rp•/I as a predictor for θp [11,12] and employs a
conditional normal distribution θp|Zp ∼ N(γ0 + γ1Zp, σ2

e ). This manifest variable Zp can
be regarded as a proxy variable for the latent variable ξp. The resulting model is referred to
as model UO2.

2.5. Mislevy-Wu Model for Nonignorable Item Responses

Latent ignorability characterizes only a weak deviation from an ignorable missing data
process. It might be more plausible that the probability P(Rpi = 1|Xpi, θp, ξp) of responding
to an item depends on the observed or unobserved item response Xpi itself [76–80]. The
so-called Mislevy-Wu model [32,33,81,82] extends the model MO2 (see Equation (10)) that
assumes latent ignorability to

P(Rpi = 1|Xpi, θp, ξp) = Ψ(ξp − βi − δiXpi). (14)

In this model, the probability of responding to an item depends on the latent response
propensity ξp and the item response Xpi itself (see [24,25,49,81,83,84]). The parameter βi
governs the missingness proportion for Xpi in the subgroup of persons with Xpi = 0, while
the sum βi + δi represents the missingness proportion for persons with Xpi = 1. The unique
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feature of the Mislevy-Wu model is that the missingness proportion is allowed to depend
on the item response. If a very small negative value for the missingness parameter δi is
chosen (e.g., δi = −10), the response probability P(Rpi = 1|Xpi, θp, ξp) in Equation (14) is
close to one, meaning that persons with Xpi = 1 always provide item response (i.e., they
have a missing proportion of zero). By applying the Bayes theorem, it follows in this case
that persons with a missing item response must possess an incorrectly solved item; that is,
it holds Xpi = 0. It should be emphasized that the Mislevy-Wu model is a special case of
models discussed in [85].

Model MM1 is defined by assuming a common δi parameter for all items. In model
MM2, two δ parameters are estimated for item formats CR and MC in the PISA 2018
mathematics case study (see Section 5 for results).

Note that the Mislevy-Wu model for item responses Xpi and response indicators
Rpi can be also formulated as a joint measurement model for a polytomous item with
three categories 0 (observed incorrect), 1 (observed correct), and 2 (missing; see also
Equation (12)):

P(Xpi = x, Rpi = r|θp, ξp) =


[
1−Ψ(ai(θp − bi))

]
Ψ(ξp − βi) if x = 0 and r = 1,

Ψ(ai(θp − bi))Ψ(ξp − βi − ρi) if x = 1 and r = 1,

Ψ(ai(θp − bi))Ψ(ξp − βi − ρi) +
[
1−Ψ(ai(θp − bi))

]
Ψ(ξp − βi) if x = NA and r = 0.

(15)

The most salient property of the models MM1 and MM2 is that the model treating missing
item responses as wrong (model UW) can be tested by setting δi = −10 in Equation (14)
(see [33]). This model is referred to as model MW and the corresponding scaling model based
on multiply imputed datasets from MW as model IW. Moreover, the model MO2 assuming
latent ignorability is obtained by setting δi = 0 for all items i (see Equation (10)). It has
been shown that parameter estimation in the Mislevy-Wu model and model selection among
models MW, MO2, and MM1 based on information criteria have satisfactory performance [33].

For both models, multiply imputed datasets were also created based on conditional
distributions P(Xpi|Rpi, θp, ξp). The scaling models based on stacked imputed datasets are
referred to as IM1 and IM2.

2.6. Imputation Models Based on Fully Conditional Specification

The imputation models discussed in previous subsections are based on unidimensional
or two-dimensional IRT models (see [36,86–89] for more imputation approaches relying
on strong assumptions). Posing such a strict dimensionality assumption might result in
invalid imputations because almost all IRT models in educational large-scale assessment
studies are likely to be misspecified [26]. Hence, alternative imputation models for missing
item responses were considered that relied on fully conditional specification (FCS; [41])
implemented in the R package mice [90].

The FCS imputation algorithm operates as follows (see [41,91–93]). Let Wp denote
the vector of variables that can have missing values. FCS cycles through all variables in Wp
(see [37,94–96]). For variable Wpv, all remaining variables in Wp except Wpv are used as
predictors for Wpv (denotes as Wp,(−v)) in the imputation model. More formally, a linear
regression model

Wpv = γ0 + γ>Wp,(−v) + εpv , εpv ∼ N(0, σ2
v ) (16)

is specified. For dichotomous variables Wpv, (16) might be replaced by a logistic regression
model. Our experiences correspond with those from the literature that using a linear regres-
sion with predictive mean matching (PMM; [41,97–99]) provides more stable estimates of
the conditional imputation models. PMM guarantees that imputed values only take values
that are present in the observed data (i.e., values of 0 or 1 for dichotomous item responses).

In situations with many items, Wp,(−v) is a high-dimensional vector of covariates in
the imputation model (16). To provide a stable and efficient estimation of the imputation
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model, a dimension reduction method for the vector of covariates can be applied to
enable a feasible estimation. For example, principal component analysis [100] or sufficient
dimension reduction [101] can be applied in each imputation model for reducing the
dimensionality of Wp,(−v). In this paper, partial least squares (PLS) regression [102] is
used for transforming the vector of covariates to a low-dimensional vector of PLS factors
that successively maximize the covariance with the criterion variable (i.e., maximize the
covariance Cov(α>f Wp,(−v), Wpv) with factor loading vectors α f for uncorrelated factors

α>f Wp,(−v) with f = 1, . . . , F; see [103]). In the simulation study and the empirical case
study, we use 10 PLS factors to avoid the curse of dimensionality due to estimating too
many parameters in the regression models [103,104].

In the imputation model IF1, only item responses Xp are included. This specification
will provide approximately unbiased estimates if the MAR assumption (i.e., manifest
ignorability) holds. In model IF2, response indicators Rp are additionally included [105].
This approach is close to the assumption of latent ignorability in which summaries of the
response indicators are also required for predicting the missingness of an item response.
Hence, it can be expected that the model IF2 outperforms IF1 and provides similar results
to the model MO2 relying on latent ignorability. In contrast to the Mislevy-Wu model,
for imputing item response Xpi in model IF2, the predictors Xp,−(i) and Rp,(−i) are used.
Hence, the probability of responding to an item is not allowed to depend on the item itself.
This assumption might be less plausible than assuming the response model in Equation (14).

Like for all imputation-based approaches in this paper, 5 multiply imputed datasets
were created, and the 2PL scaling model is applied to the stacked dataset involving all
imputed datasets.

3. Illustrative Simulation Study

In order to better understand the relations between different models for the treat-
ment of missing item responses, we performed a small illustrative simulation study to
provide insights into the behavior of the most important models under a variety of data-
generating models.

3.1. Method

We restrict ourselves to the analysis of only one group. This does not imply interpreta-
tional issues because the main motivation of this study is to provide a better insight into
the behavior of the models and not to mimic the PISA application involving 45 countries.
We only employed a fixed number of I = 20 items in a linear fixed test design. Hence, we
did not utilize a multi-matrix design with random allocation of students to test booklets
as implemented in PISA. In our experience, we have not (yet) seen any simulation study
whose results with a multi-matrix test design substantially differ from a linear fixed test
design. We chose a sample size of N = 1500, which corresponds to a typical sample size at
the item level in the PISA application.

Item responses were generated based on the Mislevy-Wu model (see Equation (10)).
Item responses were simulated according to the 2PL model. We fixed the correlation of the
latent ability θ and the latent response propensity ξ to 0.5. We assumed item difficulties
that were equidistantly chosen on the interval [−2, 2] (i.e., −2.000, −1.789, −1.579, ...,
1.789, 2.000), and we used item discriminations of 1 when simulating data. The ability
variable θ was assumed to be standard normally distributed. For the response mechanism
in the Mislevy-Wu model in Equation (10), we varied a common missingness parameter
δ in five factor levels −10, −3, −2, −1, and 0. The case δ = −10 effectively corresponds
to the situation in which missing item responses can only be produced by incorrect item
responses. This simulation condition refers to the situation in which missing item responses
must be scored as wrong for obtaining unbiased statistical inference. The situation δ = 0
corresponds to the situation of latent ignorability. The cases δ = −3,−2,−1 correspond
to situations in which both the scoring as wrong and latent ignorability missing data
treatment are not consistent with the data-generating model, and biased estimation can
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be expected. For the model for response indicators, we used a common β parameter
across items in the simulation. As our motivation was to vary the average proportion of
missing item responses (i.e., the factor levels were 5%, 10%, 20%, and 30%), the common β
parameter is a function of the δ parameter. Prior to the main illustrative simulation, we
numerically determined the β parameter to obtain the desired missing data proportion rate
(see Table A1 in Appendix A for the specific values used).

Seven analysis models were utilized in this simulation study. First, we evaluated the
performance of the 2PL model for complete data (model CD). Second, we estimated
the Mislevy-Wu model assuming a common missingness parameter δ (model MM1;
Section 2.5). Third, we applied the method of scoring of missing items as wrong in model
UW. Fourth, in contrast to UW, missing item responses were ignored in the estimation in
model UO (Section 2.3). Fifth, we estimated the model with response propensity ξ relying
on latent ignorability (model MO2, Section 2.4). Furthermore, two imputation-based ap-
proaches were used that rely on the fully conditional specification approach implemented
in the R package mice [90]. For both approaches, five multiply imputed datasets were
utilized, and the 2PL models were estimated by using a stacked dataset containing all five
imputed datasets. Sixth, the model IF1 uses item responses in the imputation approach
that employs PMM. Seventh, the model IF2 uses item responses and response indicators
in the imputation model. To avoid multicollinearity issues, PLS imputation with 10 PLS
factors was applied for models IF1 and IF2.

The 2PL analysis models provided item difficulties and item discriminations and fixed
the ability distribution to the standard normal distribution. To enable a comparison of the
estimated mean and the standard deviation with the mean and the standard deviation of the
data-generating model, estimated item parameters were linked to the true item parameters
used in the data-generating model. As a result, a mean and a standard deviation as a result
of the linking procedure is compared to the true mean (i.e., M = 0) and the true standard
deviation (SD = 1). In this simulation, we applied Haberman linking [106,107] that is
equivalent to log-mean-mean linking for two groups [108]. Note that we use Haberman
linking for multiple groups (i.e., multiple countries) in the case study in Section 4.

A total number of 500 replications was carried out for each cell of the design. We
evaluated bias and root mean square error (RMSE) for the estimated mean and standard
deviation. We also assessed Monte Carlo standard errors for bias, and RMSE are calculated
based on the jackknife procedure [109,110]. Twenty jackknife zones were defined for the
computing of the Monte Carlo standard errors.

In this illustrative simulation study, the statistical software R [48] along with the
packages mice [90] and sirt [49] are used.

3.2. Results

In Table 1, the bias for the mean and the standard deviation for different missing
data treatments as a function of the missing proportion and the missingness parameter
δ is shown. In the case of complete data (CD), no biases exist. Except for the situation
of a large proportion of missing item responses of 30% and an extreme δ parameter of
−10 (bias = 0.054), the Mislevy-Model (model MM1)—that is consistent with the data-
generating model—performed very well in terms of bias for the mean and the standard
deviation. If missing data were only caused by wrong items (i.e., δ = −10), models that rely
on ignorability (UO, IF1) or latent ignorability (MO2, IF2) produced large biases (e.g., for the
mean in the condition of 10% missing data UO 0.159, MO2 0.149, IF1 0.160, IF2 0.152).
As was to be expected in this case, scoring missing item responses as wrong provided
unbiased results. In contrast, if the data-generating model relied on latent ignorability
(i.e., δ = 0), scoring missing item responses as wrong provided biased estimates (e.g., for the
mean for 10% missing data, the bias was −0.139). Note that in this condition, MO2 and
IF2 provided unbiased estimates, while the models that did not take response indicators
into account provided biased estimates (e.g., for the mean for 10% missing data: UO 0.037,
IF1 0.038).
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Table 1. Bias for the mean and the standard deviation for different missing data treatments as a
function of the missing proportion and the missingness parameter δ.

δ
Mean Standard Deviation

−10 −3 −2 −1 0 −10 −3 −2 −1 0

Model

5% missing data
CD 0.002 0.006 0.006 0.007 0.004 −0.005 −0.008 −0.009 −0.010 −0.007
MM1 0.005 0.005 0.006 0.008 0.007 −0.007 −0.007 −0.009 −0.010 −0.010
UW 0.002 −0.005 −0.022 −0.041 −0.065 −0.005 −0.004 0.003 0.006 0.005
UO 0.090 0.084 0.081 0.058 0.021 −0.040 −0.036 −0.039 −0.027 −0.015
MO2 0.085 0.077 0.071 0.044 0.005 −0.037 −0.032 −0.033 −0.021 −0.009
IF1 0.090 0.086 0.082 0.058 0.022 −0.039 −0.036 −0.039 −0.026 −0.014
IF2 0.088 0.082 0.078 0.052 0.008 −0.037 −0.034 −0.037 −0.025 −0.009

10% missing data
CD 0.005 0.006 0.005 0.005 0.008 −0.009 −0.009 −0.008 −0.008 −0.011
MM1 0.009 0.008 0.009 0.006 0.002 −0.011 −0.010 −0.012 −0.008 −0.007
UW 0.005 −0.022 −0.049 −0.083 −0.139 −0.009 0.000 0.004 0.005 0.015
UO 0.159 0.136 0.113 0.090 0.037 −0.090 −0.064 −0.047 −0.039 −0.023
MO2 0.149 0.123 0.103 0.075 0.006 −0.079 −0.052 −0.040 −0.035 −0.010
IF1 0.160 0.139 0.116 0.092 0.038 −0.089 −0.065 −0.047 −0.040 −0.022
IF2 0.152 0.132 0.109 0.083 0.012 −0.080 −0.057 −0.042 −0.038 −0.014

20% missing data
CD 0.004 0.005 0.002 0.004 0.004 −0.007 −0.009 −0.005 −0.008 −0.006
MM1 0.018 0.005 0.005 0.008 0.007 −0.017 −0.009 −0.009 −0.012 −0.011
UW 0.004 −0.072 −0.129 −0.198 −0.268 −0.006 0.005 0.014 0.019 0.022
UO 0.203 0.211 0.183 0.144 0.064 −0.148 −0.129 −0.095 −0.073 −0.038
MO2 0.203 0.210 0.175 0.115 0.005 −0.146 −0.126 −0.088 −0.053 −0.007
IF1 0.208 0.214 0.183 0.148 0.063 −0.147 −0.129 −0.091 −0.073 −0.033
IF2 0.212 0.211 0.183 0.126 0.010 −0.152 −0.121 −0.089 −0.059 −0.011

30% missing data
CD 0.008 0.006 0.004 0.004 0.006 −0.010 −0.008 −0.008 −0.009 −0.011
MM1 0.054 0.008 0.008 0.010 −0.005 −0.122 −0.012 −0.011 −0.013 −0.005
UW 0.006 −0.159 −0.225 −0.298 −0.363 −0.009 0.021 0.018 0.014 0.002
UO 0.198 0.238 0.226 0.179 0.070 −0.211 −0.165 −0.132 −0.094 −0.042
MO2 0.192 0.239 0.228 0.159 0.001 −0.213 −0.165 −0.133 −0.083 −0.008
IF1 0.208 0.244 0.231 0.183 0.074 −0.210 −0.165 −0.134 −0.092 −0.039
IF2 0.202 0.247 0.233 0.168 0.010 −0.211 −0.166 −0.130 −0.086 −0.013

Note. CD = complete-data analysis ; UW = scoring as wrong (Section 2.1) ; MM1 = Mislevy-Wu model with com-
mon d parameter (Section 2.5, Equation (14)); UO = ignoring missing item responses (Section 2.3); MO2 = model-
based latent ignorability (Section 2.4, Equations (10) and (11); IF1 = FCS imputation based on item responses
(Section 2.6); IF2 = FCS imputation based on item responses and response indicators (Section 2.6); Absolute biases
values larger than 0.03 are printed in bold.

For values of the missingness parameter δ between −10 and 0, both missing data treat-
ments as wrong and latent ignorable provided biased estimates for the mean. The biases
were much more pronounced for higher missing data proportions. Moreover, the standard
estimation is substantially underestimated when relying on a model for latent ignorabil-
ity if the latent ignorability was not used for simulating item responses. Interestingly,
the imputation model IF2 that uses both item responses and response indicators showed
similar behavior to the model MO2 that involves the latent response propensity ξ, while
the imputation model IF1 only using item responses performed similarly to UO. The stan-
dard deviation was underestimated in many conditions for the models assuming latent
ignorability if the Mislevy-Wu model holds.

The Monte Carlo standard errors for the bias of the mean (M = 0.0023, SD = 0.0005,
Max = 0.0044) were similar to those of the standard deviation (M = 0.0022, SD = 0.0005,
Max = 0.0038). The uncertainty in the bias estimates is negligible to the variation across
different missing data treatments. Hence, the conclusions obtained from this simulation
study can be considered trustworthy.

In Table A2 in Appendix A, the RMSE for the mean and the standard deviation for the
different missing data treatments are shown as a function of the missing data proportion
and the missingness parameter δ. In situations where the models UW or MO2 provided
unbiased estimates, the Mislevy-Wu model MM1 has slightly larger variable estimates.
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However, only in these particular situations, the RMSE of the simpler restrictive models
was smaller than those of MM1. In general situations, the increase in variability was
outperformed by a lower bias of model MM1. The Monte Carlo standard error for the
RMSE of the mean was on average 0.0023 (SD = 0.0006, Max = 0.0044). The corresponding
Monte Carlo error for the RMSE of the standard deviation turned out to be quite similar
(M = 0.0023, SD = 0.0007, Max = 0.0042).

3.3. Summary

In this illustrative simulative study, we showed that one could not generally conclude
that missing items must never be scored wrong. Moreover, models that treat missing item
responses as latent ignorable do not guarantee a smaller bias compared to the scoring as
wrong. In general, the scoring as wrong can provide negatively biased mean estimates,
while the treatment as latent ignorable will typically provide positively biased estimates.

As with any simulation study, the data-generating truth must be known in advance
which is not the case in any empirical application. The Mislevy-Wu model is a general
model for treating nonignorable missing item responses. It certainly has the potential to
provide less biased estimates than alternatives recently discussed in the literature.

4. PISA 2018 Mathematics Case Study: Method
4.1. Sample

The mathematics test in PISA 2018 [16] was used to investigate different treatments
of missing item responses. We included 45 countries that did receive the main test in a
computer-based administration. These countries did not receive test booklets with items of
lower difficulty that were included for low-performing countries.

In total, 72 test booklets were administered in the computer-based assessment in PISA
2018 [16]. Test booklets were compiled from four clusters of items of the same ability
domain (i.e., mathematics, reading, science). We selected only booklets which had two item
clusters of mathematics items. We took booklets from students that had two item clusters
containing mathematics items. Students from booklets 1 to 12 were selected. The cluster of
mathematics items appeared either at the first and second (booklets 7 to 12) or the third
and fourth positions (booklets 1 to 6) in the test.

As a consequence, 70 mathematics items were included in our analysis. In each of the
selected booklets, 22, 23, or 24 mathematics items were administered. Seven of the 70 items
were polytomous and were dichotomously recoded, with only the highest category being
recoded as correct. In total, 27 out of 70 items had the complex multiple-choice (MC)
format, and 43 items had constructed-response (CR) format. For 18 MC items, there were
4 response alternatives, 4 MC items had 8 response alternatives, and 5 MC items had
16 response alternatives.

In Table 2, descriptive statistics for the sample used in our analysis are presented.
In total, 167,092 students from these 45 countries were included in the analysis. On average,
M = 3713.2 students were available in each country. The average number of students
per item within each country ranged between 415.8 (MLT, Malta) and 4408.3 (ESP, Spain).
On average, M = 1120.3 students per item were available at the country level.

The average proportion of missing item responses in the dataset was 8.4% (SD = 3.3%)
and ranged between 1.2% (MYS, Malaysia) and 18.8% (BIH; Bosnia and Herzegovina).
The proportion of not reached item responses was on average 2.4% (SD = 1.0%) with the
maximum of 5.9% (SWE, Sweden). Interestingly, the missing data proportions and the
country means were only moderately correlated (Cor = −0.48). Missing proportions for
CR items were substantially larger (M = 12.3%, SD = 4.8%, Min = 1.5%, Max = 27.9%)
than for MC items (M = 2.3%, SD = 1.0%, Min = 0.7%, Max = 5.4%). Figure 2 shows
the distribution of the proportion of missing and not reached items at the student level
aggregated across countries. Most students produced no missing items (i.e., 61.9%) or no
not reached items (i.e., 90.2%).
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Table 2. Descriptive statistics of the PISA 2018 mathematics sample.

Country N I Nitem MOECD SDOECD Mstand %NA %NR %NACR %NAMC

ALB 2609 69 787.0 438.0 83.4 446.0 8.0 1.9 11.4 2.6
AUS 7705 70 2367.1 491.7 92.9 501.8 7.3 2.4 10.3 2.5
AUT 3731 70 1133.7 499.1 92.7 509.6 8.4 1.8 12.5 2.0
BEL 4696 70 1393.0 507.8 95.6 518.6 8.3 2.6 11.9 2.5
BIH 3512 70 1071.0 406.5 82.0 413.1 18.8 3.9 27.9 4.2
BLR 3141 70 967.8 470.7 92.4 480.0 7.8 2.4 11.4 2.1
BRN 2812 69 845.0 430.6 91.3 438.2 6.1 1.7 8.8 1.8
CAN 9782 70 2786.3 511.7 92.4 522.7 5.8 2.2 8.2 2.1
CHE 3141 70 964.5 514.5 93.4 525.6 8.2 2.5 11.9 2.2
CZE 3798 70 1164.0 498.5 93.4 509.0 9.2 2.0 13.9 1.9
DEU 3000 70 908.6 499.0 95.9 509.5 9.6 2.5 14.0 2.4
DNK 4354 70 1250.1 510.7 81.3 521.7 5.9 2.0 8.6 1.7
ESP 14,768 70 4408.3 481.7 88.3 491.5 10.6 2.9 15.5 2.7
EST 2880 70 890.9 523.8 81.6 535.3 6.6 2.0 9.6 1.8
FIN 3056 70 935.0 505.7 83.3 516.4 8.9 3.0 12.8 2.7
FRA 3405 70 1046.8 495.5 92.2 505.8 10.1 3.0 14.8 2.6
GBR 7063 70 2174.0 502.1 92.9 512.7 8.2 2.5 11.8 2.5
GRC 2634 70 790.4 451.1 89.5 459.6 10.7 2.7 15.7 2.6
HKG 2484 70 748.0 551.0 92.5 563.5 3.9 0.8 5.8 0.8
HRV 2683 70 805.2 464.5 87.1 473.6 11.8 2.7 17.6 2.5
HUN 2785 70 857.4 482.3 91.2 492.0 8.6 2.0 13.0 1.7
IRL 3031 70 935.5 500.2 78.1 510.7 5.8 1.3 8.7 1.2
ISL 1807 70 545.1 493.8 90.8 504.1 9.7 4.4 12.9 4.5
ISR 2825 70 846.6 464.0 107.5 473.0 12.1 4.5 16.9 4.5
ITA 6401 70 1978.9 485.9 94.0 495.8 12.4 2.8 18.9 2.1
JPN 3302 70 1018.6 527.4 87.1 539.1 8.4 1.9 12.9 1.4
KOR 2741 70 823.1 525.9 100.4 537.5 6.4 1.7 9.4 1.6
LTU 2824 70 846.3 480.1 90.0 489.8 7.4 1.5 11.4 1.1
LUX 2827 70 872.0 481.3 98.6 491.0 10.4 2.8 15.3 2.7
LVA 2190 70 656.4 498.5 80.5 509.0 6.4 1.7 9.7 1.1
MLT 1383 69 415.8 469.5 101.6 478.8 9.8 3.9 13.5 3.6
MNE 3595 70 1109.7 430.8 83.0 438.4 17.3 3.8 25.9 3.5
MYS 3284 70 1000.8 440.2 82.0 448.2 1.2 0.6 1.5 0.7
NLD 2939 70 742.6 518.4 92.9 529.7 4.4 1.1 6.7 0.9
NOR 3141 70 969.5 502.4 90.3 513.0 10.7 3.7 15.1 3.7
NZL 3309 70 1021.2 495.6 93.0 506.0 8.1 2.2 11.7 2.3
POL 3022 70 932.6 515.8 90.5 526.9 7.1 1.9 10.7 1.3
PRT 3202 70 987.6 493.1 96.2 503.3 10.6 2.8 15.8 2.3
RUS 3131 70 939.3 487.8 87.4 497.8 7.9 2.2 11.6 2.1
SGP 2732 70 822.3 570.3 93.3 583.6 2.7 0.8 3.8 0.8
SVK 2514 70 727.9 484.6 100.1 494.5 8.0 1.8 11.9 1.7
SVN 3519 70 1054.7 509.5 88.7 520.4 7.1 1.5 10.7 1.4
SWE 2982 70 918.7 502.8 90.3 513.4 12.7 5.9 17.3 5.4
TUR 3723 70 1147.8 453.4 87.4 462.0 6.7 1.6 9.7 1.8
USA 2629 70 804.9 478.0 92.4 487.6 4.0 2.0 5.2 1.9

Note. N = number of students; I = number of items; Nitem = average number of students per item; NOECD = officially reported country mean
by OECD [16]; MOECD = officially reported country standard deviation by OECD [16]; Mstand = standardized country mean (M = 500 and
SD = 100 in total population); %NA = proportion of item responses with missing data; %NR = proportion of item responses that are not
reached; %NACR = proportion of constructed-response item responses with missing data; %NAMC = proportion of multiple-choice item
responses with missing data; Missing item response rates larger than 10.0% and smaller than 5.0% are printed in bold. Missing rates for not
reached responses larger than 3.0% are printed in bold. See Appendix B for country labels.
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Figure 2. Frequency distribution of missing item responses (left panel) and not reached items at the student level
(right panel).

4.2. Scaling Models

The different scaling models for treating missing item responses are compared for
the PISA 2018 mathematics data for country means and country standard deviations.
To compare the parameters of ability distributions across countries, different strategies are
considered viable in the literature. These strategies will typically provide different results
in the presence of differential item functioning between countries (country DIF; [111–114]).
In this situation, item parameters vary across countries, they are not invariant across
countries. First, the noninvariance can be ignored in the scaling model. A misspecified
model assuming invariant item parameters is purposely specified [114–118]. Second,
scaling is conducted under partial invariance in which only a portion of item parameters is
allowed to differ across countries [13,16,119–122]. Third, a hierarchical model is utilized
as the scaling model in which country-specific item parameters are modeled as random
effects [111,123,124]. Fourth, the scaling models are separately applied for each country
in the first step. In a second step, a common metric is established by applying a linking
procedure that transforms item parameters and the ability distribution [108,118,125].

In our analysis, we use the linking approach relying on separate scalings for comparing
the ability distribution across countries. We opted for this strategy for the following reasons.
First, it is likely that the missingness mechanisms differ across countries [126]. Hence,
in a model-based approach to treating missing item responses, it does not seem justified
to assume invariant model parameters for the missingness mechanism across countries.
Second, it has been shown in the presence of country DIF that a misspecified scaling
model assuming invariant item parameters provides more biased parameter estimates than
those obtained from the linking approach [127]. Third, large models that concurrently
scale all countries (assuming full invariance or partial invariance) are less robust to model
deviations. Fourth, we argued elsewhere that the partial invariance approach currently
used in PISA results in invalid country comparisons because the comparisons of each
pair of countries essentially rely on different sets of items [26,114,118]. Fifth, the linking
approach is computationally much less demanding than concurrent scaling approaches
(assuming invariance or partial invariance; see [118,125,128]).
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As argued above, the scalings the analysis of our PISA 2018 mathematics case study
are carried out separately for each country c. That is, one obtains country-specific item
parameters aic and bic:

P(Xpci = 1|θpc) = Ψ(aic(θpc − bic)) , θpc ∼ N(0, 1) . (17)

Sampling weights were always used when applying the scaling model (17) to the
PISA 2018 dataset. To enable the comparability of the ability distribution across countries,
the obtained item discriminations aic and item difficulties bic are transformed on a common
in a subsequent linking step (see Section 4.3) for details.

For the PISA 2018 mathematics data, the scaling models discussed in Section 2 are
applied. An overview of the specified models with brief explanations is given in Table 3.
Some of the models required particular adaptations that are described in the two following
subsections.

Table 3. Overview of 19 specified scaling models for the treatment of missing item responses in the PISA 2018 mathematics
case study.

Model Ref. Description

UW Section 2.1 response indicators unmodeled: scoring as wrong
MW Section 2.5 model-based treatment: treatment as wrong in the Mislevy-Wu model by setting ρi = −10 in Equation (14)
IW Section 2.5 imputation-based treatment on the IRT model MW: imputation as wrong based on the Mislevy-Wu model and setting ρi = −10

in Equation (14)
UP Section 2.2 response indicators unmodeled: multiple-choice items scored as partially correct
IP Section 2.2 imputation-based treatment: multiple-choice items imputed with probabilities 1/Ki , for correct response where Ki is the num-

ber of response alternatives
UN1 Section 4.2.1 response indicators unmodeled: not reached items ignored in the scaling model
UN2 Section 4.2.1 response indicators unmodeled: proportion of not reached items included as a predictor in the latent background model
UO1 Section 2.3 response indicators unmodeled: missing item responses ignored in the scaling model
MO1 Section 2.4 model-based treatment: model-based ignorability specified as the Mislevy-Wu model with δi = 0 and Cor(θ, ξ)= 0
IO1 Section 2.4.1 imputation-based treatment on the IRT model MO1
UO1 Sections 2.3 and 4.2.1 response indicators unmodeled: including proportion of missing item responses in the latent background model
MO2 Section 2.4 model-based treatment: model-based latent ignorability specified as the Mislevy-Wu model with δi = 0
IO2 Section 2.4.1 imputation-based treatment on the IRT model MO2
MM1 Section 2.5 model-based treatment: Mislevy-Wu model with common δi parameter
IM1 Section 2.4.1 imputation-based treatment on the IRT model MM1
MM2 Section 2.5 model-based treatment: Mislevy-Wu model with item-format specific δi parameter
IM2 Section 2.4.1 imputation-based treatment on the IRT model MM2
IF1 Sections 2.6 and 4.2.2 imputation-based treatment on fully conditional specification: using predictive mean matching for item responses Xp sepa-

rately for each test booklet
IF2 Sections 2.6 and 4.2.2 imputation-based treatment on fully conditional specification: using predictive mean matching for item responses Xp and

response indicators Rp separately for each test booklet

Note. Ref. = reference in this article.

4.2.1. Treating Not Reached Items as Ignorable or in the Latent Background Model

Since PISA 2015, not reached items are no longer scored as wrong [13]. To investigate
this scaling method, we ignored not reached items in the scaling model but scored omitted
items as wrong (model UN1). We also implemented the operational practice since PISA
2015 [13] that includes the proportion of not reached item response as a predictor in the
latent background model (model UN2; [12,129]). This second model is similar to assuming
latent ignorability when the response indicators for not reached items follow a 1PL model.

4.2.2. Imputation Models Based on Fully Conditional Specification

In Section 2.6, we introduced the FCS imputation models IF1 and IF2 that used Xp and
(Xp, Rp) in the imputation, respectively. Previous research indicated that item parameters
are affected by position effects [130–137]. Hence, in our analysis, the FCS imputation
models IF1 and IF2 are separately applied for each test booklet. In general, missing item
responses at the end of a test booklet will be less likely imputed with a correct scoring (i.e.,
Xpi = 1) than missing item responses at the beginning of a test booklet. As the sample size
for each country in each test booklet can be quite low, using PLS regression for dimension
reduction of the covariates in the imputation models is vital.
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4.3. Linking Procedure

The scaling models described above resulted in country-specific item discriminations
aic and item difficulties bic. To enable a comparison of country means and country standard
deviations, the corresponding ability distributions can be obtained by linking approaches
that establish a common ability metric [108,138]. In this article, Haberman linking [107] in
its original proposal is used. The linking procedure produces country means and standard
deviations as its outcome. To enable a comparisons across the 19 specified different scaling
models, the ability distributions were linearly transformed such that the total population
involving all students in all countries in our study has a mean M = 500 and a standard
deviation SD = 100 (i.e., the so-called PISA metric). More formally, for each model m and
each country c, there is a linear transformation θ 7→ tmc(θ) = ν0mc + ν1mcθ that transforms
the country-specific ability distributions obtained from separate scaling to the PISA metric.

4.4. Model Comparisons

It is of particular interest whether the Mislevy-Wu model (MM1 and MM2) outper-
forms other treatments of missing item responses such as the scoring as wrong (model MW)
and latent ignorable (models MO1 and MO2). The Bayesian information criterion (BIC) is
used for conducting model comparisons ([33]; see also [16,120,121,139] for similar model
comparisons in PISA, but [140–142] for improved information criteria in complex surveys).
Moreover, the Gilula–Haberman penalty (GHP; [143–145]) is used as an effect size that is
relatively independent of the sample size and the number of items. The GPH is defined
as GHP = AIC/(2 ∑N

p=1 Ip), where Ip is the number of estimated model parameters for
person p and AIC is the Akaike information criterion. For example, if 20 out of 70 items
were administered to person p in a test, Ip would be 40 in the 2PL model. If a student
worked on all 70 items in the test, Ip would be 140. Note that the GHP can be considered a
normalized variant of the AIC. A difference in GHP larger than 0.001 is declared a notable
difference in model fit [145,146].

It might be questioned whether information criteria AIC (for the GHP criterion)
and BIC might be appropriate for datasets (Xpi, Rpi) consisting of item responses and
response indicators with missing data on item responses Xpi (see [147–150]). As was
argued in Section 1, there are two types of missing item responses in large-scale assessment
datasets. First, item responses can be missing for a student because only a portion of items
was administered in a test booklet in the multi-matrix test design [16]. Second, missing
item responses appear due to item omissions to administered items. The latter type of
missingness is the main topic of this article.

It has been demonstrated in Section 2.5 (see Equation (15)) that for each item i, obser-
vations (Xpi, Rpi) can be regarded as a random variable Vpi with three categories: Category
0 (Vpi = 0): Xpi = 0, Rpi = 1, Category 1 (Vpi = 1): Xpi = 1, Rpi = 1, and Category 2
(Vpi = 2): Xpi = NA, Rpi = 0. The dataset with observations Vpi does not contain miss-
ing values, and the Mislevy-Wu model can be formulated as a function of Vpi instead of
(Xpi, Rpi). As the former dataset does not contain missing values, model selection based on
information criteria might be justified for item omissions because no missing data occurs
for the redefined variables. However, it might still be questioned whether information
criteria AIC and BIC remain valid when applied to multi-matrix designs. In this case, the
number of effectively estimated item parameters per student is lower than those obtained
when all items would be administered in a test booklet. In our opinion and our limited
experience obtained in an unpublished simulation study, it could be that AIC and BIC
show inferior performance for multi-matrix designs compared to the complete-data case.
Note also that most educational large-scale assessment studies also apply the conventional
information criteria without adaptations (e.g., [121,139,151–154]).

We would like to point out that BIC and GHP are only applied for the model-based
treatment scaling models and not to the scaling models that rely on multiply imputed
datasets (see [155]).
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4.5. Computation of Standard Errors

In the PISA study, statistical inference is typically conducted with the balanced re-
peated replication methodology to account for stratified clustered sampling within coun-
tries [16,156]. The rth replication sample uses a modified set of person sampling weights
w(r)

p . Using R = 80 replication samples in PISA, a parameter of interest is computed for the
original sample (i.e., γ̂) based on student weights wp. Moreover, the analysis is repeated in

each replication sample using sampling weights w(r)
p , resulting in parameter estimates γ̂(r).

The standard error for γ̂ is then calculated as [16]

SE(γ̂) =

√√√√A
R

∑
r=1

(γ̂(r) − γ̂)2, (18)

where the scaling factor A equals 0.05 in the PISA replication design. In our analysis, we
are interested in standard errors for country means. The standard error is first determined
for the country mean obtained in country-specific scaling models. Each scaling model
provides a person-specific individual posterior distribution hp(θt|Xp, Rp) for a discrete
grid θt (t = 1, . . . , T) of θ points (e.g., for T = 21 integration points, a discrete θ grid
θ1 = −5, . . . , θ21 = 5 can be chosen). These posterior distributions reflect the subject-
specific uncertainty with respect to the estimated ability. The country means have to be
computed in the transformed metric (see Section 4.3). Hence, one uses the transformed
grid ν0mc + ν1mcθt (t = 1, . . . , T) for determining the country mean. For the rth replication
sample, the mean γ̂(r) is determined as

γ̂(r) =

N

∑
p=1

w(r)
p

T

∑
t=1

hp(θt|Xp, Rp)(ν0mc + ν1mcθt)

∑N
p=1 w(r)

p

. (19)

Note that this approach is a numerical approximation technique that coincides with
the plausible value technique [129] when a large number of plausible values would be used.
The standard error for γ̂ can be computed using (18). In our analysis, we are also interested
in determining the statistical inference of a difference in means for a particular country
resulting from different models. It is not appropriate to compute the standard errors for
the means of the different models and to apply the t-test for a mean difference relying on
independent samples because two models are applied to the same dataset resulting in
highly dependent parameter estimates. However, the replication technique in Equation (18)
can also be applied for the difference in means. One must only compute a mean difference
in each replication sample in this case.

5. PISA 2018 Mathematics Case Study: Results
5.1. Similarity of Scaling Models

Each of the 19 scaling models provided a set of country means. For each country,
the absolute difference of two means of a country stemming from a pair of two models can
be computed. Table 4 summarizes the average absolute differences. Scaling models that
resulted in an average absolute difference of at most 1.0 can be considered similar. In Table 4,
groups of models are grayed in the rectangles containing the absolute differences classified
as similar. Table 4 indicates that the methods that treat missing item responses as wrong
(UW, MW, IW) or treat MC items as partially correct (UP, IP) resulted in similar country
mean estimates. Both methods that did not score nor reached item responses as wrong
(UN1, UN2) resulted in relatively similar estimates. The models that rely on ignorability
(UO1, MO1, IO1) or latent ignorability (MO2, UO2, IO2) provided similar estimates. In line
with previous research [18], the inclusion of the latent response propensity ξ did not result
in strongly different estimates of country means compared to models that ignore missing
item responses. The specifications of the Mislevy-Wu model (MM1, IM1, MM2, IM2)
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resulted in similar country means. Interestingly, country means from the Mislevy-Wu
model were more similar to the treatment of missing item responses as wrong than those
that relied on ignorability or latent ignorability. Finally, the scaling model based on FCS
imputation involving only item responses (IF1) was similar to the models assuming (latent)
ignorability (UO1, MO1, IO1, MO2, UO2, IO2). FCS imputation involving item responses
and response indicators different from the imputed item (IF2) were neither similar to the
ignorability-based treatment nor the scoring as wrong or the Mislevy-Wu model. This
finding could be explained by the fact that the imputation method IF2 is based on strongly
opposing assumptions of the missingness mechanism than the Mislevy-Wu model.

Table 4. Average absolute differences in country means of different treatments of missing item responses.

UW MW IW UP IP UN1 UN2 UO1 MO1 IO1 MO2 UO2 IO2 MM1 IM1 MM2 IM2 IF1 IF2
UW — 0.3 0.0 0.7 0.8 1.9 1.7 3.0 3.0 3.0 2.6 2.8 2.6 1.4 1.5 1.6 1.5 3.0 2.8
MW 0.3 — 0.3 0.9 0.9 2.0 1.7 3.0 3.0 3.0 2.7 2.8 2.6 1.4 1.6 1.6 1.6 3.1 2.8
IW 0.0 0.3 — 0.7 0.8 1.9 1.7 3.0 3.0 3.0 2.6 2.8 2.6 1.4 1.5 1.6 1.5 3.0 2.8
UP 0.7 0.9 0.7 — 0.3 1.4 1.5 2.7 2.7 2.7 2.4 2.4 2.3 1.1 1.2 1.3 1.2 2.7 2.6
IP 0.8 0.9 0.8 0.3 — 1.5 1.5 2.7 2.7 2.7 2.4 2.4 2.3 1.2 1.2 1.4 1.3 2.7 2.6
UN1 1.9 2.0 1.9 1.4 1.5 — 1.0 2.1 2.1 2.1 2.0 1.8 1.9 1.0 1.0 0.9 0.9 2.2 2.6
UN2 1.7 1.7 1.7 1.5 1.5 1.0 — 2.4 2.5 2.5 2.0 2.2 2.0 1.4 1.4 1.2 1.3 2.6 2.7
UO1 3.0 3.0 3.0 2.7 2.7 2.1 2.4 — 0.0 0.2 0.7 0.3 0.6 2.5 2.5 2.2 2.3 0.7 1.9
MO1 3.0 3.0 3.0 2.7 2.7 2.1 2.5 0.0 — 0.2 0.7 0.4 0.7 2.5 2.5 2.2 2.3 0.7 1.9
IO1 3.0 3.0 3.0 2.7 2.7 2.1 2.5 0.2 0.2 — 0.7 0.4 0.7 2.6 2.5 2.3 2.4 0.8 1.9
MO2 2.6 2.7 2.6 2.4 2.4 2.0 2.0 0.7 0.7 0.7 — 0.6 0.4 2.2 2.3 1.8 2.0 1.0 1.8
UO2 2.8 2.8 2.8 2.4 2.4 1.8 2.2 0.3 0.4 0.4 0.6 — 0.5 2.3 2.2 2.0 2.1 0.8 1.8
IO2 2.6 2.6 2.6 2.3 2.3 1.9 2.0 0.6 0.7 0.7 0.4 0.5 — 2.2 2.2 1.8 2.0 1.0 1.8
MM1 1.4 1.4 1.4 1.1 1.2 1.0 1.4 2.5 2.5 2.6 2.2 2.3 2.2 — 0.4 0.6 0.5 2.6 2.7
IM1 1.5 1.6 1.5 1.2 1.2 1.0 1.4 2.5 2.5 2.5 2.3 2.2 2.2 0.4 — 0.8 0.7 2.6 2.6
MM2 1.6 1.6 1.6 1.3 1.4 0.9 1.2 2.2 2.2 2.3 1.8 2.0 1.8 0.6 0.8 — 0.4 2.3 2.5
IM2 1.5 1.6 1.5 1.2 1.3 0.9 1.3 2.3 2.3 2.4 2.0 2.1 2.0 0.5 0.7 0.4 — 2.4 2.5
IF1 3.0 3.1 3.0 2.7 2.7 2.2 2.6 0.7 0.7 0.8 1.0 0.8 1.0 2.6 2.6 2.3 2.4 — 1.9
IF2 2.8 2.8 2.8 2.6 2.6 2.6 2.7 1.9 1.9 1.9 1.8 1.8 1.8 2.7 2.6 2.5 2.5 1.9 —

Note. Mean absolute differences smaller or equal than 1.0 are printed in bold.

5.2. Model Comparisons

From Table 5, we can see that for the majority of countries (35 out of 45), the IRT model
treating missing item responses as wrong (model MW) provided a better model fit in terms
of BIC than modeling it with a latent propensity (model MO2). For 39 out of 45 countries,
the Mislevy-Wu model with item-format specific ρ parameters (model MM2) was preferred.
In 5 out of 45 countries, the Mislevy-Wu model with one common ρ parameter (MM1)
was the best-fitting model. Only in one country (MYS), the model treating missing item
responses as wrong had the best model fit.

For 29 out of 45 countries, the proposed Mislevy-Wu model outperformed the sug-
gested model with a latent response propensity in terms of a GHP difference of at least
0.001. Overall, these findings indicated that the models assuming ignorability or latent
ignorability performed worse in terms of model fit compared to scaling models that
acknowledge the dependence of responding to an item from the true but occasionally
unobserved item response.

5.3. Country-Specific Model Parameters for Latent Ignorable Model and Mislevy-Wu Model

Now, we present findings of model parameters characterizing the missingness mech-
anism from the model MO2 relying on latent ignorability and the Mislevy-Wu model
MM2. The parameters are shown in Table 6. The SD of the latent response propensity
SD(ξ)was somewhat lower in the Mislevy-Wu model (MM2, with a median Med = 1.98)
than the model assuming latent ignorability (MO2, Med = 1.93). Moreover, by additionally
including the latent item response as a predictor for the response indicator, the correlation
Cor(θ, ξ) between the latent ability θ and response propensity ξ was slightly lower in
model MM2 (Med = 0.43) than MO2 (Med = 0.46). Most importantly, the missingness
mechanism strongly differed between CR and MC items. The median δ parameter in model
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MM2 for CR items was −2.61, indicating that students that did not know the item had
a higher probability of omitting the item even after controlling for the latent response
propensity ξ. In contrast, the median δ parameter was −0.48. Hence, there was a smaller
influence of (latently) knowing the item with the response indicators. However, it was
different from zero for most countries, indicating that the model MO2 assuming latent
ignorability did not adequately explain the missingness mechanism. Overall, it can be seen
that those model parameters strongly vary across countries. Hence, it can be concluded
that assuming different missingness mechanisms for countries could have non-negligible
consequences for country rankings (see [126]).

Table 5. Model comparisons based on the Bayesian information crierion (BIC) and the Gilula–Haberman penalty (GHP).

Country
BIC GHP

MW MO1 MO2 MM1 MM2 MW MO1 MO2 MM1 MM2 Diff

ALB 63663 63754 63600 63579 63586 0.6423 0.6433 0.6416 0.6414 0.6414 0.0003
AUS 193304 194008 193316 193145 193105 0.6321 0.6344 0.6321 0.6315 0.6314 0.0007
AUT 97019 97685 97174 97007 96993 0.6618 0.6664 0.6628 0.6616 0.6615 0.0013
BEL 118264 119131 118426 118236 118186 0.6665 0.6715 0.6675 0.6664 0.6660 0.0014
BIH 98447 98779 98534 98371 98359 0.7101 0.7125 0.7107 0.7095 0.7093 0.0014
BLR 82460 82729 82564 82455 82396 0.6509 0.6531 0.6517 0.6508 0.6503 0.0014
BRN 62751 62864 62756 62715 62719 0.5925 0.5936 0.5925 0.5921 0.5921 0.0005
CAN 213551 214215 213549 213382 213268 0.6316 0.6336 0.6316 0.6311 0.6307 0.0009
CHE 84792 85329 84940 84777 84743 0.6724 0.6768 0.6736 0.6722 0.6719 0.0017
CZE 102441 102838 102508 102382 102301 0.6780 0.6807 0.6784 0.6776 0.6770 0.0015
DEU 79134 79714 79219 79118 79102 0.6729 0.6779 0.6736 0.6727 0.6725 0.0011
DNK 97368 97632 97328 97270 97277 0.6232 0.6249 0.6229 0.6225 0.6225 0.0004
ESP 377203 378998 377528 377027 376832 0.6844 0.6877 0.6850 0.6841 0.6837 0.0013
EST 74697 74921 74716 74639 74623 0.6384 0.6404 0.6386 0.6379 0.6377 0.0009
FIN 80421 80504 80386 80315 80228 0.6602 0.6609 0.6599 0.6592 0.6585 0.0014
FRA 92877 93593 93019 92868 92833 0.6820 0.6874 0.6830 0.6819 0.6816 0.0015
GBR 181680 182770 181704 181518 181471 0.6457 0.6496 0.6458 0.6451 0.6449 0.0009
GRC 68339 68606 68485 68317 68269 0.6814 0.6841 0.6829 0.6811 0.6805 0.0023
HKG 57050 57459 57113 57054 57048 0.5965 0.6009 0.5972 0.5965 0.5964 0.0008
HRV 70685 71044 70791 70679 70669 0.6927 0.6963 0.6937 0.6926 0.6924 0.0013
HUN 72125 72492 72187 72080 72060 0.6437 0.6470 0.6442 0.6432 0.6430 0.0013
IRL 77409 77712 77432 77381 77369 0.6323 0.6349 0.6325 0.6320 0.6319 0.0006
ISL 48098 48071 48043 48006 47965 0.6782 0.6779 0.6774 0.6768 0.6761 0.0013
ISR 62551 62964 62675 62531 62520 0.6771 0.6817 0.6785 0.6768 0.6766 0.0018
ITA 179041 180275 179253 178956 178914 0.6951 0.6999 0.6959 0.6947 0.6945 0.0014
JPN 87938 88375 87998 87917 87858 0.6606 0.6639 0.6610 0.6604 0.6599 0.0012
KOR 65114 65613 65110 65067 65066 0.6229 0.6278 0.6229 0.6224 0.6223 0.0005
LTU 68816 69098 68893 68797 68788 0.6411 0.6439 0.6419 0.6409 0.6408 0.0011
LUX 79066 79552 79236 79051 79033 0.6933 0.6976 0.6948 0.6931 0.6929 0.0019
LVA 53764 53922 53754 53731 53728 0.6441 0.6461 0.6439 0.6436 0.6435 0.0005
MLT 33418 33625 33404 33370 33371 0.6325 0.6367 0.6323 0.6315 0.6314 0.0008
MNE 103907 104412 104044 103857 103833 0.7174 0.7210 0.7183 0.7170 0.7168 0.0016
MYS 66244 66271 66256 66246 66253 0.5042 0.5045 0.5043 0.5042 0.5042 0.0001
NLD 50077 50286 50125 50063 50055 0.5869 0.5895 0.5875 0.5867 0.5865 0.0010
NOR 86955 87260 87005 86842 86802 0.6859 0.6884 0.6863 0.6850 0.6846 0.0017
NZL 87003 87519 87077 86965 86951 0.6514 0.6554 0.6520 0.6511 0.6509 0.0010
POL 78675 78987 78675 78616 78599 0.6441 0.6468 0.6441 0.6436 0.6434 0.0007
PRT 89473 89900 89627 89457 89322 0.6933 0.6967 0.6945 0.6931 0.6920 0.0025
RUS 78318 78563 78384 78290 78262 0.6588 0.6610 0.6594 0.6586 0.6583 0.0011
SGP 58480 58724 58515 58466 58466 0.5576 0.5600 0.5579 0.5574 0.5573 0.0006
SVK 59699 59958 59788 59692 59671 0.6593 0.6622 0.6602 0.6591 0.6588 0.0014
SVN 88287 88818 88451 88292 88245 0.6518 0.6558 0.6530 0.6518 0.6514 0.0016
SWE 86292 86416 86272 86145 86037 0.7188 0.7199 0.7187 0.7175 0.7166 0.0021
TUR 96064 96326 96230 96041 96032 0.6412 0.6430 0.6423 0.6410 0.6409 0.0014
USA 61234 61223 61167 61154 61147 0.5806 0.5806 0.5800 0.5798 0.5797 0.0003

Note. BIC values for best-performing model printed in bold. GHP differences (column “Diff”) between models MO2 and MM2 larger than
0.001 printed in bold. See Appendix B for country labels.
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Table 6. Model parameters from the latent ignorable model (MO2) and the Mislevy-Wu Model (MM2).

Country
MO2 MM2

SD(ξ) Cor(θ, ξ) SD(ξ) Cor(θ, ξ) δCR δMC

ALB 2.50 0.42 2.47 0.44 −1.23 −0.91
AUS 2.59 0.46 2.52 0.46 −2.31 −0.71
AUT 1.90 0.54 1.79 0.49 −3.42 −1.01
BEL 1.92 0.56 1.83 0.51 −3.10 −0.43
BIH 1.87 0.40 1.82 0.43 −2.12 −0.53
BLR 1.81 0.35 1.79 0.29 −2.95 0.43
BRN 2.21 0.33 2.17 0.33 −2.08 −1.08
CAN 2.30 0.44 2.26 0.41 −2.37 −0.09
CHE 1.91 0.50 1.83 0.44 −3.12 −0.46
CZE 1.73 0.43 1.68 0.35 −2.46 0.46
DEU 1.91 0.57 1.80 0.53 −2.63 −0.48
DNK 2.25 0.43 2.19 0.43 −1.73 −1.32
ESP 1.83 0.47 1.77 0.45 −2.45 −0.01
EST 2.10 0.41 2.06 0.36 −2.43 −0.35
FIN 1.99 0.31 2.00 0.28 −2.22 0.57
FRA 1.85 0.57 1.74 0.52 −3.19 −0.52
GBR 2.48 0.57 2.38 0.56 −2.26 −0.41
GRC 1.80 0.33 1.78 0.30 −3.59 −0.24
HKG 2.34 0.60 2.22 0.52 −4.07 −0.67
HRV 1.89 0.46 1.83 0.45 −2.99 −0.64
HUN 2.17 0.49 2.11 0.45 −2.48 −0.15
IRL 1.97 0.47 1.91 0.44 −2.23 −0.01
ISL 2.35 0.22 2.36 0.23 −2.00 0.06
ISR 2.36 0.50 2.26 0.49 −3.04 −1.28
ITA 1.75 0.54 1.65 0.49 −2.69 −0.49
JPN 1.92 0.49 1.84 0.43 −2.67 0.45
KOR 2.61 0.64 2.49 0.62 −2.15 −0.80
LTU 1.89 0.42 1.84 0.36 −3.20 −0.69
LUX 1.76 0.47 1.68 0.41 −3.01 −0.73
LVA 1.98 0.44 1.93 0.41 −1.86 −0.08
MLT 2.94 0.61 2.86 0.62 −2.03 −0.82
MNE 1.86 0.47 1.81 0.49 −2.61 −0.57
MYS 2.42 0.18 2.43 0.15 −1.94 −2.76
NLD 2.37 0.45 2.32 0.40 −3.07 −0.61
NOR 2.11 0.42 2.05 0.41 −2.64 −0.64
NZL 2.19 0.53 2.09 0.50 −2.56 −0.60
POL 2.05 0.48 1.99 0.42 −2.12 −0.08
PRT 1.76 0.42 1.72 0.34 −2.72 1.20
RUS 2.00 0.38 1.97 0.35 −2.79 −0.28
SGP 2.51 0.50 2.43 0.44 −2.80 −1.11
SVK 1.93 0.41 1.88 0.36 −3.15 −0.23
SVN 1.85 0.49 1.77 0.42 −9.99 −0.34
SWE 1.90 0.32 1.89 0.30 −2.24 0.01
TUR 1.71 0.26 1.68 0.18 −4.07 −1.40
USA 2.72 0.26 2.70 0.26 −1.54 −0.28

Note. standard deviation of latent propensity variable ξ; Cor(θ, ξ) = correlation of latent ability θ with latent
propensity variable ξ; δCR = common δ parameter for constructed response items; δMC = common δ parameter for
multiple-choice items. See Appendix B for country labels.

5.4. Country Means and Country Standard Deviations Obtained From Different Scaling Models

For comparing country means, 11 out of 19 specified scaling models were selected to
contrast the dissimilarity of country mean and standard deviation estimates. Based on the
findings of the similarity of models in Section 5.1 (see Table 4), 8 out of 19 models were
omitted in the reporting of the comparisons because they provided very similar findings to
at least one of the 11 reported models. Table 7 shows the country means of these 11 different
treatments of missing item responses. The country rank (column “rkUW”) serves as the
reference for the comparison among methods. Moreover, the interval of country ranks
obtained from the different methods are shown in column “rkInt”. The average maximum
difference in country ranks was 2.4 (SD = 1.8) and ranged between 0 (SGP, HKG, EST,
DEU, LUX, BIH) and 8 (IRL). The range in country means (i.e., the difference of the largest
and smallest country mean of the 11 methods) was noticeable (M = 5.0) and showed strong
variability between countries (SD = 2.8, Min = 1.5, Max = 12.5). Interestingly, large range
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values were obtained for countries with missing proportions that were strongly below
and above the average missing proportion. For example, Ireland (IRL) had a relatively
low missing rate of 5.8% and reached rank 15 with method UW (M = 505.2) that treated
missing item responses as wrong. Methods that ignore missing item responses resulted in
a lower country mean (UO1: M = 499.9; MO2: M = 500.7; IO2: M = 500.0). In contrast,
the Mislevy-Wu model (MM2 and IO2)—which also takes the relation of the response
indicator and the true item response into account—resulted in higher country means
(MM2: M = 505.1; IO2: M = 504.9). Across the 11 estimation methods, Ireland reached
ranks between 15 and 23 which can be considered a large variability. Moreover, the range
of country means for Ireland was 8.2, which is two to three times higher than standard
errors for country means due to the sampling of students in PISA. Italy (ITA, rank 26;
M = 492.0) that had a relatively high missing rate of 12.4% profit by ignoring missing
item responses assuming latent ignorability (UO1: M = 494.7; MO2: M = 494.4; IO2:
M = 494.0). However, the Mislevy-Wu model produced considerably lower scores (MO2:
M = 490.1; IO2: M = 489.9). An interesting case is Sweden (SWE, rank 25) that had a high
missing proportion rate of 12.7%, but almost half of missing item responses (i.e., 5.9%)
stemmed from not reached responses. This not reached proportion was the highest among
all countries in our study. Sweden had rank 25 when treating missing item responses
as wrong (UW: M = 491.8), but strongly profits in models that ignore the not reached
items (UN1: M = 499.1) or treated the proportion of not reached items as a predictor in
the latent background model (UN2: M = 499.7). If also omitted items would be treated
as (latent) ignorable, the country mean for Sweden further increased (UO1: M = 501.3;
MO2: M = 501.1; IO2: M = 501.3). In contrast to many other countries, the country
means obtained from the Mislevy-Wu model (MM2: M = 497.9; IO2: M = 498.0) were
also much larger than the country mean obtained by treating missing items as wrong (UW:
M = 491.8).

In Table A3 in Appendix C, standard errors for country means are shown. Across
different models and countries, the average standard error was 2.20 (SD = 0.47, Min = 1.21,
Max = 3.65). Within a country, the variability (i.e., standard deviation (column “SD”) in
Table A3) of standard errors for the mean was small (M = 0.05, SD = 0.05, Min = 0.01,
Max = 0.21).

In Table A4 in Appendix C, standard errors for differences in means stemming from
two different models are displayed. We consider differences between the models UW,
MO2 and MM2. It turned out that the standard error for mean differences between two
models was very small compared to the standard error for the mean for a single model.
The largest average standard errors were obtained for the mean difference between models
UW2 and MO2 (see column “UW-MO2” in Table A4; M = 0.037, SD = 0.036, Min = 0,
Max = 0.149). These two models represent the two extreme missing data treatments that
explain the observation of obtaining the largest standard errors. The smallest standard
errors were obtained for the model difference between UW and MM2 (column “UW-MM2”;
M = 0.021, SD = 0.019, Min = 0.000, Max = 0.096). The average standard errors for the
mean difference between the models MO2 and MM2 was 0.027 (column “UW-MO2”;
M = 0.022, SD = 0.019, Min = 0.001, Max = 0.093).

The estimates of country standard deviations stemming from different models for
the missing data treatment are shown in Table A5 in Appendix C. As in the case of the
country mean, it turned out that model choice also impacted standard deviations. Within a
country, the standard deviation of the different standard deviation estimates showed
nonnegligible variability (column “SD” in Table A5; M = 1.25, SD = 0.96, Min = 0.3,
Max = 5.4). The within-country ranges of country standard deviations across models were
even larger than for country means.
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Table 7. Country means for PISA 2018 mathematics from 11 different scaling models for missing item responses.

Country %NA %NR rkUW rkInt Aver SD rg UW UP UN1 UN2 UO1 MO2 IO2 MM2 IM2 IF1 IF2

SGP 2.7 0.8 1 1–1 568.1 1.5 5.3 568.0 567.8 567.6 567.4 567.7 567.0 567.7 567.3 567.8 568.7 572.4
HKG 3.9 0.8 2 2–2 548.9 1.3 4.1 550.1 550.0 548.3 548.3 548.2 548.0 547.9 548.3 548.4 548.8 552.0
NLD 4.4 1.1 3 3–4 531.4 0.6 2.1 531.6 531.5 531.7 531.6 530.9 530.7 531.1 531.2 531.5 530.9 532.9
JPN 8.4 1.9 4 3–4 532.1 1.8 4.6 530.8 530.6 530.0 530.3 533.8 533.9 533.9 531.1 531.0 533.5 534.6
EST 6.6 2.0 5 5–5 526.7 1.0 3.4 527.9 529.2 526.5 526.8 525.7 526.2 526.4 526.8 525.9 526.1 526.1
KOR 6.4 1.7 6 6–7 522.5 1.3 4.4 523.7 523.6 523.1 521.7 522.1 520.4 520.9 522.2 522.8 522.6 524.8
POL 7.1 1.9 7 6–8 521.5 0.7 2.5 521.4 521.2 520.9 521.0 521.2 521.1 520.9 521.7 521.8 521.5 523.4
CAN 5.8 2.2 8 7–8 520.6 0.8 2.8 519.5 519.9 521.4 521.4 520.1 519.9 519.9 521.0 521.1 520.5 522.2
DNK 5.9 2.0 9 9–10 518.4 0.8 2.3 518.1 518.2 519.4 519.4 517.6 518.1 517.5 519.4 518.9 517.1 518.6
SVN 7.1 1.5 10 10–12 515.2 0.8 2.3 516.4 516.0 514.3 514.9 514.7 515.3 515.7 514.3 514.1 515.2 515.9
BEL 8.3 2.6 11 9–11 517.2 0.7 2.3 516.1 516.7 516.9 517.2 517.4 518.1 517.0 516.7 516.7 517.6 518.4
CHE 8.2 2.5 12 11–12 514.5 0.5 1.5 514.2 514.8 514.0 514.4 514.9 515.2 514.8 513.9 513.7 515.2 514.0
DEU 9.6 2.5 13 13–13 509.8 1.0 3.1 509.1 509.1 509.2 509.2 511.4 511.5 510.4 509.8 509.4 509.8 508.4
FIN 8.9 3.0 14 14–16 506.7 1.0 3.7 506.9 506.5 506.7 507.3 506.5 506.9 506.8 508.0 507.9 506.0 504.3
IRL 5.8 1.3 15 15–23 502.2 2.6 8.2 505.2 504.8 501.6 502.1 499.9 500.7 500.0 505.1 504.9 497.1 502.5
CZE 9.2 2.0 16 14–17 505.1 1.0 3.7 504.9 504.3 503.4 504.2 505.3 505.8 505.8 505.1 505.0 505.5 507.1
GBR 8.2 2.5 17 14–17 505.6 1.0 3.3 503.9 504.9 506.6 504.6 507.2 505.7 505.0 505.8 505.8 506.6 505.4
NZL 8.1 2.2 18 18–22 502.4 1.2 4.0 503.3 504.3 502.5 502.0 501.8 501.6 501.6 502.4 504.8 501.9 500.8
FRA 10.1 3.0 19 17–20 502.8 0.9 2.4 502.1 502.2 502.5 503.0 503.9 503.9 503.9 501.8 501.5 503.1 503.3
AUT 8.4 1.8 20 20–23 500.8 0.9 2.7 500.9 501.7 500.1 499.4 501.9 500.7 501.4 499.6 500.4 501.0 502.1
PRT 10.6 2.8 21 17–21 501.9 1.2 3.8 500.1 500.1 500.4 501.2 502.4 502.7 502.5 502.4 502.0 502.6 503.9
LVA 6.4 1.7 22 22–27 496.8 1.7 5.1 499.7 498.6 497.2 497.7 494.6 495.3 495.1 497.9 497.9 494.7 496.5
NOR 10.7 3.7 23 18–23 501.8 1.5 4.2 499.4 499.8 502.0 502.0 503.7 503.4 503.4 500.6 500.3 502.7 502.0
AUS 7.3 2.4 24 24–26 495.7 0.9 3.7 495.3 496.3 497.8 495.6 496.0 495.5 495.5 495.6 495.7 495.6 494.0
SWE 12.7 5.9 25 21–25 498.4 3.3 10.1 491.8 493.4 499.1 499.7 501.3 501.1 501.3 497.9 498.0 501.9 496.8
ITA 12.4 2.8 26 25–27 492.0 2.3 5.4 490.4 490.1 489.4 490.1 494.7 494.4 494.0 490.1 489.9 494.6 494.1
ISL 9.7 4.4 27 24–27 494.2 2.8 8.9 489.1 491.3 496.5 498.0 495.1 495.6 495.8 495.9 495.2 493.3 490.5
LUX 10.4 2.8 28 28–28 486.5 0.9 2.6 486.8 486.5 485.5 486.3 487.2 487.4 486.6 485.3 485.2 487.7 487.5
LTU 7.4 1.5 29 29–34 482.0 1.7 5.5 485.5 484.4 482.1 483.0 480.1 480.9 480.6 482.0 481.9 480.6 480.9
RUS 7.9 2.2 30 29–31 483.7 0.7 2.1 484.6 484.2 483.6 484.6 482.9 483.7 483.9 484.0 483.7 482.5 482.5
SVK 8.0 1.8 31 29–32 483.2 0.6 2.4 484.5 483.9 482.8 483.4 482.8 483.3 483.0 483.2 483.1 482.1 482.7
HUN 8.6 2.0 32 29–32 483.2 0.7 2.4 484.1 483.8 483.7 483.4 482.9 482.7 482.9 484.0 483.7 482.6 481.6
ESP 10.6 2.9 33 32–35 481.5 1.7 5.8 482.4 482.4 481.7 482.5 481.6 482.1 482.3 482.4 481.9 480.4 476.7
USA 4.0 2.0 34 29–36 482.2 2.4 6.6 481.6 483.1 484.9 485.7 479.5 480.4 480.5 484.5 484.5 479.1 480.7
BLR 7.8 2.4 35 32–36 480.3 1.7 5.4 477.7 477.2 481.4 482.6 479.5 480.3 480.5 481.6 481.6 480.1 481.1
MLT 9.8 3.9 36 33–37 476.6 2.8 9.2 474.2 476.0 479.8 471.2 480.3 475.0 476.8 475.6 476.6 480.5 476.5
HRV 11.8 2.7 37 36–37 470.8 1.8 5.0 471.8 469.0 468.3 471.7 472.9 471.1 473.3 468.8 468.5 471.1 472.3
TUR 6.7 1.6 38 38–39 460.3 2.0 6.2 464.0 462.9 460.8 462.2 458.0 459.3 459.4 460.0 460.0 457.8 458.7
ISR 12.1 4.5 39 38–39 461.7 1.6 4.3 459.9 461.4 462.4 461.4 463.5 462.6 462.3 459.3 459.2 463.3 463.0
GRC 10.7 2.7 40 40–41 439.1 2.5 9.2 440.9 440.1 440.0 441.3 438.2 439.8 438.8 439.3 439.2 440.0 432.2
MYS 1.2 0.6 41 41–44 429.1 4.8 12.5 435.8 433.4 432.2 433.5 423.3 424.6 425.4 431.5 432.4 424.4 423.6
ALB 8.0 1.9 42 41–44 429.6 2.2 6.3 432.0 431.1 430.5 426.5 427.8 427.8 427.8 432.2 432.8 428.5 428.2
BRN 6.1 1.7 43 42–44 427.7 3.2 8.1 430.9 430.0 428.8 430.0 423.2 424.4 424.2 428.8 429.4 423.7 431.3
MNE 17.3 3.8 44 40–44 433.1 3.5 10.7 430.5 431.3 429.8 428.1 436.8 436.3 436.1 431.1 430.4 438.8 434.8
BIH 18.8 3.9 45 45–45 413.9 3.8 10.5 410.7 410.4 410.3 409.8 417.3 417.3 417.1 412.2 411.2 420.3 416.6

Note. %NA = proportion of item responses with missing data; %NR = proportion of item responses that are not reached; rkUW = country
rank from model UW; rkInt = interval of country ranks obtained from 11 different scaling models; Aver = average of country means across
11 models; SD = standard deviation of country means across 11 models; rg = range of country means across 11 models; UW = scoring
as wrong (Section 2.1) ; UP = MC items scored as partially correct (Section 2.2); UN1 = ignoring not reached items (Section 4.2.1); UN2
= including proportion of not reached items in background model (Section 4.2.1); UO1 = ignoring missing item responses (Section 2.3);
MO2 = model-based latent ignorability (Section 2.4, Equations (10) and (11)); IO2 = imputed under latent ignorability (Section 2.4.1,
Equations (10) and (11)); MM2 = Mislevy-Wu model with item format-specific δ parameters (Section 2.5, Equation (14)); IM2 = imputed
under Mislevy-Wu model with item format specific d parameters (Section 2.5, Equation (14)); IF1 = FCS imputation based on item responses
(Sections 2.6 and 4.2.2); IF2 = FCS imputation based on item responses and response indicators (Sections 2.6 and 4.2.2); The following
entries in the table are printed in bold: Missing proportions (%NA) larger than 10.0% and smaller than 5.0%, not reached proportions larger
than 3.0%, country rank differences larger than 2, ranges in country means larger than 5.0. See Appendix B for country labels.

6. Discussion

In this paper, competing approaches for handling missing item responses in ed-
ucational large-scale assessment studies like PISA are investigated. We compared the
Mislevy-Wu model that allows the probability of item missingness depending on the item
itself with the more frequently discussed approaches of scoring items as wrong or models
assuming latent ignorability. In an illustrative simulation study, we demonstrated that
neither of the two latter approaches provides unbiased parameter estimates if the more
general Mislevy-Wu model holds (see also [44]). In realistic data constellations in which
the Mislevy-Wu model holds, it is likely that the method of scoring missing item responses
as wrong results in underestimated (country) means, while models relying on latent ignor-
ability provide overestimated means. Based on these findings, we are convinced that the
often-taken view in psychometric literature that strongly advocates latent ignorability and
denies the scoring as wrong [4,11,12,18] is unjustified (see also [24,25,27]).
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In our reanalysis of the PISA 2018 mathematics data, different scaling models with
different treatments of missing item responses were specified. It has been shown that differ-
ences in country means and country standard deviations across models can be substantial.
The present study sheds some light on the ongoing debate about properly handling miss-
ing item responses in educational large-scale assessment studies. Ignoring missing item
responses and treating them as wrong can be seen as opposing strategies. Other scaling
models can be interpreted to provide results somewhere between these two extreme poles
of handling missingness. We argued that the Mislevy-Wu model contains the strategy of
scoring as wrong and the latent ignorable model as submodels. Hence, these missing data
treatments can be tested. In our analysis, it turned out that the Mislevy-Wu model fitted
the PISA data best. More importantly, the treatment of missing item responses as wrong
provided a better model fit than ignoring them or modeling them by the latent ignorable
model that has been strongly advocated in the past [10,11]. It also turned out that the
missingness mechanism strongly differed between CR and MC items.

We believe that the call for controlling for test-taking behavior in the reporting in large-
scale assessment studies such as response propensity [4] using models that also include
response times [157,158] poses a threat to validity [159–164] because results can be simply
manipulated by instructing students to omit items they do not know [26]. Notably, missing
item responses are mostly omissions for CR items. Response times might be useful for
detecting rapid guessing or noneffortful responses [81,165–171]. However, it seems likely
that students who do not know the solution to CR items do not respond to these items.
In this case, the latent ignorability assumption is unlikely to hold, and scaling models that
rely on it (see [4,12]) will result in biased and unfair country comparisons. We are skeptical
that the decision of whether a missing item response is scored as wrong should be based on
a particular response time threshold [166,172,173]. Students can also be simply instructed
to quickly skip items that they are not probably able to solve.

In our PISA analysis, we restricted the analysis to 45 countries that received booklets of
average item difficulty. Recently, a number of low-performing countries also participated
in recent PISA cycles that receive booklets of lower difficulty [174–176]. We did not
include these low-performing countries for the following reasons. First, the proportion
of correctly solved items for low-performing countries is lower. This implies that it is
more difficult for these countries to disentangle the parameters of the model for response
indicators and item parameters. Second, the meaning of missingness on item responses
across countries differs if different booklets are administered in countries. Hence, it is
difficult to compare outcomes of different scaling models for the missing data treatment
if there is no prerequisite of the same administered test design. To some extent, the issue
also appears in the recently implemented multi-stage testing (MST; [177,178]) design in
PISA that also results in different proportions of test booklets of different average difficulty
across countries. We think that there is no defensible strategy of properly treating missing
item responses from MST designs that enables a fair and valid comparison of countries [26].

In this article, we only investigated the impact of missing item responses on country
means and country standard deviations. In LSA studies, missing data is also a prevalent
issue for student covariates (e.g., sociodemographic status; see [104,179–184]). As covariates
also enter the plausible value imputation of latent abilities through the latent background
model [75,129] or relationships of abilities and covariates are often of interest in reporting,
missing data on covariates is also a crucial issue that needs to be adequately addressed [104].

It could be argued that there is not a unique, scientifically sound, or widely publicly
accepted scaling model in PISA (see [185]). The uncertainty in choosing a psychometric
model can be reflected by explicitly acknowledging the variability of country means and
standard deviations obtained by different model assumptions. This additional source
of variance associated with model uncertainty [186–191] can be added to the standard
error due to the sampling of students and linking error due to the selection of items [192].
The assessment of specification uncertainty has been discussed in sensitivity analysis [193]
and has recently become popular as multiverse analysis [194,195] or specification curve
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analysis [196,197]. As educational LSA studies are policy-relevant [198,199], we think that
model uncertainty should be included in statistical inference [200,201].

Funding: This research received no external funding.

Informed Consent Statement: This article uses publicly available PISA 2018 data.

Data Availability Statement: The PISA 2018 dataset is available from https://www.oecd.org/pisa/
data/2018database/ (accessed on 15 April 2021).

Acknowledgments: I sincerely thank four anonymous reviewers for their valuable comments that
substantially improved this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

1PL one-parameter logistic model
2PL two-parameter logistic model
AIC Akaike information criterion
BIC Bayesian information criterion
CR constructed-response
DIF differential item functioning
FCS fully conditional specification
GHP Gilula–Haberman penalty
IRT item response theory
LBM latent background model
LSA large-scale assessment
M mean
MAR missing at random
MC multiple-choice
MST multi-stage testing
PISA programme for international student assessment
PLS partial least squares
PMM predictive mean matching
RMSE root mean square error
SD standard deviation

Appendix A. Additional Information for the Illustrative Simulation Study

In Table A1, the computed β parameter used in the illustrative simulation study as a
function of the proportion of missing data and the missingness parameter δ is shown.

Table A1. Computed β parameter in the Mislevy-Wu model as a function of the proportion of missing
data and the missingness parameter δ.

Miss %
δ

−10 −3 −2 −1 0

5% −3.728 −3.805 −3.906 −4.100 −4.422
10% −2.548 −2.678 −2.821 −3.061 −3.417
20% −1.001 −1.288 −1.513 −1.827 −2.228
30% 0.322 −0.255 −0.568 −0.947 −1.384

Note. Miss% = proportion of missing data.

In Table A2, the RMSE for the estimated mean and the standard deviation is shown
for the different missing data treatments as a function of the proportion of missing data
and the missingness parameter δ.

https://www.oecd.org/pisa/data/2018database/
https://www.oecd.org/pisa/data/2018database/
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Table A2. Root mean square error (RMSE) for the mean and the standard deviation for different
missing data treatments as a function of the missing proportion and the missingness parameter δ.

δ
Mean Standard Deviation

−10 −3 −2 −1 0 −10 −3 −2 −1 0

Model

5% missing data
CD 0.049 0.054 0.054 0.055 0.049 0.047 0.053 0.054 0.053 0.049
MM1 0.051 0.049 0.055 0.054 0.061 0.048 0.049 0.053 0.050 0.056
UW 0.049 0.052 0.053 0.067 0.087 0.047 0.050 0.046 0.050 0.054
UO 0.110 0.105 0.102 0.082 0.058 0.077 0.075 0.073 0.065 0.055
MO2 0.106 0.099 0.091 0.071 0.053 0.077 0.072 0.067 0.059 0.052
IF1 0.109 0.106 0.102 0.082 0.058 0.075 0.074 0.074 0.063 0.054
IF2 0.108 0.103 0.097 0.078 0.053 0.074 0.074 0.070 0.063 0.052

10% missing data
CD 0.052 0.052 0.050 0.051 0.056 0.050 0.053 0.049 0.050 0.055
MM1 0.053 0.056 0.060 0.059 0.063 0.051 0.055 0.056 0.053 0.054
UW 0.052 0.058 0.076 0.100 0.149 0.050 0.053 0.054 0.052 0.048
UO 0.168 0.144 0.125 0.111 0.066 0.107 0.082 0.073 0.079 0.060
MO2 0.159 0.132 0.119 0.096 0.054 0.097 0.072 0.074 0.071 0.053
IF1 0.169 0.148 0.128 0.112 0.067 0.106 0.085 0.074 0.078 0.060
IF2 0.161 0.142 0.125 0.104 0.057 0.097 0.080 0.076 0.076 0.056

20% missing data
CD 0.052 0.052 0.051 0.049 0.051 0.052 0.050 0.051 0.048 0.050
MM1 0.077 0.058 0.064 0.069 0.081 0.070 0.053 0.058 0.058 0.061
UW 0.052 0.093 0.139 0.208 0.278 0.051 0.056 0.046 0.056 0.061
UO 0.211 0.219 0.193 0.154 0.091 0.158 0.144 0.118 0.092 0.075
MO2 0.211 0.218 0.187 0.129 0.053 0.158 0.141 0.112 0.080 0.050
IF1 0.216 0.223 0.192 0.157 0.086 0.159 0.145 0.112 0.092 0.068
IF2 0.222 0.220 0.194 0.140 0.056 0.166 0.138 0.114 0.087 0.054

30% missing data
CD 0.053 0.051 0.052 0.053 0.055 0.053 0.051 0.051 0.052 0.054
MM1 0.128 0.063 0.072 0.083 0.092 0.159 0.057 0.059 0.064 0.064
UW 0.051 0.167 0.232 0.306 0.372 0.051 0.049 0.049 0.056 0.061
UO 0.211 0.247 0.234 0.190 0.095 0.222 0.179 0.148 0.117 0.076
MO2 0.207 0.247 0.238 0.171 0.060 0.225 0.179 0.152 0.107 0.057
IF1 0.220 0.253 0.240 0.193 0.098 0.221 0.180 0.149 0.115 0.075
IF2 0.216 0.256 0.242 0.179 0.064 0.224 0.180 0.149 0.109 0.061

Note. CD = complete-data analysis ; UW = scoring as wrong (Section 2.1) ; MM1 = Mislevy-Wu model with com-
mon d parameter (Section 2.5, Equation (14)); UO = ignoring missing item responses (Section 2.3); MO2 = model-
based latent ignorability (Section 2.4, Equations (10) and (11)); IF1 = FCS imputation based on item responses
(Section 2.6); IF2 = FCS imputation based on item responses and response indicators (Section 2.6).

Appendix B. Country Labels Used in the PISA 2018 Mathematics Case Study

The country labels used in Tables 2, 5–7, A3–A5 are as follows: ALB = Albania;
AUS = Australia; AUT = Austria; BEL = Belgium; BIH = Bosnia and Herzegovina; BLR = Be-
larus; BRN = Brunei Darussalam; CAN = Canada; CHE = Switzerland; CZE = Czech
Republic; DEU = Germany; DNK = Denmark; ESP = Spain; EST = Estonia; FIN = Finland;
FRA = France; GBR = United Kingdom; GRC = Greece; HKG = Hong Kong; HRV = Croatia;
HUN = Hungary; IRL = Ireland; ISL = Iceland; ISR = Israel; ITA = Italy; JPN = Japan;
KOR = Korea; LTU = Lithuania; LUX = Luxembourg; LVA = Latvia; MLT = Malta;
MNE = Montenegro; MYS = Malaysia; NLD = Netherlands; NOR = Norway; NZL = New
Zealand; POL = Poland; PRT = Portugal; RUS = Russian Federation; SGP = Singapore;
SVK = Slovak Republic; SVN = Slovenia; SWE = Sweden; TUR = Turkey; USA = United States.

Appendix C. Further Results of the PISA 2018 Mathematics Case Study

In Table A3, standard errors for country means for the PISA 2018 mathematics case
study resulting from 11 different scaling models are shown.

In Table A4, standard errors for country mean differences between the models UW,
MO2 and MM2 are presented.

In Table A5, country standard deviations for the PISA 2018 mathematics case study
resulting from 11 different scaling models are reported.
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Table A3. Standard errors for country means for PISA 2018 mathematics from 11 different scaling models for missing item
responses.

Country Aver SD rg UW UP UN1 UN2 UO1 MO2 IO2 MM2 IM2 IF1 IF2

ALB 2.02 0.06 0.24 2.07 2.04 2.03 2.16 1.99 2.02 2.02 2.02 2.02 1.99 1.91
AUS 1.69 0.03 0.11 1.73 1.71 1.67 1.75 1.64 1.68 1.68 1.70 1.69 1.68 1.69
AUT 2.53 0.05 0.14 2.56 2.55 2.54 2.60 2.47 2.53 2.49 2.61 2.55 2.47 2.47
BEL 1.79 0.06 0.16 1.85 1.84 1.84 1.83 1.71 1.78 1.71 1.86 1.82 1.70 1.75
BIH 2.37 0.19 0.56 2.53 2.53 2.54 2.52 2.26 2.32 2.27 2.51 2.48 2.13 1.99
BLR 2.29 0.02 0.06 2.31 2.32 2.31 2.28 2.26 2.27 2.27 2.30 2.29 2.27 2.26
BRN 1.56 0.02 0.06 1.58 1.57 1.52 1.53 1.55 1.56 1.58 1.56 1.55 1.57 1.56
CAN 2.05 0.03 0.12 2.05 2.05 2.06 2.05 2.02 2.03 2.03 2.04 2.03 2.05 2.14
CHE 2.28 0.02 0.05 2.28 2.29 2.27 2.26 2.25 2.27 2.26 2.30 2.29 2.27 2.28
CZE 2.15 0.02 0.05 2.16 2.17 2.17 2.16 2.13 2.15 2.13 2.17 2.14 2.13 2.17
DEU 2.51 0.07 0.22 2.56 2.56 2.58 2.59 2.46 2.49 2.48 2.56 2.56 2.43 2.38
DNK 1.82 0.02 0.08 1.86 1.83 1.81 1.84 1.78 1.81 1.81 1.83 1.83 1.84 1.79
ESP 1.21 0.03 0.10 1.23 1.23 1.24 1.24 1.15 1.19 1.17 1.24 1.21 1.17 1.20
EST 1.80 0.02 0.06 1.78 1.78 1.82 1.80 1.82 1.80 1.80 1.78 1.79 1.83 1.81
FIN 1.97 0.02 0.07 1.98 1.98 1.96 1.95 1.96 2.00 1.98 1.98 1.95 1.95 1.93
FRA 2.17 0.03 0.09 2.20 2.19 2.21 2.20 2.14 2.15 2.14 2.20 2.21 2.12 2.13
GBR 2.53 0.05 0.18 2.58 2.57 2.52 2.65 2.47 2.48 2.48 2.52 2.53 2.51 2.53
GRC 2.68 0.07 0.26 2.69 2.70 2.75 2.73 2.68 2.69 2.68 2.72 2.72 2.61 2.49
HKG 2.83 0.02 0.05 2.83 2.85 2.82 2.84 2.81 2.82 2.80 2.85 2.84 2.82 2.85
HRV 2.36 0.09 0.25 2.41 2.45 2.46 2.42 2.29 2.33 2.29 2.43 2.45 2.26 2.21
HUN 2.26 0.06 0.16 2.33 2.32 2.26 2.31 2.19 2.26 2.23 2.32 2.28 2.21 2.17
IRL 2.01 0.01 0.05 2.00 2.01 2.04 2.02 2.01 2.03 2.01 2.00 2.00 1.99 2.01
ISL 2.06 0.04 0.11 2.03 2.01 2.10 2.10 2.11 2.07 2.11 2.00 2.02 2.08 2.01
ISR 3.65 0.18 0.56 3.84 3.73 3.66 3.80 3.52 3.65 3.62 3.82 3.80 3.40 3.27
ITA 2.47 0.06 0.14 2.51 2.53 2.52 2.50 2.39 2.43 2.40 2.53 2.51 2.42 2.39
JPN 2.42 0.01 0.04 2.42 2.44 2.42 2.41 2.40 2.43 2.41 2.43 2.41 2.40 2.42
KOR 2.89 0.09 0.33 2.94 2.93 2.85 3.12 2.79 2.86 2.86 2.90 2.91 2.79 2.88
LTU 1.91 0.02 0.07 1.89 1.91 1.89 1.88 1.93 1.93 1.92 1.91 1.90 1.93 1.95
LUX 1.72 0.03 0.09 1.72 1.72 1.76 1.74 1.69 1.71 1.70 1.75 1.75 1.67 1.70
LVA 1.90 0.02 0.05 1.92 1.93 1.89 1.90 1.88 1.89 1.89 1.89 1.91 1.88 1.89
MLT 2.75 0.21 0.82 2.91 2.81 2.69 3.22 2.63 2.74 2.71 2.81 2.78 2.51 2.40
MNE 1.31 0.07 0.23 1.36 1.35 1.32 1.40 1.27 1.33 1.27 1.37 1.34 1.21 1.17
MYS 2.66 0.09 0.30 2.57 2.62 2.59 2.57 2.71 2.72 2.69 2.63 2.59 2.73 2.87
NLD 2.22 0.03 0.10 2.26 2.25 2.16 2.26 2.17 2.21 2.22 2.23 2.23 2.19 2.26
NOR 1.65 0.06 0.17 1.71 1.68 1.65 1.68 1.61 1.65 1.64 1.69 1.69 1.56 1.54
NZL 1.81 0.05 0.16 1.86 1.84 1.79 1.90 1.78 1.81 1.81 1.85 1.82 1.77 1.73
POL 2.66 0.04 0.12 2.66 2.67 2.71 2.71 2.65 2.68 2.68 2.69 2.66 2.61 2.58
PRT 2.27 0.04 0.13 2.29 2.30 2.34 2.31 2.22 2.25 2.23 2.28 2.28 2.22 2.21
RUS 2.63 0.02 0.07 2.62 2.62 2.68 2.64 2.61 2.61 2.63 2.62 2.63 2.65 2.61
SGP 1.56 0.05 0.14 1.53 1.54 1.52 1.52 1.60 1.55 1.56 1.52 1.53 1.63 1.66
SVK 2.40 0.03 0.08 2.37 2.39 2.40 2.38 2.44 2.41 2.45 2.38 2.40 2.38 2.38
SVN 1.99 0.03 0.08 2.00 2.00 1.98 1.98 1.95 1.98 1.97 2.03 2.01 1.95 2.01
SWE 2.52 0.05 0.16 2.50 2.48 2.57 2.55 2.55 2.55 2.57 2.54 2.55 2.48 2.41
TUR 1.93 0.03 0.10 1.89 1.90 1.91 1.89 1.95 1.94 1.95 1.91 1.92 1.96 1.98
USA 2.77 0.04 0.14 2.83 2.82 2.71 2.69 2.77 2.80 2.78 2.78 2.76 2.82 2.74

Note. Aver = average of standard errors of country means across 11 models; SD = standard deviation of standard errors of country means
across 11 models; rg = range of standard errors of country means across 11 models; UW = scoring as wrong (Section 2.1) ; UP = MC items
scored as partially correct (Section 2.2); UN1 = ignoring not reached items (Section 4.2.1); UN2 = including proportion of not reached
items in background model (Section 4.2.1); UO1 = ignoring missing item responses (Section 2.3); MO2 = model-based latent ignorability
(Section 2.4, Equations (10) and (11)); IO2 = imputed under latent ignorability (Section 2.4.1, Equations (10) and (11)); MM2 = Mislevy-Wu
model with item format specific d parameters (Section 2.5, Equation (14)); IM2 = imputed under Mislevy-Wu model with item format
specific d parameters (Section 2.5, Equation (14)); IF1 = FCS imputation based on item responses (Sections 2.6 and 4.2.2); IF2 = FCS
imputation based on item responses and response indicators (Sections 2.6 and 4.2.2); See Appendix B for country labels.
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Table A4. Standard errors for country mean differences between three different models UW, MO2
and MM2 for PISA 2018 mathematics.

Country UW MO2 MM2 UW–MO2 UW–MM2 MO2–MM2

ALB 2.068 2.025 2.022 0.044 0.058 0.014
AUS 1.732 1.678 1.701 0.031 0.030 0.001
AUT 2.562 2.530 2.607 0.028 0.009 0.036
BEL 1.847 1.782 1.863 0.013 0.007 0.019
BIH 2.533 2.316 2.513 0.117 0.019 0.093
BLR 2.311 2.274 2.303 0.028 0.010 0.037
BRN 1.580 1.562 1.560 0.014 0.004 0.018
CAN 2.046 2.032 2.044 0.002 0.020 0.018
CHE 2.283 2.270 2.299 0.004 0.017 0.013
CZE 2.159 2.148 2.173 0.039 0.024 0.014
DEU 2.564 2.489 2.560 0.046 0.011 0.035
DNK 1.856 1.806 1.827 0.008 0.021 0.013
ESP 1.232 1.185 1.238 0.016 0.003 0.013
EST 1.776 1.799 1.783 0.026 0.008 0.018
FIN 1.984 2.001 1.981 0.051 0.018 0.032
FRA 2.197 2.154 2.201 0.024 0.009 0.033
GBR 2.580 2.484 2.522 0.079 0.056 0.023
GRC 2.686 2.686 2.720 0.046 0.035 0.011
HKG 2.829 2.820 2.851 0.004 0.012 0.008
HRV 2.413 2.333 2.430 0.015 0.031 0.045
HUN 2.328 2.263 2.316 0.017 0.015 0.001
IRL 1.997 2.030 2.001 0.036 0.004 0.040
ISL 2.028 2.070 2.002 0.000 0.036 0.037
ISR 3.835 3.652 3.816 0.106 0.019 0.084
ITA 2.512 2.434 2.527 0.037 0.014 0.050
JPN 2.416 2.427 2.430 0.037 0.002 0.034
KOR 2.944 2.865 2.896 0.075 0.045 0.030
LTU 1.891 1.926 1.910 0.039 0.027 0.013
LUX 1.722 1.706 1.746 0.004 0.016 0.012
LVA 1.920 1.893 1.892 0.021 0.003 0.018
MLT 2.912 2.740 2.811 0.145 0.096 0.048
MNE 1.364 1.334 1.375 0.056 0.018 0.038
MYS 2.570 2.717 2.632 0.149 0.061 0.088
NLD 2.257 2.213 2.226 0.009 0.014 0.005
NOR 1.711 1.650 1.692 0.034 0.010 0.023
NZL 1.858 1.814 1.853 0.007 0.013 0.005
POL 2.664 2.681 2.685 0.023 0.000 0.022
PRT 2.288 2.247 2.285 0.018 0.011 0.006
RUS 2.617 2.607 2.620 0.011 0.007 0.004
SGP 1.530 1.549 1.522 0.003 0.011 0.008
SVK 2.374 2.415 2.380 0.022 0.011 0.011
SVN 1.999 1.982 2.031 0.007 0.018 0.025
SWE 2.505 2.551 2.541 0.042 0.026 0.016
TUR 1.890 1.940 1.907 0.064 0.030 0.034
USA 2.834 2.801 2.780 0.089 0.015 0.071

Note. Aver = average of standard errors of country means across 11 models; SD = standard deviation of standard
errors of country means across 11 models; rg = range of standard errors of country means across 11 models;
UW = scoring as wrong (Section 2.1) ; MO2 = model-based latent ignorability (Section 2.4, Equations (10) and
(11)); MM2 = Mislevy-Wu model with item format specific d parameters (Section 2.5, Equation (14)); See Appendix
B for country labels.

Table A5. Country standard deviations for PISA 2018 mathematics from 11 different scaling models for missing item
responses.

Country Aver SD rg UW UP UN1 UN2 UO1 MO2 IO2 MM2 IM2 IF1 IF2

ALB 69.6 1.0 3.7 70.9 69.8 69.1 71.5 69.4 69.4 69.3 68.9 69.5 70.0 67.9
AUS 91.4 0.9 2.3 92.4 91.9 90.5 91.0 90.7 90.8 90.9 90.9 90.9 92.6 92.9
AUT 90.5 0.6 1.6 90.9 90.8 89.9 90.9 89.7 89.9 90.3 91.2 91.1 90.0 91.1
BEL 88.4 0.7 2.4 88.6 88.6 88.5 87.8 87.5 87.9 87.8 88.9 88.7 88.5 89.9
BIH 81.7 3.5 11.4 84.9 84.4 83.9 84.2 80.5 81.0 80.9 84.2 83.2 78.0 73.5
BLR 90.6 1.0 2.9 90.1 90.4 90.3 89.1 91.6 91.1 91.2 89.7 89.8 91.9 92.0
BRN 90.0 1.0 3.0 89.5 89.3 89.5 88.5 90.9 90.3 90.8 89.2 89.5 91.5 91.1
CAN 86.7 1.6 5.9 86.5 86.3 85.5 85.1 86.5 86.4 86.5 85.6 85.8 88.2 91.0
CHE 88.1 0.3 1.0 87.7 88.2 88.7 87.7 88.0 87.8 87.7 88.3 88.0 88.6 88.2
CZE 90.1 0.8 2.7 88.7 89.3 90.4 89.6 90.9 90.3 90.1 89.7 89.8 90.6 91.4



Eur. J. Investig. Health Psychol. Educ. 2021, 11 1680

Table A5. Cont.

Country Aver SD rg UW UP UN1 UN2 UO1 MO2 IO2 MM2 IM2 IF1 IF2

DEU 91.3 1.2 3.6 92.6 92.2 92.0 92.4 90.5 90.9 90.9 92.2 92.3 89.4 89.0
DNK 83.8 0.8 2.4 83.9 83.7 83.1 82.9 83.8 83.6 83.9 83.0 83.2 85.0 85.3
ESP 83.1 0.8 2.7 83.2 83.1 83.9 83.0 82.1 82.1 82.3 83.0 83.3 83.1 84.7
EST 83.5 1.0 3.0 82.6 82.6 83.4 82.5 84.1 83.8 83.6 83.0 82.6 85.1 85.5
FIN 84.4 0.9 2.6 83.0 83.2 85.4 84.6 85.6 85.2 85.2 83.8 83.8 85.0 83.7
FRA 91.1 0.7 1.8 91.6 91.5 91.8 91.1 90.5 90.6 90.2 92.0 92.1 90.9 90.3
GBR 92.2 1.3 3.9 94.1 93.3 91.1 94.0 90.2 91.2 91.0 92.1 92.2 91.7 92.8
GRC 83.0 1.3 4.8 82.2 82.6 84.2 83.5 84.1 83.6 83.6 83.3 83.4 83.5 79.4
HKG 89.6 1.1 4.0 89.1 89.5 88.3 88.9 89.2 89.2 89.3 89.4 89.5 90.5 92.3
HRV 82.5 1.6 5.3 82.8 83.9 84.6 82.8 81.5 82.3 81.2 83.9 84.1 81.1 79.3
HUN 92.0 1.1 4.1 93.1 92.9 92.4 92.2 92.0 92.4 92.0 92.5 92.4 91.0 88.9
IRL 77.8 0.7 1.7 77.1 77.4 78.3 77.6 78.4 78.4 78.3 76.9 76.9 78.2 78.6
ISL 86.2 1.2 4.1 87.0 86.1 87.1 86.4 87.6 87.1 87.3 85.5 85.7 85.2 83.6
ISR 109.2 2.7 9.4 112.0 109.7 110.0 110.4 108.4 109.0 109.2 111.5 111.8 106.2 102.6
ITA 92.1 0.9 2.4 92.3 92.7 93.2 92.6 90.8 91.0 91.2 92.8 93.1 90.9 92.0
JPN 85.2 0.8 2.2 84.4 85.0 84.8 84.2 85.8 85.7 85.9 84.5 84.6 86.2 86.4
KOR 91.2 1.4 4.9 92.8 92.2 89.9 94.0 89.1 90.4 90.6 91.3 91.5 89.7 91.4
LTU 90.3 0.8 2.8 88.8 89.7 90.4 89.5 91.2 90.6 90.7 90.0 90.2 91.6 91.1
LUX 92.9 0.6 2.0 92.6 92.6 93.7 92.7 92.9 92.8 93.3 93.5 93.8 92.4 91.7
LVA 80.4 0.7 2.2 79.8 80.4 80.2 79.4 80.9 80.7 80.4 79.9 80.2 81.6 81.3
MLT 99.0 5.4 18.2 105.2 101.4 98.2 105.8 96.7 100.0 99.4 101.7 101.0 92.1 87.6
MNE 79.7 2.8 9.3 82.4 82.3 80.9 81.8 78.3 79.1 78.7 81.3 81.0 77.3 73.1
MYS 89.0 3.1 10.2 85.8 87.6 86.5 85.9 90.5 90.7 89.7 87.8 86.7 91.6 95.9
NLD 89.8 0.9 3.0 89.9 90.2 88.9 88.9 89.7 89.6 89.4 89.4 89.1 90.8 91.8
NOR 89.7 1.2 4.1 91.0 90.0 90.8 90.4 89.1 89.2 89.3 90.4 90.7 88.6 86.8
NZL 93.2 0.4 1.4 93.1 92.7 93.0 93.9 93.1 93.4 93.4 93.7 92.5 93.7 93.0
POL 88.6 0.3 0.9 88.3 88.5 88.6 88.4 88.9 89.0 89.2 88.3 88.4 88.6 88.7
PRT 95.2 0.5 2.1 94.4 95.1 96.4 95.3 95.5 95.1 95.5 94.8 95.2 95.4 94.7
RUS 79.9 0.4 1.6 79.4 79.7 80.3 79.2 80.2 79.8 80.1 79.6 79.6 80.8 80.1
SGP 91.7 1.9 6.7 91.5 91.8 89.7 89.9 91.6 91.3 91.3 90.8 90.8 93.8 96.4
SVK 91.9 0.5 1.4 91.4 91.7 92.2 91.1 92.5 92.3 92.4 91.9 92.0 92.1 91.2
SVN 86.0 0.5 1.6 85.7 86.1 86.3 85.5 85.5 85.3 85.7 86.4 86.3 86.4 87.0
SWE 88.5 1.2 4.2 87.6 86.8 90.3 89.3 89.5 89.1 89.4 88.6 88.8 88.5 86.1
TUR 90.9 2.0 5.7 88.5 89.3 89.8 88.7 92.4 91.5 91.7 89.9 90.0 94.0 94.2
USA 95.3 2.0 5.9 93.5 93.9 94.0 92.7 97.2 96.4 96.7 94.0 94.0 98.6 97.4

Note. Aver = average of country standard deviations across 11 models; SD = standard deviation of country standard deviations across
11 models; rg = range of country standard deviations across 11 models; UW = scoring as wrong (Section 2.1) ; UP = MC items scored
as partially correct (Section 2.2); UN1 = ignoring not reached items (Section 4.2.1); UN2 = including proportion of not reached items in
background model (Section 4.2.1); UO1 = ignoring missing item responses (Section 2.3); MO2 = model-based latent ignorability (Section 2.4,
Equations (10) and (11)); IO2 = imputed under latent ignorability (Section 2.4.1, Equations (10) and (11)); MM2 = Mislevy-Wu model
with item format specific d parameters (Section 2.5, Equation (14)); IM2 = imputed under Mislevy-Wu model with item format specific d
parameters (Section 2.5, Equation (14)); IF1 = FCS imputation based on item responses (Sections 2.6 and 4.2.2); IF2 = FCS imputation based
on item responses and response indicators (Sections 2.6 and 4.2.2); See Appendix B for country labels.
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