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Abstract: Cotton is an important economic crop affected by different abiotic stresses at different
developmental stages. Salinity limits the growth and productivity of crops worldwide. Na+/H+

antiporters play a key role during the plant development and in its tolerance to salt stress. The aim of
the present study was a genome-wide characterization and expression pattern analysis under the
salinity stress of the sodium-proton antiporter (NHX) of Gossypium barbadense in comparison with
Gossypium hirsutum. In G. barbadense, 25 NHX genes were identified on the basis of the Na+_H+

exchanger domain. All except one of the G. barbadense NHX transporters have an Amiloride motif
that is a known inhibitor of Na+ ions in plants. A phylogenetic analysis inferred three classes of
GbNHX genes—viz., Vac (GbNHX1, 2 and 4), Endo (GbNHX6), and PM (GbNHX7). A high number
of the stress-related cis-acting elements observed in promoters show their role in tolerance against
abiotic stresses. The Ka/Ks values show that the majority of GbNHX genes are subjected to strong
purifying selection under the course of evolution. To study the functional divergence of G. barbadense
NHX transporters, the real-time gene expression was analyzed under salt stress in the root, stem,
and leaf tissues. In G. barbadense, the expression was higher in the stem, while in G. hirsutum the
leaf and root showed a high expression. Moreover, our results revealed that NHX2 homologues
in both species have a high expression under salinity stress at higher time intervals, followed by
NHX7. The protein-protein prediction study revealed that GbNHX7 is involved in the CBL-CIPK
protein interaction pathway. Our study also provided valuable information explaining the molecular
mechanism of Na+ transport for the further functional study of Gossypium NHX genes.

Keywords: G. barbadense; GbNHX; phylogenetic; abiotic stress; Na+/H+ antiporter; amiloride;
Cis-elements
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1. Introduction

Soil salinity is one of major abiotic stresses that limits crop production worldwide [1], with an
estimated 45 million hectares of irrigated land reported to be under salinity stress. The world’s food
production is mainly dependent on irrigated land, as it produces twice as much as the rain-fed area,
therefore high salinity is a threat to sustainable crop production for the ever-increasing population [2,3].
By the year 2050, about 50% of all cultivable land is predicted to be affected by high salinization [4,5].

Most plants, being glycophytes, are affected by high levels of salt in the soil [6]. Plants
have developed different mechanisms such as ionic stress pathways, oxidative stress pathways,
and detoxification signalling to cope with the high soil salinity and toxicity of Na+ and Cl− ions [7].
Many cellular processes conferring stress tolerance and regulating plant growth and development are
dependent upon pH and ion homeostasis [8]. Ion-specific salinity is caused by the accumulation of toxic
concentrations of sodium (Na+) and/or chloride (Cl−) ions, especially in the older leaves [9]. In most
plant species, the Na+ reaches the toxic concentration earlier than other salts [10]. Two non-selective
cation channels (NSCC) are the major source of entry of Na+ into the cell; voltage-dependent and
voltage-independent cation channels. The voltage-independent cation channels are thought to be a
significant way of entering for Na+ ions. [11,12]. Sodium-hydrogen antiporters (NHX) are important
antiporter genes which can help plants to exclude Na+ and Cl- ions through membranes or deposits
in the vacuole to maintain the cell osmotic level [13]. Vacuole-bounded NHX antiporters regulate
pH by countering acidity due to H+ pumps and functions such as H+ leaks to maintain the pH [14].
Besides the compartmentalization of Na+, NHXs could play a role in increasing the salinity tolerance
by adjusting the K+ homeostasis [15–17].

Sodium-hydrogen antiporters (NHX) belongs to the cation proton antiporter1 (CPA1) family, which
seems to have evolved from the sodium-proton antiporter (NhaP) genes in prokaryotes [18–20]. Human
HsNHE was the first eukaryotic sodium hydrogen exchanger gene to be identified [21]. Meanwhile,
in plants NHX1 was the first sodium hydrogen exchanger identified in Arabidopsis [22]. Besides
contributing to salt tolerance [23], NHXs have diverse roles in biochemical and physiological processes,
which include maintaining the pH in flowers [24], cellular expansion [25], K+ homeostasis [26], protein
targeting, and vesicular trafficking [19,27,28]. Arabidopsis have eight members of the NHX genes
that are further categorised into three groups based on their location. AtNHX1-4 is located in the
vacuolar membrane, AtNHX7 and AtNHX8 are located in the plasma membrane, while AtNHX5 and
AtNHX6 are located in the endosomal compartments [29,30]. The plasma membrane-bounded activity
of the Na+/H+ antiporter activity has been studied in barley [31], tomato [32], and wheat [33], while
a tonoplast-associated Na+/H+-antiporter activity has been reported for sugar beet [34], barley [35],
sunflower [36], and Arabidopsis [23]. In Arabidopsis, the Na+ ion efflux is processed by the plasma
membrane located Na+/H+ antiporter AtSOS1 under high salinity [37], while the vacuolar Na+/H+

antiporter catalyzes the sequestration of Na+ in vacuoles. Different studies have shown that the
over-expression of NHX1 enhanced the plant tolerance towards salinity in different crops [20,23,38–40];
wheat NHX2 (TaNHX) transformed into alfalfa enhanced the salinity tolerance due to the homeostasis
of potassium [41], whereas the nhx5 nhx6 double-knockout mutant in Arabidopsis aborted the transport
through the tonoplast, increasing the sensitivity to salt stress [29]. These studies provide convincing
proof of the involvement of the NHX genes in salinity tolerance, and this can be further explored in
economically important crops.

Cotton is a worldwide leading textile fiber crop that has a significant impact on the economy of
many agricultural-based countries [42]. G. barbadense and G. hirsutum, the two allotetraploids, are the
most widely cultivated cotton species. With drastic environmental changes leading to a decline in the
cultivated land area, like many other economic crops, cotton planting fields are moving to salinity
and drought-affected areas. Overall, cotton crop production is always hindered by abiotic stresses,
such as cold, heat, drought, and salinity [43,44]. Despite the fact that there are some natural varieties
that are tolerant to drought and salinity, most high-quality cotton cultivars are sensitive to drought
and salinity; in those cultivars, high soil salt concentrations affect the germination and emergence of
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seedlings [45,46], root growth [47,48], flowering, boll development, and fiber quality [49–51], causing
an up to 50% loss in yield [52]. Finding the mechanism of abiotic stress tolerance will be of great
significance for cotton production and genetic improvement.

In this study, we performed a genome-wide analysis of NHX genes in G. barbadense in comparison
with G. hirsutum, including the phylogenetic relationships, a motif analysis, promoter analysis,
the transcript expression under salt stress in different tissues, the chromosomal location, and the gene
structures. The sequencing of many cotton species provides a wide range of genome data resources
for gene family research [53–58]. Through a systematic analysis of all the members of the NHX gene,
we can compare the gene regulation, expression pattern, and eventually their biological functions
in cotton.

2. Materials and Methods

2.1. Characterization of Sodium Proton Antiporters

The NHX transporters are characterized by an Na+_H+_Exchanger domain (PF00999) (http://pfam.
xfam.org/) [59]. The amino acid sequences of the NHX genes of G. hirsutum (JGI Version 2.0), G. barbadense
(HAU, Version 1.0), G. arboreum (CRI, Version 1.0), and G. raimondi (JGI, Version 2.0) were downloaded from
CottonFGD (https://cottonfgd.org/) [60] and were scanned against the Na+_H+_Exchanger domain using
the HMMER 3.1b2 online software (https://www.ebi.ac.uk/Tools/hmmer/) [61]. The transmembrane domain
prediction was made using the TMHMM server v.2.0 (http://www.cbs.dtu.dk/services/TMHMM/) [62], and,
for the subcellular localization, CELLO v.2.5 (http://cello.life.nctu.edu.tw/) [63,64] was used. Netphos 3.1 [65]
was used for the phosphorylation sites, and the prediction of the conserved motifs was carried out by
MEME [66] with parameters such as the 2–20 motif sites, 10 no. of motifs, and 6–50-wide motif width; for all
other tools, the default settings were used. The molecular weight (MW) and isoelectric point (pI) of the amino
acid sequences were predicted using the online program ProtParam (http://web.expasy.org/protparam/).

2.2. Phylogeny and Divergence Analysis

A maximum likelihood phylogenetic tree was constructed with the amino acid sequences of
Gossypium hirsutum (Gh), Gossypium barbadence (Gb), Gossypium arboreum (Ga), Gossypium raimondii (Gr),
Arabidopsis thaliana (At), Vitis vinifera (Vv), Poplus trichocarpa (Ptr), Sorghum bicolor (Sb), Medicago truncatula
(Mt), Eutrema halophilum (Eh), and Physcomitrella patens (Pp). The NHX protein sequences of four
cotton species were downloaded from Cotton FGD and were already reported for S. bicolor and
P. patens [67]. T. halophilum, also known as E. halophilum [68]; V. vinifera; P. trichocarpa [69]; A. thaliana [37];
and M. truncatula [70] were downloaded from the online Phytozome v11 (https://phytozome.jgi.doe.gov/

pz/portal.html) (Table S1). All the retrieved amino acid sequences were confirmed with the hidden Markov
model (HMM) using the PF00999 Na+_H+ exchanger domain. The sequences were then aligned using
muscle and subjected to a phylogenetic analysis using MEGA 10.0 [71]; the bootstrap value was kept
at 1000. The resulting tree was visualized using iTOL v5 (https://itol.embl.de/) [72]. Tbtools [73] were used
to estimate the gene duplication events. To further calculate the synonymous (ds) and non-synonymous
(dN) substitution rates, the PAL2NAL program [74] was used.

2.3. Promoter and Gene Structure Analysis

The upstream 2 Kb sequences for all the NHX genes of G. barbadense and G. hirsutum were
analyzed in silico to find out the potential Cis-acting elements. All the promoters were submitted to
PLANTCARE [75], and the resulting Cis-acting elements were categorized based on their functional
class. The Gene Structure Display Server tool was used for the analysis of the gene structure [76].

2.4. Protein-Protein Interaction and Physical Mapping

The STRING database (https://string-db.org) was used to predict the protein-protein interactions.
The genomic coordinates of the transporters were extracted from the Cotton FGD Database (https:

http://pfam.xfam.org/
http://pfam.xfam.org/
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//cottonfgd.org/) [60] using the HAU assembly for G. barbadense and the JGI assembly for G. hirsutum and
then used to map the genes onto different chromosomes physically.

2.5. Expression Analysis under Salinity

To investigate the expression level of NHX transporters under salinity stress, the G. barbadense
cultivar Hai7124 and the G. hirsutum cultivar TM-1 were sown in pots in greenhouse conditions with
temperatures ranging from 25 to 30 ◦C and with 12 h light and 12 h dark. At the emergence of true
leaves, the seedlings were treated with a 400 mM salinity level and tap water served as a control.
Samples were taken from the leaves, stems, and roots 0 h, 3 h, 6h, and 12 h after the treatment, then they
were snap-frozen in liquid nitrogen and subsequently stored at −80 ◦C until the RNA was extracted.

2.6. RNA Extraction and Quantitative Real-Time PCR Analysis

The total RNA was isolated from all the samples using the EASYspin RNA plant-kit (Cat#DR103-03)
following the instruction manual. DNaseI (RNase-free) was used to eliminate the genomic DNA
contamination in the RNA samples. The concentration and purity was checked by Thermo fisher
Scientific Nano-Drop One and run on 1% agarose gel. The total RNA (5 g) was taken as a template
for a first strand cDNA synthesis using the iScriptTm Reverse Transcription Supermix for RT-qPCR
(BIO-RAD, Hercules, CA, USA).

BIO-RAD’s CFX Connect Real-Time PCR Detection System was used to study the relative
expression level of the G.barbadense and G. hirsutum NHX genes using the iTAQ UNIVERSAL SYBR
GREEN MIX (BIO-RAD) with gene-specific primers. Each gene expression was normalized with the
Actin genes [77]. The thermal cycler conditions were 95 ◦C for 3 min, followed by 40 cycles of 95 ◦C for
10 s, 60 ◦C for 1 s, and 72 ◦C for 30 s, and the melting curve stage was at 95 ◦C for 10 s, 65 ◦C for 1 min,
and 97 ◦C for 1–5 s.

3. Results

3.1. Characterization of NHX Genes in Cotton Species

To retrieve the members of the NHX gene family, we searched four cotton species’ genome data
based on the Na+_H+_Exchanger domain (PF00999). A total of 25 NHX genes in G. barbadense, 23
in G. hirsutum, 13 in G. arboreum, and 13 in G. raimondii were identified. We further determined the
biophysical properties of the G. barbadense NHX genes including the locus ID, CDS length (bp), protein
length (aa), Na+/H+ exchanger domain, predicted protein molecular weight (MW), predicted cellular
localization, isoelectric points (pI), and trans-membrane domains. The NHX proteins were predicted
to be localized on the plasma membrane, endoplasmic reticulum, and vacuole with number of amino
acids ranging from 164 to 1152. The molecular weight ranges from 18.66 kDa (Gb-NHX1) to 128.14 kDa
(Gb-NHX7-1D) (Table 1, Figure S1). Previously, it has been reported that the distribution pattern of
intron/exon in a gene play a vital role in its biological function. The number of exons for both the G.
barbadense and G. hirsutum transporters varies from 14 to 23, with the exception of NHX1 (Figure 1).
Moreover, the gene structure analysis of the tetraploid cotton species (G. hirsutum and G. barbadense)
along with the phylogeny results showed that the genes with a similar intron/exon pattern clustered
near to each other in same groups (Figure S2). An in silico analysis revealed that the NHX transporters
are mostly phosphorylated with protein kinase C, cyclin-dependent protein kinase (CDC2), and protein
kinase A (PKA), respectively, and very less with the ataxia telangiectasia mutated (ATM). The most
common site for phosphorylation was serine, in comparison with theorine and tyrosine (Table S2).

https://cottonfgd.org/
https://cottonfgd.org/
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Table 1. Characteristics of the G. barbadense sodium-proton antiporter (NHX) transporters.

Gene Name Gene ID Protein
(aa)

CDS
(bp)

MW
(kDa) pI Localization

Na+/H+
Exchanger
Domain

(Start–End)

Gb-NHX1 Gbar_D07G012760 164 1455 18.666 10.438 Vac Nil
Gb-NHX2-1A Gbar_A02G004630 535 1527 59.063 8.663 Vac 22–437
Gb-NHX2-2A Gbar_A08G023430 320 1608 35.548 10.181 Vac 7–212
Gb-NHX2-3A Gbar_A09G007060 542 3459 59.844 7.858 Vac 29–444
Gb-NHX2-4A Gbar_A09G025000 541 1587 59.721 9.05 Vac 25–445
Gb-NHX2-5A Gbar_A11G028010 540 963 59.586 6.989 Vac 16–440
Gb-NHX2-6A Gbar_A11G025170 543 1629 60.106 7.657 Vac 24–445
Gb-NHX2-7A Gbar_A12G000720 445 1626 49.371 8.063 Vac 17–420
Gb-NHX2-8A Gbar_A13G011300 541 1632 59.706 8.552 Vac 25–444
Gb-NHX4-1A Gbar_A01G007690 508 1623 56.977 7.591 Vac 16–426
Gb-NHX6-1A Gbar_A01G002880 484 1338 53.246 6.795 Endo 25–433
Gb-NHX6-2A Gbar_A06G019530 528 1626 58.41 5.514 Vac 25–437
Gb-NHX7-1A Gbar_A03G012870 1152 1584 128.07 6.878 PM 29–445
Gb-NHX2-1D Gbar_D08G024100 551 1578 61.315 8.457 Vac 30–434
GB-NHX2-2D Gbar_D02G005160 535 1608 59.178 8.453 Vac 22–437
Gb-NHX2-3D Gbar_D09G006790 542 3459 60.015 8.731 Vac 29–444
Gb-NHX2-4D Gbar_D09G024630 541 1572 59.705 9.175 Vac 29–444
Gb-NHX2-5D Gbar_D11G026100 497 495 55.119 7.009 Vac 4–406
Gb-NHX2-6D Gbar_D11G028500 542 1656 59.758 6.42 Vac 19–448
Gb-NHX2-7D Gbar_D12G000860 525 1629 58.126 8.549 Vac 25–444
Gb-NHX2-8D Gbar_D13G011070 541 1626 59.715 8.554 Vac 31–442
Gb-NHX4-1D Gbar_D01G007950 525 1494 59.139 7.62 Vac 21–441
GB-NHX6-1D Gbar_D01G003050 527 1629 58.056 5.978 Endo 28–437
Gb-NHX6-2D Gbar_D06G020390 523 1578 57.72 5.494 Endo 28–432
Gb-NHX7-1D Gbar_D02G014810 1152 1626 128.14 6.764 PM 31–443

aa: amino acid; pI: isoelectric point; MW: molecular weight; Vac: vacuole; Pm: plasma membrane;
Endo: endomembrane.
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Figure 1. Gene Structure of the G. barbadense NHX transporters. Red box represents the exons and the
black lines represent the introns.

3.2. Phylogeny and Sequence Logos of GbNHX Genes with Different Species

In order to find the evolutionary relationship among the NHX genes, the protein sequences from
11 different plant species, including 4 gossypium species, G. hirsutum, G. barbadence, G. arboreum,
and G. raimondii; 5 dicotyledonous angiosperms, A. thaliana, V. vinifera, P. trichocarpa, M. truncatula,
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and E. halophilum; one monocotyledonous angiosperm, S. bicolor; and one bryophyte, P. patens, were
retrieved. A maximum likelihood tree was constructed among 123 NHX genes of the above-mentioned
plant species. The phylogenetic tree depicted a direct relation with the subcellular localization, as
all the NHX transporter proteins from different species clustered in three clades based upon their
predicted location—viz., VAC (vacuolar membrane-bounded), ENDO (endomembrane-bounded),
and PM (plasma membrane-bounded). Moreover, the VAC class has 85 genes, as most types of NHX
genes (NHX1, 2, 3, and 4) from different species are present on the vacuolar membrane, while ENDO
has 20 and the PM class has 18 genes. Among the gossypium species, the VAC class has NHX1, NHX2,
and NHX4; the ENDO class has NHX6; and the PM class has NHX7 (Figure 2). To investigate the
amino acid changes in the NHX domain across four cotton species, we generated the sequence logos of
conserved amino acids. We found that many sequence logos were highly conserved across the N and
C termini among different species. Within a species, the NHX domain of G. raimondii has the most
conserved sequences (Figure S3).
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Figure 2. Phylogenetic tree of sodium transporters between the NHX transporters of 11 plant species
by the neighbor-end joining method using MEGA 10.0. The tree divides all the 125 NHX genes into
three groups based on their subcellular localization. Prefixes such as Gh, Gb, Gr, Ga, At, Vv, Ptr, Sb,
Medtr, Eh, and Pp were used before the name of the species G. hirsutum, G. barbadense, G. raimondii,
G. arboreum, A. thaliana, V. vinifera, P. trichocarpa, S. bicolor, M. truncatula, E. halophilum, and P. patens,
respectively. G. barbadense genes are represented by bold letters. The amino acid sequences used in
phylogenetic analysis are provided in Table S1.
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3.3. Comparison of Motifs and Physical Genome Mapping of NHX Genes in G. barbadense and G. hirsutum

A motif prediction carried out by MEME with 0–10 motif sites showed that all of the G. barbadense
NHX transporters except one (Gb-NHX2-2A) have an amiloride binding motif, while in the case of
G. hirsutum, all transporters have this motif (Figure 3a,b). To further investigate the presence of this
motif in the NHX genes of other species, we aligned 99 amino acid sequences from the gossypium
species, V. vinifera, M. trunculata, A. thaliana, and P. trichocarpa. Our results showed that almost all
(97) the NHX transporters have an amiloride binding site, except Gb-NHX2-2A and GaNHX6-1 of
G. barbadense and G. arboreum, respectively (Figure S4). The physical mapping of the NHX transporters
on the corresponding chromosomal loci in four Gossypium species showed that the NHX genes are
scattered on both the A and D genomes. In G. barbadense, 12 genes were mapped on the At sub-genome,
while 13 were mapped on the Dt sub-genome. In case of G. hirsutum, the At sub genome has 11 and
the Dt sub-genome has 12 NHX genes. In both the allotertaploid species, A01, A09, A11, D01, D02,
D09, and D11 have two, while A02, A03, A06, A12, A13, D06, D07, D12, and D13 have one NHX
transporter each. Chromosomal mapping also showed some differences among both species, with only
G. barbadense having one transporter on A08 and D08. Moreover, in Gb and Gh two NHX transporters
were present on the chromosomes D01, DO9, and D11 each, while G. raimondii, the progenitor of the D
genome, has no member on these chromosomes (Table 2, Figure S5).

3.4. Synteny Analysis and Ka/Ks Ratio of NHX in Cotton Species

To investigate the relationship among allotetraploid G. barbadense and its diploid ancestors G. arboreum
and G. raimondii, a neighbor-end joining tree was constructed (Figure S6). The clusters formed in the tree
with the same type of NHX genes from all three species provide evidence that G. barbadense is the result of
hybridization between the two diploid cotton species, G. arboreum and G. raimondii.

Being an allotetraploid, upland cotton is a model crop species to study natural polyploidy [78].
To study the relationship between the GbNHX and GhNHX genes, orthologous/paralogous genes pairs
were identified for the At and Dt sub-genomes. In accordance with previous findings, our study also
demonstrated that the At as well as the Dt sub-genomes have orthologs in the A (G. arboreum) or
D (G. raimondii) genomes (Figure 4a,b). The synteny analysis showed a total of 30 gene duplication
events in G.barbadense, while there were 31 in G. hirsutum on the basis of a whole-genome analysis
(Table 3). Most of the GbNHX genes showed whole-genome or segmental duplication. Furthermore,
to estimate the selection pressure on the Gossypium NHX transporters during the evolutionary time,
we calculated the Ka and Ks values and Ka/Ks ratio in both tetraploid species. The Ka/Ks ratio for
most of the genes was less than 1, while for only three (Gb-NHX2-2A, Gb-NHX2-7D, and Gh_NHX6-3D)
was it more than 1 (Table S4). This indicates that the cotton NHX genes have been subjected to strong
purifying selection. Interestingly, an expression analysis also revealed that G. barbadense Gb-NHX2-7D
and G. hirsutum Gh-NHX6-3D have a higher expression in different tissues under salinity stress.
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Table 2. Chromosomal location of the NHX genes in the Gossypium species.

Chromosome G. arboreum G. raimondii G. barbadense G. hirsutum

A01 Ga_NHX6-1 Gb-NHX6-1A Gh_NHX6-1A
A01 Ga_NHX4 Gb-NHX4-1A Gh_NHX4-1A
A02 Gb-NHX2-1A Gh_NHX2-1A
A03 Ga_NHX2-1
A03 Ga_NHX7 Gb-NHX7-1A Gh_NHX7-1A
A06 Ga_NHX1
A06 Ga_NHX6-2 Gb-NHX6-2A Gh_NHX6-2A
A08 Ga_NHX2-2 Gb-NHX2-2A
A09 Ga_NHX2-3 Gb-NHX2-3A Gh_NHX2-2A
A09 Ga_NHX2-4 Gb-NHX2-4A Gh_NHX2-3A
A11 Ga_NHX2-5 Gb-NHX2-6A Gh_NHX2-4A
A11 Ga_NHX2-6 Gb-NHX2-5A Gh_NHX2-5A
A12 Ga_NHX2-7 Gb-NHX2-7A Gh_NHX2-6A
A13 Ga_NHX2-8 Gb-NHX2-8A Gh_NHX2-7A
D01 Gb-NHX6-1D Gh_NHX6-1D
D01 Gb-NHX4-1D Gh_NHX4-1D
D02 Gr_NHX6-1 Gb-NHX2-2D Gh_NHX2-1D
D02 Gr_NHX4 Gb-NHX7-1D Gh_NHX7-1D
D04 Gr_NHX2-1
D05 Gr_NHX2-2
D05 Gr_NHX7
D06 Gr_NHX2-3 Gb-NHX6-2D Gh_NHX6-2D
D06 Gr_NHX2-4
D07 Gr_NHX2-5 Gb-NHX1 Gh_NHX1
D07 Gr_NHX2-6
D08 Gr_NHX2-7 Gb-NHX2-1D
D09 Gb-NHX2-3D Gh_NHX2-2D
D09 Gb-NHX2-4D Gh_NHX2-3D
D10 Gr_NHX2-8
D10 Gr_NHX6-2
D11 Gb-NHX2-5D Gh_NHX2-4D
D11 Gb-NHX2-6D Gh_NHX2-5D
D12 Gb-NHX2-7D Gh_NHX2-6D
D13 Gr_NHX2-9 Gb-NHX2-8D Gh_NHX2-7D
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Table 3. Orthologous and paralogous gene pairs for Gb and Gh.

G. barbadense Orthologous/Paralogous G. hirsutum Orthologous/Paralogous

Gene ID Gene ID Gene ID Gene ID

Gb-NHX6-1A GB-NHX6-1D Gh_NHX6-1 Gh_NHX2-2
Gb-NHX4-1A Gb-NHX4-1D Gh_NHX6-1 Gh_NHX2-3
Gb-NHX2-1A Gb-NHX2-4A Gh_NHX6-1 Gh_NHX6-3
Gb-NHX2-1A Gb-NHX2-3A Gh_NHX6-1 Gh_NHX2-9
Gb-NHX2-1A GB-NHX2-2D Gh_NHX6-1 Gh_NHX2-10
Gb-NHX2-1A Gb-NHX2-4D Gh_NHX4-1 Gh_NHX4-2
Gb-NHX2-1A Gb-NHX2-3D Gh_NHX2-1 Gh_NHX2-2
Gb-NHX7-1A Gb-NHX7-1D Gh_NHX2-1 Gh_NHX2-3
Gb-NHX6-2A Gb-NHX6-2D Gh_NHX2-1 Gh_NHX2-6
Gb-NHX2-2A Gb-NHX2-6A Gh_NHX2-1 Gh_NHX2-8
Gb-NHX2-2A Gb-NHX2-1D.1 Gh_NHX2-1 Gh_NHX2-10
Gb-NHX2-2A Gb-NHX2-8D.1 Gh_NHX2-1 Gh_NHX2-9
Gb-NHX2-4A GB-NHX2-2D Gh_NHX7-1 Gh_NHX7-2
Gb-NHX2-3A GB-NHX2-2D Gh_NHX2-2 Gh_NHX2-3
Gb-NHX2-4A Gb-NHX2-4D Gh_NHX2-2 Gh_NHX2-8
Gb-NHX2-3A Gb-NHX2-3D Gh_NHX2-2 Gh_NHX6-4
Gb-NHX2-6A Gb-NHX2-8A Gh_NHX2-2 Gh_NHX2-9
Gb-NHX2-6A Gb-NHX2-1D Gh_NHX2-3 Gh_NHX2-8
Gb-NHX2-6A Gb-NHX2-5D Gh_NHX2-3 Gh_NHX2-10
Gb-NHX2-5A Gb-NHX2-6D Gh_NHX2-3 Gh_NHX2-9
Gb-NHX2-6A Gb-NHX2-8D Gh_NHX2-4 Gh_NHX2-7
Gb-NHX2-7A Gb-NHX2-7D Gh_NHX2-4 Gh_NHX2-11
Gb-NHX2-8A Gb-NHX2-1D Gh_NHX2-4 Gh_NHX2-14
Gb-NHX2-8A Gb-NHX2-5D Gh_NHX2-5 Gh_NHX2-12
Gb-NHX2-8A Gb-NHX2-8D Gh_NHX2-6 Gh_NHX2-8
GB-NHX2-2D Gb-NHX2-4D Gh_NHX2-7 Gh_NHX2-11
GB-NHX2-2D Gb-NHX2-3D Gh_NHX2-7 Gh_NHX2-14
Gb-NHX2-1D Gb-NHX2-5D Gh_NHX2-8 Gh_NHX2-10
Gb-NHX2-1D Gb-NHX2-8D Gh_NHX2-8 Gh_NHX2-9
Gb-NHX2-5D Gb-NHX2-8D Gh_NHX6-4 Gh_NHX2-9

Gh_NHX2-11 Gh_NHX2-14

3.5. Promoter Analysis of G. barbadense and G. hirsutum NHX Genes

Cis-acting elements in the promoter region play a key role in defining the plant response
towards stress and light and in growth regulation. To investigate the transcriptional potential of
the Na+/H+ transporter genes, we analyzed and predicted the Cis-elements in 2000 bp promoter
regions upstream of the start codon. Besides the abundant amount of core promoter/enhancer
elements—i.e., CAAT-Box (CAAT, CAAAT, and TGCCAAC) and TATA-box (ATTATA, TAAAGATT,
TATTTAAA, TATA, ccTATAAAaa, TATACA), with a total number of 806 and 1178, respectively—we
found different elements related to stress, light, and hormone response. Interestingly, the NHX
genes contained a larger number of Cis-elements related to stress response than to light and
hormone response, indicating their role in stress regulation. The water and drought response
elements MYB (CAACCA/TAAC/TAACTG) and MYC (CAATTG/TCTCTTA/TCTCTTA) were the most
abundant among all the elements present, with a total number of 89 (12%) and 72 (10%), respectively
(Table S5). In G. barbadense, 21 GbNHXs have AREs (anaerobic-responsive elements); 17 have STREs
(stress-responsive elements); 10 contained the WUN-motif (wound-response element); and 9 GbNHXs
had a W-box, which is involved in pathogen response [79]. Meanwhile, the G. hirsutum NHXs have
comparatively less putative Cis-elements, with 17 GhNHXs having AREs and 15 having STREs,
while the WUN-motif and W-box were found in 9 and 7 GhNHXs, respectively. The promoter region of
Gb-NHX7-1A (Gbar_A03G012870) and Gb-NHX7-1D (Gbar_D02G014810) has a maximum number of
stress-responsive Cis-elements (Figure 5).
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3.6. Expression Pattern of G. barbadense NHX Genes and Its Comparison with G. hirsutum under Salt Stress

The expression pattern of NHX genes under salinity stress was checked to investigate their potential
role in G. barbadense and was compared to that of G. hirsutum. Previously, G. barbadense was found to be
more tolerant to salinity than G. hirsutum [80,81]; studies showed that it has more lateral roots under a stress
environment [82]. We used qRT-PCR for the expression analysis of all the NHX transporters in G.barbadense
and G. hirsutum in the root, stem, and leaf tissue at 0, 3, 6, and 12 h time intervals. Our results revealed that
in case of G. barbadesne, most genes show a higher expression level in the stem tissue, while in G. hirsutum,
more genes are expressed in the roots and leaves, with a less significant expression in the stem under
stress as compared with the control (Figures 6 and 7). Ten GbNHX genes—Gb-NHX2-4A, Gb-NHX2-7A
Gb-NHX2-8A, Gb-NHX7-1A, Gb-NHX2-2D, Gb-NHX2-3D, Gb-NHX2-7D, Gb-NHX2-8D Gb-NHX6-1D and
Gb-NHX7-1D—with a higher expression were further analyzed (Figure 7). The genes showed differential
expressions in different tissues. Almost all the genes showed a maximum expression at 12h in different
tissues. Our results also showed that Gb-NHX2-7A, Gb-NHX2-3D, and Gb-NHX2-7D have a higher number
of stress-related Cis-elements in their promoter region that could be related to high expression under
stress. Additionally, the Ka/ks ratio revealed that Gb-NHX2-7D underwent positive selection. Moreover,
we observed that the NHX2 homologues in both species have a high expression under salinity stress at
higher time intervals, followed by NHX7. In G. barbadense, the plasma membrane-bounded NHX7 has a
high expression level in all tissues under stress.

3.7. Protein-Protein Interaction Prediction and GO of GbNHX Genes

On the string database, only the Gossypium raimondii (Gr) protein-protein interaction network was
available until now. Thus, in this study we used the homolog gene between GrNHX and GbNHX to
search in the database. The GrNHX homolog gene and interacted protein were used to construct a
network to predict the GbNHX protein-protein interaction network. We observed that the Gossypium
NHX proteins interact with other proteins, such as HKT1, conferring salinity tolerance and RCD
1 (Radical-Induced Cell Death protein 1), which supports chloroplasts against high ROS (Reactive
oxygen species). The NHX protein also interacted with calcineruin B-like proteins (CBL10) and some
CBL-interacting protein kinases (CIPKs), such as CIPK8 and CIPK 24. Meanwhile, NHX7/SOS1 and
SOS2, interacting with almost all proteins, were found to be the centers of interaction (Figure 8).
When single proteins were subjected to analysis individually, they showed a similar kind of interaction
with related proteins involved in stress tolerance (Figure S7). Moreover, the gene ontology (GO) of the
GbNHX gene showed that they are enriched in 11 GO terms related to potassium ion homeostasis,
the response to salt; the regulation of pH; sodium: proton antiporter activity; solute: proton antiporter
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activity; cation transport; transmembrane transport; the integral component of membrane; sodium ion
transport; the vacuolar membrane; and the plasma membrane (Figure 9, Figure S8, Table S6).Genes 2020, 11, x FOR PEER REVIEW 4 of 23 
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Figure 6. Relative expression level analysis of NHX in Gossypium Hirsutum. Relative expression
of different NHXs is shown under the controlled conditions and salinity stress in different tissues at
different time intervals. Y-axis shows the gene names and X-axis represents the tissue and time interval.
Colors represent the expression level normalized against the control tissues. LC: leaf control; RC: root
control; SC: stem Control; LT: treated leaf; RT: treated root; ST: treated stem.
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4. Discussion

Salinity causes ion toxicity and physiological drought, thus limiting the growth and productivity
of plants [2]. Recently, the availability of high-quality de novo genome assemblies for G. arboreum [56]
and allotetraploids cottons [83] generate new opportunities for precise genome-wide studies in cotton.
The NHXs genes present in plant cells maintain the ionic homeostasis by playing their role in the extrusion
of Na+ ions out of the cell and the compartmentalization of Na+ ions into the vacuole [84]. In the
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current study, a total of 25 with different types—i.e., NHX1, NHX2, NHX4, NHX6, and NHX7—of sodium
transporters have been identified in G. barbadense, based on the Na+_H+_Exchanger domain (Table 1).

A bioinformatics analysis showed that the NHX members in G. barbadense can be divided into
three categories depending upon their subcellular location, with NHX7 localized in the plasma
membrane, NHX6 in the endomembrane, and the others in the tonoplast. In Arabidopsis, both NHX7
and NHX8 are localized in the plasma membrane [85], while NHX5 and NHX6 are present in the
endomembrane [29]. However, no NHX5 and NHX8 were observed in the Gossypium species in
this study (Figure 2). Subcellular localization could be a key factor in defining the function of NXH
transporters. NHX members located on both the plasma membrane and tonoplast play their role in the
exclusion and compartmentalization of excess Na+ and maintain ionic homeostasis. Moreover, some
NHX members that are endomembrane-bounded were found to be vital for cellular cargo trafficking,
growth development, and the regulation of protein processing [13,29]. The phylogenetic analysis
indicated that GbNHX has paralogous or orthologous groups with other Gossypium species members.
The NHX genes in P. trichocarpa [69], S. bicolor [67], and B. vulgaris [86] showed three phylogenetic
clusters based on their location in the cell; we found the same results for cotton NHX transporters.
An amiloride binding site (L/F)FF(I/L)(Y/F)LLPPI, a typical feature of NHX transporters in plants [87,88],
is present in the N-terminal of these proteins; the presence of amiloride even in a micro amount in
the Na+/H+ exchangers inhibits the transport of Na+ transport [89]. This site was found in most of
G. barbadense transporters, such as Arabidopsis and poplar [69] (Figure S2).

During the cotton evolution period, the occurrence of a gene duplication event led to the creation
of new genes [90]. The origin of multi-gene families has been attributed to a region-specific gene
duplication that occurred in upland cotton [53]. The presence of two or more genes on the same
chromosome reveal the possibility of a tandem duplication event, while the genes present on different
chromosomes result in a segmental duplication event. The duplication of genes increase the functional
divergence, which is an essential factor in adoptability under changing environmental conditions [91].
The Ka/Ks ratio is a measure used to examine the mechanisms of gene duplication evolution after
divergence from their ancestors. The Ka/Ks ratio gives an insight into the selection pressure on amino
acid substitutions, with a Ka/Ks ratio < 1 indicating a purifying selection, while a ratio > 1 suggests the
possibility of positive selection. Wang et al. [92] showed in T. aestivum and TaBT1 that the positive
selection of a gene during evolution increases its potential and has more transcription levels under
stress conditions. Almost all except 3 out of 31 duplication events occurred in the G.barbadense and
G. hirsutum NHX transporters showing a <1 substitution value, indicating that these genes underwent
a positive Darwinism or purifying selection [93] (Table 3).

The promoter region of G. barbadense and G. hirsutum NHX transporters has light, stress,
and hormone- and development-responsive Cis-acting elements, showing that these genes are not
only regulated by abiotic stress but also by different hormones (Table S5). However, the number of
stress-responsive Cis-elements exceeds the others, indicating their major role in abiotic stress response
(Figure 5). Similar to Arabidopsis [67], abscisic acid-responsive elements (ABRE), auxin-responsive
elements, fungal-responsive elements, circadian elements, low temperature-responsive elements (LTR),
heat shock elements (HSE), and MYB Cis-elements were noticed in the Gossypium barbadesne NHX
gene promoter. The β-glucoronidase gene driven by the AtMYB2 promoter in Arabidopsis was found
to be inducible by osmotic stresses [94]. G-box elements that act as positive regulators of early leaf
senescence in rice [95] were also detected in the promoter regions of Gossypium NHX transporters,
implying that these genes also modulate the leaf senescence.

In plants, sodium-proton antiporters facilitate both Na+/H+ and K+/H+ exchanges, therefore
contributing to both stress tolerance and K+ nutrition [25,26,96]. NHX genes have been reported to
enhance salinity tolerance in different species, such as A. thaliana [37], B. vulgaris [97], S, lycopersicum [40,98],
H. vulgare [99], Z. maize [100], T. aestivum [101], G. max [102], O. sativa [103,104], and S. bicolor [67]. Our study
revealed that in G. barbadense and G. hirsutum, the NHX genes express differentially in different tissues at
different time intervals under salinity stress. Ma et al. [105] also observed different expression levels of
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NHX genes in different tissues of V. vinifera L. The vac-class NHX2 homologues in cotton show a higher
expression under salinity stress. When R. trigyna is exposed to salinity stress, an increase in the transcription
level of the vac-class RtNHX1 gene in leaves was observed [106]. A similar kind of expression pattern was
observed in sweet potato, IBNHX2 [107] and in T. aestivum, TaNHX3 [108] under the salt treatment.

The plasma membrane-bounded NHX7/SOS1 gene helps in the exclusion of Na+ ions from the
cell to regulate ionic homeostasis [5,109]; it was validated in the present study that Gb-NHX7 showed
a higher expression under the salinity stress. It is noticeable that its expression is higher in roots at
all time periods than in other tissues. Similar results have been noticed in Salicornia brachiate [110],
P. tenuiflora [111], and Z. xanthoxylum [112], where plasma membrane-bounded NHX7/SOS1 showed
a higher expression in roots than in shoots and was further increased at a higher salt stress. These
results proposed that GbNHX7 could be responsible for the long distance transport of Na+ ions, but
the detailed mechanism is still to be explored.

The protein-protein interaction showed that GbNHX interacted with many other proteins. The tails
on the C-terminal of SOS1 and NHX1 were revealed to be essential for protein-protein interaction by
Quintero at el. [113]. In Arabidopsis, SOS1 interacts with RCD1 (radical-induced cell death protein 1)
to increase the tolerance against oxidative stress caused by ROS [114]. Our hypothesis also indicated
the presence of interaction between NHX7/SOS1 and RCD1 to improve the salt tolerance ability of
the plants. Moreover, in the present study HKT1 was found to interact with almost all the GbNHX
genes. Zhang et al. [111] observed that under considerably high salt concentrations when vacuoles
have no more capacity to sequester Na+ ions, the HKT1;5 is strongly expressed to increase the salinity
tolerance by unloading excess Na+ ions from the xylem. The interaction between the CBL proteins and
CIPK is also known to be involved in enhancing the ability of the plant to withstand salt stress [115].
Kim et al. [116] observed that CIPK24/SOS2 make a complex with CBL3/SOS3 that phosphorylates
the NHX7/SOS1 localized in the plasma membrane to pump Na+ ions out from the cell. The single
protein-protein interaction is this study also infers a similar kind of results, showing the interaction of
NHX7/SOS1 with CIPK24 and CIPK8, besides others.

5. Conclusions

A genome-wide study of G. barbadense revealed the presence of four types (NHX2, NHX4,
NHX6, and NHX7) of sodium transporters that can be categorized as plasma membrane
(GbNHX7), endomembrane (GbNHX6), and vacuolar (GbNHX1, 2, and 4), based on their location.
The amiloride-binding site (FFIYLLPPI) is found in all GbNHX genes. The high number of stress
related Cis-acting elements observed in promoters show their role in tolerance against abiotic stresses.
A chromosomal localization and collinearity analysis showed the purified selection and evolution
of gossypium NHX genes. An in silico PPI network analysis showed that only GbNHX7 interacts
with CBLs and CIPKs, suggesting this protein might be the primary NHX involved in the CBL-CIPK
pathway during the salt stress response. The gene ontology (GO) showed that these genes are involved
in the proton antiport, sodium ion transport across the membrane, and salinity response activities.
A tissue-specific qRT-PCR-based expression analysis of NHX antiporters revealed that they are more
expressed under stress conditions in comparison with control conditions. The expression pattern was
also different in different tissues of G. barbadense and G. hirsutum. The higher expression of vac-class
in leaves may also be responsible for the deposition of salts, especially in older leaves. These results
showed that these genes could be involved in various developmental processes and stress responses
by maintaining the turgor pressure, pH, and ionic homeostasis. Our findings would be useful in
selecting candidate genes for functional validation in relation to high soil salinity stress tolerance for
the improvement of crop plants.
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