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Abstract

Background: Identification of disease-related genes in association studies is challenged by the
large number of SNPs typed. To address the dilution of power caused by high dimensionality, and
to generate results that are biologically interpretable, it is critical to take into consideration spatial
correlation of SNPs along the genome. With the goal of identifying true genetic associations,
partitioning the genome according to spatial correlation can be a powerful and meaningful way to
address this dimensionality problem.

Results: We developed and validated an MCMC Algorithm To Identify blocks of Linkage
DisEquilibrium (MATILDE) for clustering contiguous SNPs, and a statistical testing framework to
detect association using partitions as units of analysis. We compared its ability to detect true SNP
associations to that of the most commonly used algorithm for block partitioning, as implemented
in the Haploview and HapBlock software. Simulations were based on artificially assigning
phenotypes to individuals with SNPs corresponding to region l4ql| of the HapMap database.
When block partitioning is performed using MATILDE, the ability to correctly identify a disease
SNP is higher, especially for small effects, than it is with the alternatives considered.

Advantages can be both in terms of true positive findings and limiting the number of false
discoveries. Finer partitions provided by LD-based methods or by marker-by-marker analysis are
efficient only for detecting big effects, or in presence of large sample sizes. The probabilistic
approach we propose offers several additional advantages, including: a) adapting the estimation of
blocks to the population, technology, and sample size of the study; b) probabilistic assessment of
uncertainty about block boundaries and about whether any two SNPs are in the same block; c) user
selection of the probability threshold for assigning SNPs to the same block.

Conclusion: We demonstrate that, in realistic scenarios, our adaptive, study-specific block
partitioning approach is as or more efficient than currently available LD-based approaches in
guiding the search for disease loci.
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Background

After emerging as one of the main sources of subject-spe-
cific variation in the human genome, Single Nucleotide
Polymorphisms (SNPs) are now routinely used to investi-
gate the role of genetics in a wide spectrum of diseases [1].
The number of known SNPs is continuously growing and
it is presently approaching twelve million http://
www.ncbi.nlm.nih.gov/projects/SNP/. Technological
progress is now enabling the genotyping of up to one mil-
lion SNPs at a time, a number also expected to increase
rapidly. This provides scientists with a considerable
amount of information for the study of gene-disease asso-
ciations [2]. The ability to identify associations by statisti-
cal analyses of SNP data is challenged by such high
dimensionality. Strategies to organize SNP information
for discovery of disease susceptibility loci have been pro-
posed [3]. Some of these methods are especially useful
when dealing with binary covariates [4], while others
require exceptional computer power [5].

By studying the distribution of Linkage Disequilibrium
(LD) across the genome, several authors observed that LD
is related to the distance between markers [6-10]. The rela-
tionship between intermarker distance and LD does not
follow a regular pattern and is related to the particular
location in the human genome [11]. From these observa-
tions, it has been suggested that genetic information could
be clustered into smaller sets of genomic regions [12-15]
possibly separated by recombination hot spots [16].
Although the exact genetic basis for the existence of these
regions is still controversial, empirically, the statistical
dependence of neighboring SNPs was shown to be high.
The evidence that SNPs cluster more than by chance alone
suggests that treating SNPs as independent entities in
association studies could be inefficient, and prone to
missing true loci if multiple testing adjustments are
applied. Recently, haplotype block partitioning was suc-
cessfully used to accommodate the multiple testing con-
cern while detecting genetic association in prostate cancer
[17]. However, block partitioning methods differ substan-
tially in their results [18,19]. Most comparisons between
blocking methods have focused on their similarity in
boundary calling or SNP membership, rather than on
their ability to detect true associations.

In the present article we develop and validate a new meth-
odology for DNA block partitioning, with a focus on
improving power for association studies. Partitioning is
viewed pragmatically as a genetically motivated approach
to address the challenge of dimensionality. Our goal is to
improve power in multiple testing and to make associa-
tion testing units that are biologically meaningful. We
consider each block as a single entity, by estimating a
within block haplotype, thus reducing a sequence of S
consecutive SNPs into K consecutive haplotype blocks.
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For inference on blocks we propose a probabilistic
approach based on the LD map: the key idea is that pair-
wise LD statistics can arise from one of two separate prob-
ability distribution functions, one being the LD
distribution, the other the independence distribution.
This is, of course, a simplification because real LD is not
binary, but this assumption has been the essence of the
haplotype blocking concept. From this standpoint, block-
ing is similar to a classification problem and can be han-
dled using an optimal Bayes classifier. The result is a
vector of probability scores for each candidate block bor-
der SNP.

To implement this plan, we developed an MCMC Algo-
rithm To Identify blocks of Linkage DisEquilibrium
(MATILDE) and a framework for using MATILDE parti-
tions in genetic association analysis. Our implementation
presents several advantages over existing approaches,
including: a) the estimation of the distribution of chance
LD is specific to the population, the technology and the
sample size of the study considered; b) the uncertainty
about block boundaries and about whether any two SNPs
are in the same block is assessed probabilistically, and c)
the option for users to tune the probability threshold for
assigning SNPs to the same block.

From the perspective of association studies, a block parti-
tioning algorithm is more appealing than other ones if it
provides the researcher higher chance to detect a SNP truly
associated to the study trait. With detection of association
in mind, we compared MATILDE and the most com-
monly used methods for haplotype block partitioning
with respect to their ability to capture truly associated
SNPs, rather than on boundary or membership agreement
as in previous comparisons [18-20].

Results

In our analysis we considered a representative data set
from the HapMap project [21] (release 2005-09 phase II 6
chr). We considered the first 500 non redundant SNPs in
region 14q11, with minor allele frequency (MAF) greater
than 0.05 and Hardy Weinberg Equilibrium (HWE) at o =
0.01. For simplicity, we focused on unrelated individuals
from a homogeneous population, by choosing the 45 Jap-
anese, who represent the largest group of unrelated indi-
viduals within HapMap. On this data set we first carried
out descriptive comparisons of block partitioning
approaches, and then we performed controlled simulated
experiments to assess the ability of our method to identify
disease loci.

Block partitioning of HapMap data

To illustrate how MATILDE captures LD-block informa-
tion, we compared it to commonly used methods for
block partitioning. Among the many methods available,
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we chose the limited haplotype diversity method by Patil
et al. [13] and extended by Zhang et al. [22], as imple-
mented in the HapBlock software [23] (HapBlock), and
the three LD-based methods implemented in the Haplov-
iew software [24]: the Gabriel et al. approach [15]
(DprimeClI), the Solid Spine of LD (SSD), and the four
gamete test [25] (4Gamete). The computational speed of
MATILDE was comparable to that of the HapBlock algo-
rithm, with both being significantly slower than the rest.
As expected, we observed pronounced differences in the
LD map, depending on the LD statistic (Figs. 1A and 1B,
upper triangles). When LD was estimated with |D'|, many
contiguous SNPs were clustering in blocks, but strong LD
was also observed between very distant SNPs, in a pattern
characterized by noisy stripes. This trend is clearer when
zooming in on the region from the 400" to the 500 SNP
(Fig. 1A1). This made identification of block partitions
more difficult. A cleaner picture was given by 2 (Figs. 1B
and 1B1), which identified a few big blocks, interspersed
by a number of smaller ones, and areas with no blocks.

After 100,000 iterations of MATILDE, the posterior distri-
bution of LD blocks resulted in the partition represented
by the triangles on the lower right of the four panels of Fig.
1. The representation is based on a threshold of 0.5 on the
marginal probability that each location is a block bound-
ary: MATILDE isolated plausible LD blocks when based
on r2, while the noise in |D'| results in a less appealing
partition. The number of estimated blocks was 114 with r2
and 215 with |D'|, including singletons. On the same
data, HapBlock estimated 53 bigger blocks, DprimeCI 284
(217 of which were singletons). Intermediate values were
observed when 4Gamete and SSD were used.

When increasing the sample size from 45 to 1000, using a
resampling approach, the number of blocks estimated by
DprimeCI decreases slightly from 209 to 191 (CV =
4.4%). 4Gamete and SSD were stable (CV < 2.0%), while
HapBlock (CV = 3.0%) was intermediate. MATILDE with
r2and a 0.5 probability cutoff for block boundaries had a
CV of 3.7%. The relatively high variation of DprimeCI and
MATILDE reflects their ability to take advantage of a more
favorable signal-to-noise ratio to provide a more refined
block partition.

A different trend was observed when MATILDE was
applied to |D'|. With increasing sample size the number of
blocks quickly degenerates to 1. This effect can be
explained by a pronounced clustering of |D'| values to the
maximum, which amplifies noise patterns at distant loci.
This "ceiling effect" was also reported in a study compar-
ing population recombination rates [26]. The ceiling
effect is sensitive to noise, especially when the sample size
is small or the allele frequency is extreme, in which case
many observed high disequilibrium pairs would only be
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due to missing allelic combinations at one locus. Using r2
results in a much reduced sensitivity to this problem
[27,28]. For this reason, we only used 12 in the simulation
studies.

An overview of the partitions obtained with each method
is given in Fig. 2, for a sample size of 1000. By modulating
the probability cutoff, MATILDE can generate a fine parti-
tion, as do LD-based methods, or a coarse one, as Hap-
Block (see Additional files 1, 2, 3, and 4 for additional
sample sizes). MATILDE proved stable over varying cutoff,
with little variation in the break points occurring for cut-
offs between 0.1 and 0.9. In most instances, MATILDE
estimated fewer single-SNP blocks than DprimeCI and
4Gamete, but a greater number of smaller blocks than
HapBlock. Moderate to good agreement of break points
was observed between DprimeCl, SSD, and 4Gamete: x
between DprimeCI and 4Gamete ranged between 0.67
and 0.76, depending on sample size; x’s between SSD and
DprimeCl were 0.52-0.60; while they were 0.48-0.53
between SSD and 4Gamete. DprimeCl, SSD, and
4Gamete were not in agreement with HapBlock (k< 0.10
under all conditions). Generally, MATILDE was in an
intermediate position between the LD-based approaches
and HapBlock. x between MATILDE and HapBlock was
low but not null, often taking values greater than 0.10.
When comparing MATILDE to the three LD-based
approaches, we observed that x was nearly the same, usu-
ally ranging between 0.20 and 0.50. The highest agree-
ment was observed between MATILDE and SSD. In
general, as the probability cutoff increased, the agreement
between MATILDE and DprimeCl, 4Gamete, and SSD
decreased. When HapBlock was considered, the agree-
ment with MATILDE was higher for central probability
cutoffs (see Additional file 5 for an extensive overview).
When a break point was concomitantly recognized by the
common methods, it was typically detected by MATILDE
as well.

Comparison of performance in association studies

In our simulation studies, described in detail in the Meth-
ods section, we generated artificial case-control studies
with a single disease SNP, using two genotype-phenotype
association models (dominant or recessive) and a range of
odds ratios and sample sizes. We applied this approach in
turn to all SNPs in the chosen region. This strategy pre-
serves the observed LD in the HapMap sample. After esti-
mating within block haplotypes, we used the likelihood
ratio statistics (LRS) applied to the marginal distribution
of haplotypes for each block, i.e., we performed a haplo-
type-based comparison rather than a diplotype-based
comparison, such that each individual contributes two
haplotypes, rather than one diplotype to the statistic.
SNPs not in a block were considered a block of size one
and in this situation, the LRS was an allelic SNP test. The
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Figure |

Linkage disequilibrium on the studied region and block recognition. Linkage Disequilibrium map of 500 SNPs span-
ning 2 Mb of the ql | region on Chromosome 14, based on the 45 Japanese subjects in the HapMap project [21]. We selected
SNPs having a minor allele frequency of at least 5% and showing evidence of Hardy Weinberg Equilibrium. A. The upper trian-
gle shows the values for |D'|, and the lower triangle shows the blocks estimated using MATILDE on the |D'| values. B. The upper
triangle shows the r2 values, and the lower triangle shows the blocks estimated using MATILDE on the r2 values. Al. A zoom on

the last 100 SNPs of panel A. Bl. A zoom on the last 100 SNPs of panel B.
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Figure 2

Comparison of the block partitions on a simulated sample of 1000 subjects. The method used is indicated on the
left. On the fifth, unlabeled line, ticks are at the positions where at least three of the four methods above it agreed. MATILDE

block structures are reported at different probability cutoffs.

sensitivity and specificity for detecting the causal SNP are
reported in Fig. 3. For each method, block, and simulated
dataset, we declare a positive if the p-value, after multiple
testing adjustment with the Benjamini-Hochberg method
[29], is smaller than .05. MATILDE can be used at differ-
ent cutoffs for the probability that a SNP is a boundary
point between blocks. Varying this threshold generates
the receiver operating characteristic (ROC) curve shown.
The other methods produce a single sensitivity/(1-specifi-

city) pair. DprimeCl, 4Gamete and SSD had high specifi-
city for all OR's, but very low sensitivity. At the other
extreme, sensitivity was generally high for HapBlock, but
this method had a poor specificity thus giving a high
number of false positives. MATILDE was performing gen-
erally at equal or better sensitivity/specificity tradeoffs
than the existing methods, and had the additional advan-
tage that it could be tuned to have a higher sensitivity than
the LD-based approaches. When compared to HapBlock,
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Figure 3

1.0
1-Specificity

Comparison of methods' sensitivity and specificity. Data refer to the simulation of 500 cases and 500 controls assuming
a dominant model. Each panel reports the sensitivity/specificity tradeoff for DIprimeClI (triangle), 4Gamete (reversed triangle),
the SSD (diamond), HapBlock (square) and MATILDE (represented by points on the ROC curves, graphed as circles, and a
smooth estimate of the ROC curve). In addition an allele-based single-SNP association analysis is represented by an "x" while
the genotype-based single-SNP association analysis is represented by a "+". Four effect sizes were considered: the OR is 1.2,

1.4, 1.6 and 1.8, respectively.
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for p-value thresholds that achieve the same sensitivity
level, MATILDE had about 10% greater specificity, and for
the same specificity, nearly half the probability of missing
a true effect - a practically important difference especially
in screening studies. A better performance of MATILDE
over other methods was observed for all sample sizes con-
sidered, as shown in the Additional files 6, 7, 8, and 9.

In addition to blocking approaches, we performed two
types of single-SNP association analysis: allele-based,
indicated with an 'x' in the graph, and genotype-based,
indicated with an '+' in the graph. These are described in
more detail in the Methods section. While the genotype-
based analysis is more appropriate and more common in
practice, the allele-based single-SNP analysis is reported
because it is more directly comparable with the blocking
methods, as it does not use phase information. Any gains
seen in comparing the "x" with the blocking algorithms
can be attributed to blocking. The sensitivity of the allele-
based single-SNP analysis is zero in all scenarios, though
some positive calls would be made at a higher false dis-
covery rate (FDR) of 0.1. In practice, even in SNP-by-SNP
studies, SNPs in close proximity with the one with the
lowest p-value may be examined closely, as SNPs close to
the causal SNP may have low p-values as a result of link-
age disequilibrium. To capture this practice, we relaxed
our definition of a "correct call" in our sensitivity/specifi-
city calculations by considering as true positives all loci
who were within a given distance from the causal SNP,
and satisfied the FDR threshold. We examined SNP win-
dows of 1, 2, 3, and 4 SNPs on each side. In all cases,
results were similar to those reported in Fig. 3, and the
gain in sensitivity was very modest.

Fig. 4 summarizes results obtained using two additional
comparison criteria that better highlight important prop-
erties of the blocking approaches. Criterion R represents
the ratio of the rank of the block including the causal SNP,
and the total number of blocks. On the left sides of the
four panels, we reported the distribution of R at ORs rang-
ing from 1.2 to 1.8. The better methods are those with dis-
tributions of R closer to 1. Boxplots represent variability
over simulated datasets. For small effects, thatis OR = 1.2,
the median R's for DprimeCI, SSD and 4Gamete were
comparable, and all are higher than for HapBlock. The
median for MATILDE at several cutoffs was the highest, by
a sizeable margin, even when compared to the single SNP
analysis. This is because, for small effects, there are often
several SNPs that are ranked better than the causal one in
the single locus analysis. At increasing OR's the perform-
ance of DprimeClI and 4Gamete improved and for values
bigger than 1.4, they were on average slightly better than
MATILDE. For effects > 1.4, the analysis at single locus
outperformed the other methods (see Additional files 10,
11, 12, and 13 for additional sample sizes).

http://www.biomedcentral.com/1471-2164/9/405

Criterion B is the count of SNPs belonging to blocks
ranked as high or higher than the block including the cor-
rect SNP (Fig. 4, right sides). Lower values of B are prefer-
able. For small OR's, the blocking methods performed
comparably, with the exception of MATILDE at cutoffs <
0.1, which had a better performance. At higher OR's (see
Additional files 10, 11, 12, and 13) the methods with the
highest number of single-SNP blocks (DprimeCl,
4Gamete and MATILDE with cutoffs < 0.1) had a signifi-
cantly better performance than SSD, HapBlock and MAT-
ILDE with bigger cutoffs. As expected, the single SNP
analysis performed better than blocking methods by this
criterion. Consistently, low-cutoff MATILDE provided the
best performance in both R and B.

Discussion

Overall, our experimental results suggest that probabilis-
tic modeling of LD patterns is a useful approach to sum-
marize a high dimensional collection of SNPs into a
smaller set of haplotype blocks when searching for dis-
ease-related loci. Our methodology, implemented in the
MATILDE program, adapts to the available data, provides
an assessment of uncertainty, and can be used flexibly as
a dimension reduction tool compared to the alternatives
available so far. In our HapMap-based simulation experi-
ments, MATILDE showed the best ability to rank loci
when looking for small effect sizes. This is a critical
strength, since most SNP association studies involve small
effect sizes. An important, empirical example, in this
sense, was recently illustrated in the field of prostate can-
cer [30]. DprimeCI and 4Gamete perform well in ranking,
though at the cost of a large number of single-SNP blocks,
which makes these methods less efficient when using
multiple comparisons corrections. MATILDE also pro-
vides significant gains in sensitivity when a low specificity
is appropriate — as in SNP screening studies - and is com-
parable to the other methods considered in the high spe-
cificity range.

For a broad range of sample sizes and effect sizes, tradi-
tional single-SNP analyses fail to find the causal locus.
These analyses only become effective when the sample
size is greater than 1000 and the effect size is at least 1.8 —
a rare case in genomics. Otherwise, grouping SNPs into
blocks with any method is a better solution. This conclu-
sion reinforces the suggestion of Zhang et al. [31] that
haplotype-based analysis can be much more powerful
than single locus analysis. Their study was based on Hap-
Block. In our simulations MATILDE shows better per-
formance than HapBlock, so the case for blocking is now
stronger.

While our simulations consider a large number of scenar-
ios (over 850,000) and are closely mimicking real data,
there remain some limitations. First, because of the com-
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R and B distribution. Parallel distribution of the statistics R (relative position of the block containing the right SNP) and B
(number of SNIPs belonging to blocks classified not worse than the true SNP) for a sample size of 500 cases and 500 controls.
Four effect sizes were considered: the OR is 1.2, 1.4, 1.6 and 1.8, respectively. For each panel, the results of simulation with
the allele-based single-SNP, the genotype-based single-SNP analysis, the four common methods (DprimeCl, 4Gamete, SSD and
HapBlock) and the MATILDE at various cutoff thresholds are listed.

putational burden, it would have been prohibitive to con-
sider the joint distribution at two chromosomes after
blocking. Thus our comparisons are based on the simpler
unphased haplotype estimation, whereby each subject
contributes two separate haplotypes, and association is
assessed by comparing the distribution of cases' haplo-
types to that of the controls. This approach is still the most
prevalent in applications, but may negatively affect the
performance of all blocking methods, and may favor the
single marker analysis for big effects, especially with
regard to the R and B performance criteria. To explore the
potential gains in efficiency that can be expected when
using the phase information, we carried out a genotype-
based single-SNP analysis. This is indicated by a '+' in Fig.

3 and should be compared only to the 'x' symbol, which
represents the results of the allele-based single-SNP anal-
ysis. We also reported both analyses in Fig. 4. For R and B
the results are similar, while a difference is observed at an
OR of 1.8 in Fig. 3. The latter, however is partly the result
of a sensitivity to the choice of the significance level, and
is not as pronounced when a stricter level of .01 is
required.

As a second limitation, we focused our comparison on the
most commonly used block partitioning methods. Mini-
mum Description Length (MDL) methods [32-34],
including the MDBIlock implementation [32], have also
been shown to reliably locate boundaries between blocks
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at regions of rapid LD decay, and produce block partitions
of intermediate size between those of LD-based
approaches and those given by limited haplotype diversity
methods. Additionally, future work could consider the
comparison between blocking and using tagging SNPs.
Two useful approaches, HaploBlockFinder [35] and htSN-
Per [36], produce both haplotype or LD blocks, and tag-
ging SNPs. As they yield block partitions similar to those
of methods already covered by Haploview and HapBlock,
they were not considered here, but would be natural
choices if tagging SNPs were studied. Lastly, the iHAP
(integrated haplotype analysis pipeline) [37] integrates
several block partitioning and tagging SNPs methods with
web resources for gene finding. It was explicitly defined to
mine the HapMap dataset by means of the HapBlock soft-
ware and it has not the aim to process user's genotype
data.

Our results include a descriptive analysis of the agreement
among blocking approaches. Our goal is to provide fur-
ther intuition about the reasons behind the performance
of different blocking methods in identifying disease SNPs,
rather than fully characterizing their behavior from a pop-
ulation genetics viewpoint. In our study, block partition-
ing is an intermediate step towards identifying genotype-
phenotype associations, which is ultimately assessed
through statistical models. This bypasses the need for a
gold standard for haplotype blocks, and also brings the
evaluation closer to practical study goals. To account for
the potential instability of estimated blocks when small
sample sizes are taken [20], we also examined large sam-
ple sizes.

While several measurements of agreement between blocks
are available in the literature, we chose the simple « statis-
tic on the between block break points. Alternatively, the
SB, statistic [38] would have been useful when comparing
two populations one of which is considered less diverse
than the other one, that is, in the case where block bound-
aries could vary among populations. In our case, however,
we were considering a homogeneous sample of subjects
from the same geographical location and testing different
methods over the same small chromosomal segment. Our
results were consistent with those of Schwartz et al. [18]
who defined an agreement statistic based on the number
of shared boundaries. The block partition given by MAT-
ILDE was more similar to the LD-based methods than to
HapBlock. Since the MATILDE block estimation is based
on the LD map, this finding was not surprising. Other
authors [19] compared the LD-based method of Gabriel et
al. [15] and the limited haplotype diversity method of
Patil et al. [13], in the Zhang et al. formulation [22]: they
found that block partitions given by the two methods
were different, strongly dependent on minor allele fre-
quencies, and sensitive to changes in the algorithms'
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parameters. We confirm the previous observation [18,19]
that the method from Gabriel et al. [15] generates a higher
number of smaller blocks than that of Patil et al. [13].

Block partitioning criteria can potentially perform at dif-
ferent levels of sensitivity and specificity in different pop-
ulations. Spatial correlation in the genome can be
influenced by a variety of factors, including demographic
history and recombination hotspots [39]. Depending on
how these factors contribute to the block structure in a
population, different partitioning criteria may differ in
their ability to identify associations. An assessment of
how different methods could perform in populations
with different demographic evolution is an interesting
question for further research. MATILDE, however, differs
from biologically based methods such as the four gamete
rule [25] as it was designed pragmatically, without any ref-
erence to biological theories about the origin of blocks.
We can speculate that MATILDE may be more powerful
than methods based on biological hypotheses in situa-
tions where there is noise in the LD pattern, as is the case
of outbred populations. In isolated populations, where
population growth followed a bottleneck event, haplo-
type heterogeneity is much smaller and individuals share
longer chromosomal regions. When this situation is also
accompanied by a reduced number of external individu-
als, one may expect less noise in the LD pattern, and most
of the block partitioning methods should give more simi-
lar results.

Our method allows users to specify a pairwise measure of
LD. This choice matters: in our analysis MATILDE's per-
formances varied depending on whether 2 or |D'| was
used. Both measures have a clear genetic interpretation.
The expected value of 12 is a direct function of the popula-
tion recombination rate, and 72 is the standard j?2 test sta-
tistic divided by the number of chromosomes. Thus, it is
a natural candidate for testing the disequilibrium between
loci [9,40,41]. Strengths and limitations of |D'| have
already been described [28]. LD can be assessed by many
other statistics. An extensive list is provided by Devlin and
Risch [42]. An example is Levin's population attributable
risk [43]. Statistics that show a robust behavior in case
control studies are the difference in proportion d sug-
gested by Nei and Li [44], the odds ratio, and the Yule's Q
[45]; d and Q are bounded between 0 and 1 and between
-1 and 1, respectively. More recently, entropy was sug-
gested as a measure of LD for multiallelic loci [46], and
the volume measures of LD proved to be robust in case of
small samples [47]. In addition, potential candidates are
the Morton's rho [48], which models LD by a linear mix-
ture of SNPs under non-LD and in perfect LD, and the
Delta statistic [49] which is less noisy than r2and D', and
is robust to allele frequency.
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The ability to adapt to SNP density is an advantage of
using a Bayes classifier like MATILDE. Marker density
affects the LD distribution [50], though this is not an issue
when clustering is used only as a dimension reduction
step. In our formulation, block partitioning is related to
the specific set of SNPs typed. This is different from esti-
mating blocks on the basis of recombination hotspots
[51], which aims at uncovering an underlying genetic
structure.

While our implementation was successful as a proof of
principle, additional work remains necessary before the
full potential of dimension-reduction by blocking can be
realized. For example, computational obstacles remain
before the current implementation of MATILDE can be
used efficiently on studies of the size of current genome-
wide association analyses. We plan to address these com-
putational issues in future versions of the program.

Finally, we hope that the idea of using probabilistic block-
ing for dimension reduction of DNA information can in
the future become the foundation for a comprehensive
analysis, including haplotype reconstruction, missing
data imputation, and modeling of the genotype-pheno-
type relationship. It has been shown that the best method
for haplotype reconstruction when the phase is unknown
is also probabilistic and based on MCMC [52,53]. The
issue of integrating block partitioning and haplotype
reconstruction was already undertaken by some authors
[54,55]. Additionally, a potentially important extension
available within an integrated approach is the ability to
construct blocks that optimally capture association signal,
a feature which is not presently implemented in our
approach.

Conclusion
We demonstrated that at low signal-to-noise ratio, block-
ing SNP's via a classification approach can lead to signifi-
cant increases in efficiency in identifying disease related
loci. For this task, we provided a flexible methodology
and software.

Methods

A probabilistic formulation of LD maps

LD is the non-random association between alleles at dif-
ferent loci [56]. Let us now consider a sequence of S SNPs,
ordered by chromosomal location. The set of all the S(S -
1)/2 pairwise LD statistics is @ = {&,,i=1,..,S-1;j =2,
..., S}. Note that # can be any measure of LD among those
varying in [0, 1] [42].

Denote by 0, the subset of & estimated from SNPs in true
LD, and by ®, the subset of & estimated from SNPs which
are not in LD. Since no other intermediate option is
allowed between the LD and the absence of LD status,
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then ®, U ;= ©. Under the assumption that two SNPs
are in LD only if they belong to the same haplotype block,
the partition of ® can be uniquely identified by a binary
VeCtor ¥ = (71, 7y v Yivs o Fiwrs - Yo s’ Where g =1
means that the a border of a haplotype block falls between
SNPs (i - 1) and i; =0 means that SNP (i - 1) and SNP i
belong to the same block. By definition, ;= 1 and %, =
1. SNPs not belonging to any block are classified as blocks
by themselves, with borders y,; = = 1. In the following,
ywill be referred to as block border vector.

Empirical evidence and theoretical studies [57-59]
showed that the distribution of the &, f(6), is generally
skewed to the right, often with a mass close to 1. The mag-
nitude of this mass depends on the LD statistic used and
on the study sample size. This property of § made us to
assume that f( 6) is composed of two underlying distribu-
tions, so that

f 91" 'le-» ®
p(eij|f01fllZ):{ o(0y) 110 € O(Z)}

f1(9ij) ifeij € 91([)

the 6s being drawn from f; when the SNPs are in LD, from
f, otherwise.

For given f,, f;, and y and assuming conditional inde-
pendence of the &, the likelihood is

Le,.](Z|f0rf1) PO | for f1.7)

HP(Gij | for f1:7)

0;€®©

| ECT) )

0;;€0, 0;;€0,

(1)
The assumption of conditional independence does not
correspond closely to how the data are generated, and is
made pragmatically, to simplify an otherwise nearly
intractable problem. We consider it unlikely that this
assumption will significantly affect the accuracy of the
classification, although it may affect the uncertainty
assessment. Alternatively, one can model the joint distri-
bution of haplotypes directly and address blocking, for
example, as a model selection problem [60]. This
approach is more realistic but not yet scalable to the
number of SNPs generated by current technology.

Because of the one-to-one correspondence between yand
{©,, ©,}, the (1) can be written as

Lei](Z|foff1)= H fo(eij)H fl(eij)' (2)

0;€0, 0;€0,

Page 9 of 15

(page number not for citation purposes)



BMC Genomics 2008, 9:405

fo, can be estimated non-parametrically by randomly per-
muting the genotypes between subjects. LD is estimated
from the genotype distribution via an EM algorithm [61],
and the empirical fo is finally estimated with a kernel
smoothing method [62]. As permutation affects LD esti-
mation, these steps were repeated several times and the
final estimate fo of the density was the average of each of

the densities, evaluated on a grid of 1000 percentile
points.

Let's assume 6 € ©, follows a Beta distribution, ;| ©,, ¢,
p~ Beta(a, p), such that

= T@h) a0 )

fl(ei]’ |Ot,ﬁ) F(a)F(ﬂ) ij

with >0, £> 0, and assume that > « to ensure that the
mode of this distribution is greater than 0.5. Substitutions
and simple algebra allows to write the log-likelihood I, (y,

o | fO/fl) as

> ogfa(0;) + #(0Jog [ S (@ =1) 3 logoy (1) Y log(1 ~0;)
(4)

0;€0, 0,€0, 0;€0,

with the unknown parameters being ¢, fand y.

The (4) was explored by means of a Metropolis-Hastings
algorithm, using uniform priors on all unknowns, within
the constraints described above (see the Appendix for a
detailed description of the algorithm). With respect to the
block border vector, starting values can be chosen using a
threshold criteria [10] in order to have a block border
where 8, ;.- 6,, i,,> 7, with 7 that can be defined by the
user on the basis of the particular LD statistic being used.

The algorithm was tested using the absolute value of the
Lewontin's D-prime, |D'|, and the square of the correla-
tion coefficient for 2 x 2 tables, 12[56,63,42]. Indeed, the
described approach applies to any measure of LD between
two loci.

Several tests demonstrated that, when a sufficient number
of iteration is performed, starting values do not influence
the results. The posterior distribution for (3 ¢, £) was esti-
mated after eliminating the first half of the Markov Chain,
as burn-in. The chain can be used to estimate the vector of
the S + 1 probabilities of each point being a block border.
Partitions at varying probability cutoff can be derived
from these estimates.
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Software and blocking algorithm definitions

MATILDE was written in the R language and requires the
package genetics [64]. The software is available at http://
astor.som.jhmi.edu/~gp/software/matilde/. ~ Haploview
3.2 [24] was used for: (i) LD map estimation, (ii) geno-
type data cleaning, (iii) block partitioning, and (iv) for
estimating the within block haplotype distributions. The
blocking methods implemented in Haploview that were
used in our analysis were the following: DprimeCI is the
method proposed by Gabriel et al. [15] and based on the
D' statistic; SSD is the Solid Spine of LD method (for a
detailed description see the support documentation of the
software at http://www.broad.mit.edu/mpg/haploview/);
4Gamete is the "Four Gamete Rule" by Wang et al. [25],
which assumes that a recombination took place when all
the four possible two-marker haplotypes between couples
of contiguous SNPs occur. HapBlock v3.0 [23] was used
for the limited haplotype diversity approach suggested by
Patil et al. (Hapblock) [13]. While the original method
was based on a greedy algorithm which did not ensure an
optimal solution to the problem of block partitioning, the
program is based on the dynamic programming algorithm
for haplotype partitioning introduced by Zhang and col-
leagues [22] which guarantees to find an unique opti-
mum. Hapblock provides the possibility to use one of
three definitions of haplotype blocks: we selected the
"common haplotype" option. Under this definition, "a set
of consecutive SNPs with size one or more forms a block
if the number of common haplotypes account for at least
a percent of all the observed haplotypes (see the manual
available at the software's homepage http://www-
hto.usc.edu/msms/HapBlock/ for more details). For the
parameters « and S we used the recommended values of
5% and 80%, respectively. R 2.6.0 [65] was used to per-
form the whole analysis and to interface Haploview and
Hapblock.

Descriptive analysis of block partitioning approaches

To facilitate the comparison between different methods,
we defined all the single SNPs outside blocks to be blocks
by themselves. This is required because with DprimeCl,
4Gamete, and SSD the SNP blocking may not be exhaus-
tive of all the SNPs in the series. To explore the sensitivity
to sample size we obtained samples of 200, 400, 600, 800,
and 1000 then by drawing, with replacement, the 45 orig-
inal subjects, leaving their SNP profiles unchanged, to pre-
serve the LD structure. Empirical block structures of the
study chromosomal region were obtained from all meth-
ods for each sample size. A much finer inspection was run
for MATILDE to assess the performance under different
cutoff levels (0.01, 0.02, ..., 0.1, ..., 0.9, 0.95, ...). The var-
iability of the number of estimated blocks was assessed via
the coefficient of variation (CV). The agreement between
methods was assessed through the « statistics [66] on the
number of shared break points.

Page 10 of 15

(page number not for citation purposes)


http://astor.som.jhmi.edu/~gp/software/matilde/
http://astor.som.jhmi.edu/~gp/software/matilde/
http://www.broad.mit.edu/mpg/haploview/
http://www-hto.usc.edu/msms/HapBlock/
http://www-hto.usc.edu/msms/HapBlock/

BMC Genomics 2008, 9:405

Comparison of performance in association studies

In our simulations, we generated case-control studies each
including a single disease SNP. For each SNP in the
sequence, we created several artificial case-control studies
each with a 1:1 ratio of cases to controls. For both domi-
nant and recessive genotype-phenotype association mod-
els, subjects were classified into risk allele carriers and non
carriers; then subjects were assigned to cases or to controls
in a random way, satisfying the constraint of a pre-speci-
fied Odds Ratio (OR), that is the proportion of risk allele
carriers in cases and controls was fixed in advance. ORs
used are 1.2, 1.4, 1.6, 1.8, and 2.0. This was repeated for
five choices of sample sizes. In this way, we covered a wide
spectrum of scenarios, while preserving the empirically
observed LD.

Block partition and haplotype distribution were estimated
on the pooled samples. In this way we could reuse the par-
titions estimated in the previous section. Within block
haplotype distributions were estimated using the EM algo-
rithm [61], separately for cases and controls. Subject's
chromosomes were considered to be independent so that
each subject carried two haplotypes. Because blocks were
determined without consideration for case status, they are
not optimized statistically to maximize the block associa-
tions.

Our analysis proceeds as follows: given a haplotype block,
we estimated the haplotype. Each subject contributes two
phased haplotypes, one for each chromosome. Using the
Likelihood Ratio Statistics (LRS) we compared the distri-
bution of haplotypes in cases and in controls. Specifically,
within the keth block, the LRS

2 2 om nijl
Gj, = 221,:1 2j=1nifk10g(vijk] was used to test the

hypothesis of independence of the haplotype distribution
in cases (i = 1) and in controls (i = 2), with m;, being the
the

observed frequency of the haplotype j in the group i, v,

number of observed haplotypes in the ki block, n,

the expected frequency of the haplotype j in group i under
independence. For large sample sizes, Gj ~ %‘ik_l [67].

Because the choice of the best method, on the basis of
genotype-phenotype association, depends on the study
goals, the efficiency of the block partition algorithms was
ranked under different criteria. First, for each block parti-
tioning method, G2 and the relative p-value were esti-
mated; then, the p-values were sorted in descending order:
p=A{pay - Py - Puc1y Py}, with K being the number
of blocks. In the following we define k* as the index of the
block containing the SNP that is truly associated with the
disease. For single-SNP analyses, we examined two strate-
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gies. The first one is to consider each locus as a block of
length one, and apply the procedure above. For example
if we have 3 subjects with genotypes, 'AA', 'Aa' and 'Aa’,
respectively, then the marginal allelic distribution is 'A’
with frequency 4 and 'a' with frequency 2. This type of dis-
tribution will be compared across cases and controls using
the LRS. We refer to this as allele-based single-SNP analy-
sis. The second one is a genotype-based single-SNP analy-
sis, where the marginal allelic distribution is replaced by
the genotype distribution, that is: AA with frequency 1, Aa
with frequency 2. The reason for considering the allele-
based analysis is to allow a fair comparison with other
blocking approaches, where a genotype-based analysis
would have been too onerous to implement. Sensitivity/
specificity comparisons are based on mimicking the asso-
ciation testing situation. For each method, block, and sim-
ulated dataset, we declare a positive if the p-value, after
multiple testing adjustment with the Benjamini-Hoch-
berg method [29], is smaller than .05. In more detail, let
T}, ;be an indicator variable for the k" block at the jt sim-

ulation: Tj, ; = 1 when the null hypothesis is rejected, 0
otherwise. Let ] be the number of simulations and k; the
indicator for the right block at the j simulation, then
Se = 22:1 Tk;], /] is the Sensitivity, that is the probability

of deciding that the block k* contains the right SNP, when
this is true. The Specificity is the probability of deciding
that a block does not contain the right SNP when it actu-

ally does not contain the SNP. Thus Sp =%2Ll Sp; .

o K; Ty o
where Sp; = KT Zk:l'k ; (1-T,,;) is the specificity at

the jh simulation. To assess the behavior of MATILDE at
different probability cutoffs (that is the probability to clas-
sify a specific location as a block border), a Receiver Oper-
ating Characteristic (ROC) curve fitted by means of a local
polynomial regression (loess), each point of the curve
being the sensitivity/(1-specificity) combination for one
specific probability cutoff. At this scope we used the func-
tion loess.smooth implemented in the R package stats.

RELATIVE POSITION OF THE CORRECT BLOCK

From the standpoint of evaluating the quality of the
dimension reduction methodology, it is useful to reward
approaches that give a high ratio R = (k* - 1)/K, with R €
[0, (K - 1)/K]. This statistic is a way to reward the method
which is faster in finding the area where the right SNP is,
irrespective of the dimension of blocks.
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RELATIVE POSITION OF THE CORRECT SNP
When the dimension of blocks matters, it could be more
interesting to count the number of SNPs classified as good

as, or better than, the right SNP, that is B = Z:j:k* #By,,

where #B,, is the number of SNPs in the k' block. B is the
number of SNPs that should be screened before discover-
ing the true SNP, thus the smaller the B the better the
method.
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Appendix
Description of the MATILDE's core algorithm.

The Metropolis-Hastings algorithm

Here the t™ iteration of the Metropolis-Hastings algorithm
used to explore the (4) is described. The parameters (y, ;,
a1, B.1) were updated in three steps as follows:

1st step

i) sample y as described below;

given z, split ® into ©, and ©]

compute I (%, &y, Bi1| fo. f1)iT=exp {L- 1.4}

ii) sample u ~ U(0, 1);

if u <min(r, 1) then {©,, ©,} « { Ay, A} };
else y,<— y,and [« 1, ;
2nd step
i) sample S~ U(B.1- 1, By + 1);
compute I*(y, &1, B ] %1, f1); T =exp {I*-1};
ii) sample u ~ U(0, 1);
if u <min(r, 1) then I« I*;
else §,« f.1;

3rd gtep
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i) sample a* ~ U(a, ;- 1, @, + 1);

a, < max(B, a*);

compute I*(z, @, f| %1, f1); 7= exp {I* - 1};
ii) sample u ~ U(0, 1);

ifu <min(r, 1) then I, « I*;

else o, « ;.

Sampling the block border vector

At each iteration, t, the key point is the proposal of the
new block border vector, which is sampled as follows:
first, let's decide either to move a boundary (i) or to
change the number of blocks. Option (i) corresponds to
changing the size of two neighboring blocks, option (ii)
corresponds to joining or splitting two neighboring
blocks. The choice is done by sampling from a Ber-
noulli(p), with p defined by the user on the basis of sam-
ple size and number of SNPs.

Under the option (i), one of the existing boundaries,
%1 " s.1. is sampled with equal probability; then the
border is moved one step to the left or to the right at ran-
dom: of the two blocks sharing the boundary, one will
increase its size of one SNP, while the other will be short-
ened by one. When this move is chosen, the total number
of blocks does not change.

Under the option (ii), one of two actions is sampled with
equal probability: I) split one block: one block is sampled
at random and one point inside the block is also chosen
at random and turned into a border, generating two con-
tiguous and smaller blocks; IT) modify a random value of
¥: one point, %, ;, between y,,and y, 5 is randomly chosen;
if , ;= 0 then y, ;< 1 (this means to join two contiguous
blocks into a bigger one), else y, ; <— 0 (this is equivalent
to splitting one block into two smaller ones).

Additional material

Additional file 1

Comparison of the block partitions on a simulated sample of 200 subjects.
The method used is indicated on the left. On the fifth, unlabeled line, ticks
are at the positions where at least three of the four methods above it
agreed. MATILDE block structures are reported at different probability
cutoffs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-405-S1.pdf]
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Additional file 2

Comparison of the block partitions on a simulated sample of 400 subjects.
The method used is indicated on the left. On the fifth, unlabeled line, ticks
are at the positions where at least three of the four methods above it
agreed. MATILDE block structures are reported at different probability
cutoffs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-405-S2.pdf]

Additional file 3

Comparison of the block partitions on a simulated sample of 600 subjects.
The method used is indicated on the left. On the fifth, unlabeled line, ticks
are at the positions where at least three of the four methods above it
agreed. MATILDE block structures are reported at different probability
cutoffs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-405-53.pdf]

Additional file 4

Comparison of the block partitions on a simulated sample of 800 subjects.
The method used is indicated on the left. On the fifth, unlabeled line, ticks
are at the positions where at least three of the four methods above it
agreed. MATILDE block structures are reported at different probability
cutoffs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-405-S4.pdf]

Additional file 5

Agreement between all block partitioning methods. Upper panels: pairwise
K § between the four most common methods, by sample size. Lower panel:
k s between MATILDE and the four most common methods, by probability
cutoff (x-axis) and sample size. Symbols: triangle = DprimeCI, diamond
= SSD, reverse triangle = 4Gamete, and square = HapBlock.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-405-S5.pdf]

Additional file 6

Comparison of methods' sensitivity and specificity. Data refer to the sim-
ulation of 100 cases and 100 controls assuming a dominant model. Each
panel reports the sensitivity/specificity tradeoff for DIprimeCI (triangle),
4Gamete (reversed triangle), the SSD (diamond), HapBlock (square)
and MATILDE (represented by points on the ROC curves, graphed as cir-
cles, and a smooth estimate of the ROC curve). In addition an allele-based
single-SNP association analysis is represented by an "x" while a genotype-
based single-SNP association analysis is represented by a "+". Four effect
sizes were considered: the OR is 1.2, 1.4, 1.6 and 1.8, respectively.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-405-6.pdf]

Additional file 7

Comparison of methods' sensitivity and specificity. Data refer to the sim-
ulation of 200 cases and 200 controls assuming a dominant model. Each
panel reports the sensitivity/specificity tradeoff for DIprimeClI (triangle),
4Gamete (reversed triangle), the SSD (diamond), HapBlock (square)
and MATILDE (represented by points on the ROC curves, graphed as cir-
cles, and a smooth estimate of the ROC curve). In addition an allele-based
single-SNP association analysis is represented by an "x" while a genotype-
based single-SNP association analysis is represented by a "+". Four effect
sizes were considered: the OR is 1.2, 1.4, 1.6 and 1.8, respectively.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-405-S7.pdf]

Additional file 8

Comparison of methods' sensitivity and specificity. Data refer to the sim-
ulation of 300 cases and 300 controls assuming a dominant model. Each
panel reports the sensitivity/specificity tradeoff for DIprimeCI (triangle),
4Gamete (reversed triangle), the SSD (diamond), HapBlock (square)
and MATILDE (represented by points on the ROC curves, graphed as cir-
cles, and a smooth estimate of the ROC curve). In addition an allele-based
single-SNP association analysis is represented by an "x" while a genotype-
based single-SNP association analysis is represented by a "+". Four effect
sizes were considered: the OR is 1.2, 1.4, 1.6 and 1.8, respectively.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-405-S8.pdf]

Additional file 9

Comparison of methods' sensitivity and specificity. Data refer to the sim-
ulation of 400 cases and 400 controls assuming a dominant model. Each
panel reports the sensitivity/specificity tradeoff for DIprimeCI (triangle),
4Gamete (reversed triangle), the SSD (diamond), HapBlock (square)
and MATILDE (represented by points on the ROC curves, graphed as cir-
cles, and a smooth estimate of the ROC curve). In addition an allele-based
single-SNP association analysis is represented by an "x" while a genotype-
based single-SNP association analysis is represented by a "+". Four effect
sizes were considered: the OR is 1.2, 1.4, 1.6 and 1.8, respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-405-89.pdf]

Additional file 10

Parallel distribution of the statistics R (relative position of the block con-
taining the right SNP) and B (number of SNPs belonging to blocks clas-
sified not worse than the true SNP) for a sample size of 100 cases and 100
controls. Four effect sizes were considered: the OR is 1.2, 1.4, 1.6 and
1.8, respectively. For each panel, the results of simulation with the allele-
based single-SNP method, the genotype-based single-SNP analysis, the
four common methods (DprimeCI, 4Gamete, SSD and HapBlock) and
the MATILDE at various cutoff thresholds are listed.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-405-S10.pdf]
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Additional file 11

Parallel distribution of the statistics R (relative position of the block con-
taining the right SNP) and B (number of SNPs belonging to blocks clas-
sified not worse than the true SNP) for a sample size of 200 cases and 200
controls. Four effect sizes were considered: the OR is 1.2, 1.4, 1.6 and
1.8, respectively. For each panel, the results of simulation with the allele-
based single-SNP method, the genotype-based single-SNP analysis, the
four common methods (DprimeCI, 4Gamete, SSD and HapBlock) and
the MATILDE at various cutoff thresholds are listed.
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Additional file 12

Parallel distribution of the statistics R (relative position of the block con-
taining the right SNP) and B (number of SNPs belonging to blocks clas-
sified not worse than the true SNP) for a sample size of 300 cases and 300
controls. Four effect sizes were considered: the OR is 1.2, 1.4, 1.6 and
1.8, respectively. For each panel, the results of simulation with the allele-
based single-SNP method, the genotype-based single-SNP analysis, the
four common methods (DprimeCI, 4Gamete, SSD and HapBlock) and
the MATILDE at various cutoff thresholds are listed.
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Parallel distribution of the statistics R (relative position of the block con-
taining the right SNP) and B (number of SNPs belonging to blocks clas-
sified not worse than the true SNP) for a sample size of 400 cases and 400
controls. Four effect sizes were considered: the OR is 1.2, 1.4, 1.6 and
1.8, respectively. For each panel, the results of simulation with the allele-
based single-SNP method, the genotype-based single-SNP analysis, the
four common methods (DprimeCI, 4Gamete, SSD and HapBlock) and
the MATILDE at various cutoff thresholds are listed.
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