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Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor with high
mortality and poor prognosis. Ferroptosis is a newly discovered form of cell death induced
by iron-catalyzed excessive peroxidation of polyunsaturated fatty acids (PUFAs). However,
the prognostic value of ferroptosis-related genes (FRGs) for ESCC remains unclear. Based
on the ESCC dataset from the Gene Expression Omnibus (GEO) database, we identified
39 prognostic FRGs through univariate Cox regression analysis. After LASSO regression
and multivariate Cox regression analyses, a multigene signature based on 10 prognostic
FRGs was constructed and successfully divided ESCC patients into two risk groups.
Patients in the low-risk group showed a significantly better prognosis than patients in the
high-risk group. In addition, we combined the risk score with clinical predictors to
construct a nomogram for ESCC. The predictive ability of the nomogram was further
verified by ROC curves and calibration plots in both the training and validation sets. The
predictive power of the nomogram was demonstrated to be better than that of either the
risk score or clinical variable alone. Furthermore, functional analysis revealed that the 10-
FRG signature was mainly associated with ferroptosis, differentiation and immune
response. Connectivity map analysis identified potential compounds capable of
targeting FRGs in ESCC. Finally, we demonstrated the prognostic value of SRC gene
in ESCC using the clinical samples and found that SRC inhibition sensitized ESCC cells to
ferroptosis inducers by in vitro experiments. In conclusion, we identified and verified a 10-
FRG prognostic signature and a nomogram, which provide individualized prognosis
prediction and provide insight into potential therapeutic targets for ESCC.
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INTRODUCTION

Esophageal cancer is the seventh most common cancer
worldwide and ranks sixth in terms of cancer mortality (Bray
et al., 2018). There are two main histological subtypes, esophageal
adenocarcinoma (EAC) and esophageal squamous cell carcinoma
(ESCC), which have almost completely distinct etiologies,
geographic patterns, and biological characteristics (Bray et al.,
2018). Despite the rapid increase in the incidence of EAC in
Western countries, ESCC remains the predominant histological
type of esophageal cancer in Eastern Asia, accounting for over
90% of all new esophageal cancer cases each year (Bray et al.,
2018). ESCC has a poor 5-years overall survival (OS) rate and a
high incidence of recurrence and metastasis (Pennathur et al.,
2013). Although the tumor-node-metastasis (TNM) staging
system serves as the standard method for predicting the OS of
cancer patients, there still exist differences in the survival of
patients with the same TNM stage (Rice et al., 2017). Therefore,
ESCC prognosis prediction based on the TNM staging system
needs further improvement. In recent decades, due to
advancements in high-throughput technologies, such as
microarray and RNA sequencing, gene expression profiling
has been widely used to discover molecular biomarkers
associated with the phenotype or prognosis of cancer (Zhan
et al., 2016). Recently, multigene signatures, such as Oncotype
DX for breast cancer or ColoPrint chips for colon cancer, have
proven to be of great prognostic value for cancers, and the
described signatures can be employed to guide the prognostic
evaluation, treatment and management of cancers (Birnbaum
et al., 2017). Many studies on the gene expression profiles of
ESCC have been reported, but no gene signature has been applied
for survival prediction of this disease thus far. Hence, there is an
urgent need to identify key molecular biomarkers related to the
prognosis of ESCC.

Ferroptosis is an iron-catalyzed form of cell death that occurs
through excessive peroxidation of polyunsaturated fatty acids
(PUFAs) (Dixon et al., 2012). In recent years, several small
molecules and FDA-approved clinical drugs have been
identified to induce ferroptosis in cancer cells (Hassannia
et al., 2019). The efficacy of cancer suppression by ferroptosis
inducers in various studies highlights the potential of ferroptosis
as a novel anticancer strategy (Hassannia et al., 2019). A previous
study reported that upregulation of glutathione peroxidase 4
(GPX4), a key negative regulator of ferroptosis, and
downregulation of heme oxygenase-1 (HMOX1), which
promotes ferroptosis by increasing the labile iron pool (LIP),
were poor prognostic factors in ESCC (Shishido et al., 2020). 5-
Aminolevulinic acid (5-ALA) induces ferroptosis by modulating
GPX4 and HMOX1 in ESCC (Shishido et al., 2020). Recently,
several studies have revealed the predictive value of ferroptosis-
related gene (FRG) signatures in various cancers (Liang et al.,
2020; Luo and Ma, 2021; Zheng et al., 2021). However, whether
these FRGs are correlated with the prognosis of ESCC patients
remains unknown.

In this study, we collected the mRNA expression profiles and
clinical information of ESCC patients from the Gene Expression
Omnibus (GEO) database. Then, we constructed a prognostic risk

model based on FRGs to predict the prognosis of ESCC. In
addition, we developed a nomogram model combining the risk
score and clinical features to assess prognosis. The prognostic
value of the risk model and the nomogram was then validated in
another independent dataset obtained from the GEO database.
Furthermore, Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG) and gene set enrichment
analysis (GSEA) were used to reveal the underlying biological
characteristics and signaling pathways associated with this
signature in ESCC. We analyzed the difference in immune cell
infiltration in diverse subgroups via CIBERSORT and
ImmuCellAI. Finally, we validate the prognostic value and
ferroptotic role of FRGs in ESCC through a series of
experiments. The overview workflow is presented in Figure 1.

METHODS

Data Acquisition and Collection of
Ferroptosis-Related Genes
RNA expression profiles and clinical information for the 119
ESCC patients were included in the GSE53624 dataset, which was
downloaded from the Gene Expression Omnibus database (GEO,
https://www.ncbi.nlm.nih.gov/geo/) as the training set (Li et al.,
2014). An independent cohort GSE53622, which contained

FIGURE 1 | Flowchart of the construction of the prognostic FRG
signature.
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information for 60 ESCC cases, was used for validation. A total of
19,631 mRNAs were obtained after annotation. A comprehensive
list containing 352 FRGs was retrieved from FerrDb (Zhou and
Bao, 2020) (http://www.zhounan.org/ferrdb/index.html) and
previously published literature (Liu et al., 2020) and is
provided in Supplementary Table S1.

Construction and Validation of the
Prognostic Risk Model
Univariate Cox regression analysis was performed to screen
potential prognostic FRGs, and FRGs with p < 0.1 were
considered statistically significant and incorporated into the
subsequent least absolute contraction and selection operator
(LASSO) regression analysis. LASSO regression analysis was
applied to minimize the potential risk of overfitting and select
optimal prognostic genes. Ten-times cross-validations were
utilized to determine the best penalty parameter lambda (λ).
Finally, we performed a multivariate Cox regression for these
genes to generate a prognostic signature. The prognostic risk
score was determined using a linear combination of the
regression coefficient (β) in the multivariate Cox regression
model and the expression levels of the genes. In the formula,
risk score � (β1*expression of gene X1) + (β2*expression of gene
X2) + (βi*expression of gene Xi). Patients were divided into low-
risk and high-risk groups based on the median risk score. The
difference in OS between the two groups was compared with
Kaplan-Meier survival curves and log-rank tests. Furthermore,
receiver operating characteristic (ROC) curves were plotted, and
area under the curve (AUC) values were calculated to evaluate the
predictive power of the gene signature using the “survivalROC”
package in R. Moreover, the same analytical methods were
performed for the validation cohort to evaluate the prognostic
capacity of the gene signature.

Nomogram Construction and Evaluation
Univariate and multivariate Cox analyses were used to identify
independent prognostic factors such as age, sex, alcohol use,
grade, stage and risk score. Subsequently, a nomogram was
constructed based on the results of multivariate Cox analysis
to predict the 1-, 3- and 5-years OS of patients with ESCC. The
predictive ability of the nomogram was then assessed by
calibration curves using the “foreign” package. In addition,
ROC curves and the corresponding AUC values were
generated using the “survivalROC” package. Decision curve
analysis (DCA) was performed to evaluate the clinical benefit
that the nomogram can obtain compared to a single independent
prognostic predictor. Then, the same operation was conducted
for the validation set GSE53622 to evaluate the predictive ability
of the nomogram.

Interaction Network and Functional
Enrichment Analyses
An interaction network of prognostic FRGs was performed at the
STRING website (http://string-db.org). The differentially
expressed genes (DEGs) with a false discovery rate (FDR) < 0.

05 and a |log fold change (FC)| > 1 between the low-risk and high-
risk groups were identified using the “limma” package in R. Then,
the “clusterProfiler” package was utilized to conduct GO and
KEGG analyses based on DEGs. GSEA was employed to identify
the biological processes, molecular functions and signaling
pathways enriched in the low-risk and high-risk groups. The
KEGG gene set (C2. cp.kegg.v7.0 symbols. gmt) and GO gene set
(C5. go.v7.0 symbols. gmt) were downloaded from the Molecular
Signatures Database (MSigDB). The pathways with the following
criteria were regarded as significantly enriched: nominal (NOM)
p-value < 0.05 and FDR q-value < 0.25.

Correlation Between the Risk Score and
Immune Infiltration
To explore the abundance of infiltrating immune cells in the high-
and low-risk groups, the CIBERSORT algorithm was used to
score the infiltration abundance of each immune cell in the
samples to evaluate the proportion of 22 types of immune
cells in each sample. We then compared the infiltration levels
of 22 types of immune cells between the low- and high-risk
subgroups. In addition, ImmuCellAI was used to estimate the
abundance of immune cell infiltration and predict the response of
each sample to immune checkpoint blockade (ICB) therapy
(Miao et al., 2020).

Identification of Candidate Small Molecules
The Connectivity Map (CMap) database (http://www.
broadinstitute.org) was used to predict the potential
compounds that might inhibit or induce biological states
encoded by specific markers (Lamb et al., 2006). To explore
the potential activity of small molecules from the CMap database
in different subgroups, the prognostic ferroptosis-related genes
were uploaded to the CMap database for mode-of-action (MoA)
analysis.

Patients and Tissue Samples
Paraffin-embedded samples of ESCC, which were diagnosed
clinically and pathologically, were collected from 96 patients
between 2004 and 2008 in Meizhou People’s Hospital, China.
None of the patients received radiotherapy or chemotherapy
before surgery, and none of them had multiple cancers in
other organs. Prior informed consent was obtained from all
patients, and this study was approved by the research Ethics
Committee of Meizhou People’s Hospital. The following
clinicopathological parameters were collected from the medical
records: age, sex, histological grade, depth of invasion, and clinical
stage. The histopathological diagnosis was based on the World
Health Organization criteria. Tumor staging was determined
according to the 6th edition of the tumor-node-metastasis
(TNM) classification of the International Union Against Cancer.

In addition, 20 ESCC tissues and their paired adjacent non-
cancerous esophageal epithelial tissues were attained from ESCC
patients between 2019 and 2021 in The First Affiliated Hospital of
Sun Yat-sen University. No patients received radiotherapy or
chemotherapy before surgery, and none of them had multiple
cancers in other organs. After surgical removal, fresh tissues were
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immediately snap-frozen in liquid nitrogen and stored at −80°C
until total RNA extraction and analysis. Informed consent forms
were obtained from all patients included in the present study.

Cell Culture and Regents
The ESCC cell lines ECA9706 and KYSE150 were purchased from
Shanghai Institute of Cell Biology (Shanghai, China) and were
cultured in RPMI 1640 supplemented with 10% fetal bovine
serum and 1% penicillin/streptomycin. The cells were
maintained in an atmosphere containing 5% CO2 at 37°C.
Imidazole ketone erastin (IKE, #S8877), liproxstatin-1 (Lip-1,
#S7699), KX2-391 (Tirbanibulin, #S2700) and celecoxib (#S1261)
were obtained from Selleck Chemicals (United States). BODIPY-
C11 (581/591) (#D3861) was obtained from Invitrogen
(United States).

Total RNA Extraction and qRT-PCR
Verification
Total RNA was extracted by using TRIzol (Invitrogen, United
States) according to the manufacture’s protocol. cDNA was
generated using a PrimeScript RT Reagent kit (TaKaRa,
Japan). Real Time PCR was performed in a CFX96 Real-Time
PCR Detection System (Bio-Rad, United States) using a SYBR
Green Real-Time PCR kit (TaKaRa, Japan). The primer
sequences used were as follows: SRC, (forward) 5’- GGCTCC
AGATTGTCAACA-3’ and (reverse) 5’- GCTTGCGGATCTTGT
AGT-3’ GAPDH, (forward) 5’-ATCAATGGAAATCCCATC
ACCA-3’ and (reverse) 5’-GACTCCACGACGTACTCAGCG-
3’. Relative mRNA values were normalized to the expression
of the GAPDH gene using the 2−ΔΔCt method.

Immunohistochemical Staining and Scoring
The paraffin-embedded samples of ESCC and normal esophageal
tissues were cut into 5-μm-thick sections and placed on
pathological slides for immunohistochemical staining. Tissue
sections were heated at 100°C in citrate buffer solution (pH �
6.0) for 10 min to facilitate antigen retrieval. Then, the sections
were incubated with rabbit antibody against SRC (1:400, CST,
United States) overnight in 4°C followed by incubation with
secondary antibody (Dako REAL EnVision, United States).
Immunoreacted cells were visualized using diaminobenzidine,
and nuclei were counterstained with hematoxylin. Phosphate-
buffered saline (PBS) was substituted for the primary antibody as
a negative control. Sections were independently evaluated
microscopically by two pathologists without knowledge of the
clinicopathological features.

SRC expression level was determined by integrating the
percentage of positive tumor cells and the intensity of positive
staining. The intensity of staining was scored as follows: negative
(score 0), weak (score 1), moderate (score 2), and strong (score 3).
The extent of staining was scored according to the percentage of
positive stained tumor cells in the field: <5 (score 0), 5–25% (score
1), 26–50% (score 2), 51–75% (score 3), and 76–100% (score 4).
The product of the intensity and extent score was considered as
the final histochemistry score (H-score), yielding a range from 0
to 12. When the staining was heterogeneous, each component

was scored independently and summed for the results. We
defined final score 0–7 as low expression and 8–12 as high
expression for SRC immunohistochemical staining.

Cell Viability Assay
Cell viability was detected using Cell Counting Kit-8 (CCK-8,
Dojindo, Japan) assays according to the manufacturer’s
instructions. Briefly, the cells were seeded into a 96-well plate
at a density of 5,000 cells/well. After treatment with different
drugs at various concentrations for the indicated times, 10 µL of
CCK-8 reagent was added to each well, and the cells were cultured
for another 2 h. At the end of the incubation, the absorbance at
450 nm was analyzed with a microplate reader (BioTek,
United States). All experiments were performed in triplicate.

Assessment of Lipid Peroxidation Using
BODIPY-C11 (581/591)
2 × 105 cells per well were seeded on 12-well dishes overnight.
After treatment with the indicated concentration of IKE and/or
KX2-391 for 18 h to induce ferroptosis, cells were incubated with
BODIPY-C11 (581/591) (1 μM) for 30 min at 37°C before they
were harvested by trypsinisation. Subsequently, cells were
resuspended in 300 μL of fresh PBS and analyzed using the
488-nm laser of flow cytometer (FACS Canto II, BD
Biosciences) for excitation. Data was collected from the FITC
detector for oxidized BODIPY-C11. A minimum of 10,000 cells
were analyzed per sample. Data was analyzed using FlowJo V10
Software.

Western Blotting
Western blot analysis was performed to examine the expression
of various proteins as described in our previous report (Ye et al.,
2017). GAPDH was used as the control. The primary antibodies
used included the following: GAPDH, SRC, p-SRCTyr416 and
PTGS2 (1:1,000 dilution; Cell Signaling Technology,
United States).

Statistical Aanalysis
The association between SRC expression and clinicopathological
variables was assessed using a chi-square test or Wilcoxon rank
sum test. The Kaplan-Meier method and log-rank tests were used
to compare the overall survival. Multivariate analyses of variables
were conducted using a Cox proportional hazards regression
model. The difference between two groups was analyzed by a two-
tailed Student’s t test, while values were compared among
multiple groups using one-way ANOVA. All analyses were
considered statistically significant when p < 0.05 was obtained.

RESULTS

Construction of the Ferroptosis-Related
Prognostic Risk Model
A total of 352 FRGs were obtained from FerrDb and a previous
article (Supplementary Table S1). To identify the prognostic
FRGs in ESCC patients, the 352 FRGs in the GSE53624 dataset
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FIGURE 2 | Construction of the predictive risk model based on the FRG signature. (A,B) LASSO regression was performed to select the optimal value of λ. (C)
Forest plots showing the significantly prognostic FRGs based on the results of multivariate Cox regression. (D) The heatmap displays the expression profile of the ten
FRGs from the GSE53624 dataset. (E) Kaplan-Meier survival curves show the OS of patients in the GSE53624 dataset. (F) The distribution and median value of the risk
score in the GSE53624 dataset (red: high-risk; green: low-risk). (G) Survival status plots of patients in the GSE53624 dataset (red: death; green: survival). (H) ROC
curves of the risk model for predicting the 1-, 3- and 5-years OS of patients in the GSE53624 dataset.
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were subjected to univariate Cox regression analysis. Thirty-nine
FRGs were significantly associated with the prognosis of ESCC (p
< 0.1). To narrow the number of FRGs, LASSO regression
analysis was then performed on these 39 FRGs. As a result, a
total of 15 FRGs markedly related to prognosis of ESCC were
obtained (Figures 2A,B). Subsequently, multivariate Cox
regression analysis was used to select the best characteristic
gene set and construct a regression model. Finally, the
prognostic signature was constructed based on 10 ferroptosis-
related genes (SRC, FADS2, GLUD1, POLG, ANO6, SLC2A6,
ANGPTL7, PTGS2, ALOXE3 SLC38A1) (Figure 2C). The
formula of the risk model was as follows: risk score � 0.741 ×
SRC + 0.633×FADS2 + 0.544 ×GLUD1 + 0.527×POLG + 0.477 ×
ANO6 + 0.295×SLC2A6 + 0.252 × ANGPTL7−0.202 ×
PTGS2−0.24 × ALOXE3−0.57 × SLC38A1. The median risk
score was used to dichotomize patients in the GSE53624
cohort into low-risk (n � 60) and high-risk (n � 59) groups.
The heatmap showed that SRC, FADS2, GLUD1, POLG, ANO6,
SLC2A6 and ANGPTL7 were highly expressed, while PTGS2,

ALOXE3, and SLC38A1 were downregulated in high-risk cases
(Figure 2D). Kaplan-Meier curves revealed that the prognosis of
patients in the low-risk group was significantly better than that of
patients in the high-risk group (p < 0.001, Figure 2E). As shown
in Figures 2F,G, the distribution of risk score and survival status
indicated that a low risk score was beneficial to survival. The AUC
values of the time-dependent ROC curves at 1, 3 and 5 years were
0.815, 0.833 and 0.833, respectively, indicating that the prognostic
signature had great specificity and sensitivity for predicting the
OS of ESCC patients (Figure 2H).

Validation of the Prognostic Signature in the
Independent Cohort
We validated the predictive ability of the prognostic signature in
the independent cohort from the GSE53622 dataset. The patients
were divided into low-risk (n � 30) and high-risk (n � 30) groups
using the same prognostic risk model (Figure 3A). Consistent
with the above results, patients in the low-risk group had longer

FIGURE 3 | Validation of the predictive risk model in an independent cohort. (A) The heatmap displays the expression profile of the ten FRGs in the GSE53622
dataset. (B) Kaplan-Meier survival curves showed the OS of patients in the GSE53622 dataset. (C) The distribution and median value of the risk score in the GSE53622
dataset (red: high-risk; green: low-risk). (D) Survival status plots of patients in the GSE53622 dataset (red: death; green: survival). (E) ROC curves of the risk model for
predicting the 1-, 3- and 5-years OS of patients in the GSE53622 dataset.
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OS than those in the high-risk group (Figure 3B, p < 0.01). The
risk score distribution and survival status were similar to those in
the training dataset GSE53624 (Figures 3C,D). The AUC values
for 1-, 3- and 5-years survival were 0.492, 0.69 and 0.701,
respectively (Figure 3E). In view of these results, the 10-FRG
signature based on the training set exhibited a certain power in
predicting the OS of ESCC patients.

Construction and Validation of the
Predictive Nomogram
To determine whether the predictive ability of the risk score was
independent of other traditional clinical characteristics
(including age, sex, tobacco use, alcohol use, tumor location,
grade, T stage, N stage and TNM stage), we performed univariate
and multivariate Cox regression analyses on these variables using
a training set. The results showed that age (HR � 1.030), grade
(HR � 1.667), N stage (HR � 2.768) and risk score (HR � 0.254)
were independent prognostic factors (Figures 4A,B). Based on
these four independent predictive factors, we constructed a
predictive nomogram to quantify the prediction results of
individual survival probability at 1, 3 and 5 years (Figure 5A).
We then performed time-dependent ROC curve analysis to
evaluate the predictive capacity of the nomogram. The AUCs
for 1-, 3- and 5-years OS were 0.730, 0.797 and 0.806, respectively,
in the training cohort, while the AUCs for 1-, 3- and 5-years OS in
the validation set were 0.670, 0.758 and 0.779, respectively
(Figures 5B,C). The C-index for the nomogram was 0.717
(95% CI: 0.663-0.772). The calibration curves of both the

training set and validation set showed high consistency
between the actual proportion of 1-, 3- and 5-years OS and
the nomogram-predicted probability (Figures 5D,E). Finally, we
performed DCA to assess the value of the nomogram in clinical
decision making. We found that compared to a single
independent predictive factor, the nomogram could obtain the
optimal net benefit in both the training set and validation set
(Figures 5F,G). Overall, these results demonstrated that the
developed nomogram preforms well in predicting OS.

Functional Analyses of Risk Model
We explored the prognostic FRGs interaction at the STRING
online website, and the gene network demonstrated the SRC,
PTGS2, CDH1 SMAD3, HSPA5 and PIK3CA were the hub genes
(Figure 6).

A total of 62 DEGs (|logFC| > 1, FDR <0.05) were identified
between the high- and low-risk groups in the GSE53624 cohort. To
elucidate the biological functions and pathways that were associated
with the risk score, the DEGs were used to perform GO enrichment
and KEGG pathway analyses. According to GO analysis, the DEGs
were enriched in several differentiation-related biological processes,
such as epidermis development, skin development, and keratinocyte
differentiation (Figure 7A). KEGG analysis revealed that the DEGs
were enriched in ferroptosis-related signaling pathways, including
alpha-linolenic acid (LA)metabolism and LAmetabolism (Figure 7B).

GSEA was further conducted between the two groups in the
GSE53624 cohort. The results showed that the pathways of cancer,
DNA replication, cell cycle and TGF-β signaling from the KEGG
database were enriched in the high-risk group (Figure 7C). In

FIGURE 4 | The independent prognostic factors for ESCC OS. (A) Univariate Cox regression analysis for assessment of the prognostic values of different
clinicopathological characteristics and the risk score. (B) Evaluation of the independency of the risk score and other factors for predicting the prognosis of ESCC using
multivariate Cox regression analysis.
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FIGURE 5 | Construction and evaluation of nomogram. (A) Nomogram based on the risk score of the 10-FRG signature and clinical information of patients in the
GSE53624 dataset. (B,C) Time-dependent ROC curves of the nomogram in the GSE53624 and GSE53622 datasets. (D,E) Calibration curves of the nomogram for OS
prediction at 1, 3 and 5 years for patients in the GSE53624 and GSE53622 datasets. (F,G)DCA curves of the nomogram and other independent predictive factors in the
GSE53624 and GSE53622 datasets.
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contrast, cytochrome P450, arachidonic acid (AA) metabolism, LA
metabolism and the JAK-STAT signaling pathway, which play vital
roles in ferroptosis, were enriched in the low-risk group (Figure 7C).
Among the GO terms, β-catenin TCF complex assembly,
autophagosome organization, phosphatidylinositol-5-phosphate
binding and WNT-activated receptor activity were enriched in the
high-risk group (Figure 7D). We found that biological processes
associated with differentiation and immunity, such as keratinization,
epidermal cell differentiation, humoral immune response and cell
killing, were enriched in the low-risk group (Figure 7D). In addition,
chemokine-related molecular functions, such as chemokine receptor
binding, chemokine activity and chemokine receptor (CCR) binding,
were enriched in the low-risk group (Figure 7D).

Relationship Between Risk Score and
Immune Cell Infiltration
CIBERSORT was implemented to assess the abundance of 22
kinds of immune cell infiltrates in tumor samples (Figure 8A). As
shown in Figure 8B, plasma cells were downregulated in the

high-risk group of the training cohort (p < 0.05). In addition, the
risk score was negatively correlated with plasma cell abundance
and positively correlated with CD8 T cell abundance (Figure 8C).
We also used ImmuCellAI to compare the infiltration levels of 24
kinds of immune cells between low- and high-risk groups of
ESCC samples. Figure 8D shows that the proportion of natural T
regulatory cells (nTregs) in the high-risk group was significantly
higher than that in the low-risk group. Furthermore, ImmuCellAI
was also applied to predict the response to ICB therapy and
showed that the low-risk group had a better response to ICB than
the high-risk group (p < 0.05, Figure 8E). In addition, the risk
score was higher in patients with lymph node metastasis and
advanced TNM stage (p < 0.05, Figure 8F).

Connectivity Map Analysis Identified
Potential Compounds Suitable for Different
Molecular Subtypes
Based on the risk score of the predictive signature, patients in the
high-risk group tended to have poor survival outcomes, while

FIGURE 6 | Gene interactions and correlations plots of prognostic FRG. The gene network downloaded from the STRING database indicates the interactions
among the prognostic FRG.
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FIGURE 7 | Representative results of GO and KEGG analyses. (A,B) The most significantly enriched GO terms and KEGG pathways in the GSE53624 cohort are
displayed. (C,D) GSEA between the low- and high-risk groups performed using KEGG and GO gene sets in the GSE53624 cohort.
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those in the low-risk group tended to have better survival
outcomes. Therefore, we attempted to identify potential
compounds or inhibitors for ESCC patients in different risk
groups. The 10 prognostic FRGs were uploaded to the CMap
database for MoA analysis. Three FRGs, including FADS2,

PTGS2 and SRC, were screened as potential targets for ESCC.
A total of 75 compounds with 39 MoAs were enriched
(Figure 9A). Both SRC and PTGS2 were overexpressed in
cancer tissues, and the corresponding inhibitors may be useful
for ESCC treatment (Figure 9B, p < 0.001). Because SRC was

FIGURE 8 |Correlation between risk score and immunity. (A) Relative percentage of 22 kinds of immune cells in tumor samples. (B) Box plots of the infiltration level
of 22 kinds of immune cells in the high-risk and low-risk groups. (C)Correlation diagrams of the risk score and immune cells. (D) The box plots show the differences in the
proportions of 24 kinds of immune cells between the high- and low-risk groups using ImmuCellAI. (1: low-risk, 2: high-risk). (E) The correlations between the risk score
and ICB response. (F) The correlations between the risk score and different clinical features.
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highly expressed in the high-risk group (Figure 9C, p < 0.001),
SRC inhibitors, such as bosutinib, dasatinib, PP-1 and PP-2,
were predicted to be promising compounds for the treatment
of patients in the high-risk group. Cyclooxygenase inhibitors
targeting PTGS2 could be suitable for treating low-risk
patients.

Clinical Experimental Validation
We performed the PCR and IHC validation in clinical specimens
following the steps described above. We evaluated the expression
of SRC, the most significantly prognostic FRG according to the
coefficient value, in 96 ESCC tissues and 57 adjacent normal
esophageal tissues by IHC. Representative tissues with IHC
staining are shown in Figure 10A. The expression of SRC
presented mainly in the cytoplasm, and thus, brown cytoplasm
immunoreactivity for SRC was identified as positive staining. The
median H-score of SRC expression in ESCC was 8, thus we
defined H-score 0–7 as low expression and 8–12 as high

expression for SRC at protein level. As shown in Figures
10A,B, SRC was positively expressed in all ESCC tissues, of
which 57 cases (59.4%) show high expression and 39 cases
(40.6%) show low expression. In contrast, most of the normal
esophageal squamous epithelium showed negative expression of
SRC, and none of the normal tissues showed high expression.
Thus, it revealed that the SRC expression level in ESCC was
significantly higher than in normal tissue (p < 0.001, Figure 10B).
In survival analysis, Kaplan-Meier curves showed that patients
with high SRC expression survived significantly shorten than
patients with low SRC expression (log-rank test, p � 2.666e-6,
Figure 10C). The mean survival time of patients with low
expression was 39.46 ± 5.29 months, but it decreased to
13.20 ± 1.17 months in patients with high SRC expression.
Multivariate analysis revealed that high SRC expression (HR �
3.36, 95%CI � 1.900-5.940, p � 0.000) was an independent
prognostic factor for poor prognosis in ESCC. The
correlations between SRC expression and clinicopathological

FIGURE 9 | CMap analysis identified potential compounds capable of targeting FRGs in ESCC. (A) The heat map shows each compound (column) of the shared
action mechanism (row) in CMap. (B)mRNA expression levels of SRC and PTGS2 between normal and cancer tissues. (C)mRNA expression levels of SRC and PTGS2
between the low-risk and high-risk groups.
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variables was assessed and shown in Table 1. High expression of
SRC was found to significantly correlate with histological grade
(p � 0.005). Meanwhile, we also evaluated the mRNA expression

of SRC in 20 pairs of human ESCC tissues and corresponding
non-cancerous tissues. The RT-PCR results showed that SRC was
up-regulated in 11 cases (55.0%, Figure 10D). Moreover, SRC

FIGURE 10 | SRC expression is elevated and correlated with poor prognosis in ESCC. (A) Comparison of SRC immunostaining in ESCC and normal esophageal
squamous epithelium (magnification, ×200). (i,ii,iii)Negative expression of SRC in cytoplasm of cells in normal esophageal squamous epithelium. (iv,v,vi)Representative
ESCC cases showing weak to strong cytoplasmic SRC staining. (B) The histogram shows the statistics of SRC immunostaining in ESCC and normal esophageal tissue.
Wilcoxon rank sum test, p � 0.000. (C) Kaplan-Meier curves according to SRC expression status in ESCC. log-rank test, p � 2.666e-6. (D) The relative mRNA
expression levels of SRC in ESCC tissues and paired normal esophageal epithelial tissues. (E) Comparison of SRC expression in ESCC cell lines and esophageal
epithelial cell line (HET-1A) using qRT-PCR. *p < 0.05, **p < 0.01, ***p < 0.001.
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was significantly up-regulated in all ESCC cell lines compared
with normal esophageal epithelial cell line HET-1A (p < 0.001,
Figure 10E).

SRC Protects Esophageal Squamous Cell
Carcinoma Cells Against Ferroptosis
To investigate the potential role of SRC in ferroptosis, ESCC
cell lines including KYSE150 and ECA9706 were treated with
RSL3 and IKE, two well-established ferroptosis agonists. The
immunoblotting results of phosphorylated SRC (Tyr416) showed
that SRC was activated in response to low concentration of IKE or
RSL3 but inhibited under high dose of IKE or RSL3 in ECA9706
cells (Figure 11A). Whereas the expression level of total SRC
was not affected when treated with RSL3 or IKE (Figure 11A).
In addition, low dose of RSL3 and IKE inhibited the
expression of phosphorylated SRC (Tyr416) in KYSE150 cells,
which was more sensitive to ferroptosis than ECA9706 cells
(Figure 11A). Moreover, ferroptosis agonists significantly
increase the expression level of PTGS2 in a dose-dependent
manner (Figure 11A). To evaluate whether SRC protects
ESCC cells against ferroptosis, ESCC cells were treated with
the SRC inhibitor KX2-391 and assayed for viability after 48 h.
SRC inhibition decreased cell viability, and that loss of viability
was rescued by ferroptosis inhibitor liproxstatin-1 (Figure 11B).
Moreover, SRC inhibition sensitized ESCC cells to IKE and
increased IKE-induced lipid ROS generation (Figures 11C,D).
However, PTGS2 inhibition with celecoxib did not inhibit cell
viability and ferroptosis sensitivity (Figures 11E,F).

DISCUSSION

A series of studies have shown that ferroptosis is essential for
eradicating cancer cells and that sensitivity to ferroptosis varies in
different types of cancers (Xu et al., 2019). Ferroptosis initiation
and execution lie at the intersection of glutathione metabolism,
lipid peroxidation of PUFAs, iron metabolism and mitochondrial
function (Stockwell et al., 2017). A previous study reported that
upregulation of GPX4 and downregulation of HMOX1 were poor
prognostic factors for ESCC (Shishido et al., 2020). Another study
found that DNAJB6 level was negative related to lymph node
metastasis in ESCC patient (Jiang et al., 2020). Overexpressing
DNAJB6a showed tumor-suppressive effects in vitro and in vivo.
However, the prognostic value of FRGs in ESCC has yet to be
comprehensively clarified. In this study, we constructed a
prognostic risk model based on 10 FRGs, which comprised 3
protective genes (ALOXE3, SLC38A1 and PTGS2) and 7 risk-
related genes (SRC, ANGPTL7, ANO6, SLC2A6, GLUD1, POLG
and FADS2). Therefore, patients with ESCC can be classified into
low-risk and high-risk groups for discrimination of survival
outcomes. Patients in the low-risk group showed better
survival than those in the high-risk group. ROC cures also
suggested the prediction ability of 10-FRG signature.

Among the 10 genes, ALOXE3, SLC38A1 and PTGS2 were
negatively correlated with the risk score and downregulated in the
high-risk group. A previous study showed that silencing
arachidonate lipoxygenase E3 (ALOXE3) in HT-1080 cells
made cells resistant to erastin, which supports that ALOXE3 is
required for erastin-induced ferroptosis (Yang et al., 2016).
Another study revealed that ALOXE3 is markedly
downregulated in human glioblastoma (GBM) and that
ALOXE3 deficiency renders GBM cells resistant to ferroptosis,
promoting GBM cell survival (Yang et al., 2021). Gao et al. found
that knockdown of SLC38A1 markedly blocked ferroptosis,
suggesting that SLC38A1 positively regulates ferroptosis (Gao
et al., 2016). PTGS2, a gene encoding cyclooxygenase-2 (COX-2),
was upregulated upon treatment with either erastin or RSL3
(Yang et al., 2014). The role of PTGS2 in ferroptosis was also
validated in our study. Treatment with either IKE or RSL3
increased the expression of PTGS2. However, ferroptotic cell
death by IKE was not affected by celecoxib treatment, suggesting
that PTGS2 upregulation is simply a downstream marker of
ferroptosis. This is consistent with the previous study (Yang
et al., 2014). Therefore, these three protective genes are
positively related to ferroptosis.

In contrast, SRC, ANGPTL7, ANO6, SLC2A6, GLUD1, POLG
and FADS2 are positively related to the risk score and serve as
risk-related genes. A previous study revealed that activation of
SRC can protect cancer cells from ferroptosis by suppressing the
expression of ACSL4, an enzyme that enriches membranes with
PUFAs and is required for ferroptosis, revealing the inhibitory
role of SRC in ferroptosis (Brown et al., 2017). ANGPTL7 may
inhibit ferroptosis because its expression is downregulated during
ferroptosis induced by erastin or RSL3 (Yang et al., 2014).
Depletion of FADS2 increased erastin-induced ferroptosis by
reducing the expression of the ferroptosis-associated regulator
GLUD1 at themRNA level, suggesting the negative role of FADS2

TABLE 1 | Relationships between SRC expression and clinical pathological
parameters in ESCC patients.

Variables N SRC expression p

Low High

Sex — — — 0.814
Male 75 30 45 —

Female 21 9 12 —

Age — — — 0.958
≤55 52 21 31 —

>55 44 18 26 —

Tumor Size — — — 0.979
≤5.0 54 22 32 —

>5.0 42 17 25 —

Histological grade — — — 0.005
G1 14 9 5 —

G2 74 30 44 —

G3 8 0 8 —

T stage — — — 0.654
T1-T2 27 10 17
T3-T4 69 29 40

N stage 0.572
N0 55 21 34 —

N1 41 18 23 —

M stage — — — 0.949
M0 76 31 45 —

M1 20 8 12 —

Tumor Stage — — — 0.736
Ⅰ-Ⅱ 61 24 37 —

Ⅲ-Ⅳ 35 15 20 —
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and GLUD1 in ferroptosis regulation (Jiang et al., 2017). A recent
study indicated that DNA polymerase γ (POLG) expression is
upregulated in pancreatic ductal adenocarcinoma patients and
serves as a therapeutic target to induce ferroptosis by zalcitabine
(Li et al., 2020). Thus, most risk-related genes have been
demonstrated to negatively regulate ferroptosis, promoting
cancer growth and development.

For most cancers, including ESCC, pathologic TNM staging has
been identified as a prognostic indicator and helps to guide the
selection of therapeutic strategies. Nevertheless, due to differences in
molecular and genetic characteristics, the clinical outcomes and
prognoses of cancers vary even among patients with the same
TNM stage who receive similar treatments (Gerlinger et al., 2012).
Consequently, survival prediction based only on the TNMstage is not
fully satisfactory to physicians, suggesting that prognosis prediction
should be based on both the TNM stage andmolecular characteristics
of cancer. In our present study, the AUC value for 1-year survival was
0.492 in validation cohort, indicating the predictive capability of the
10-FRG signature for OS was limited. To personalize prognosis

prediction and help to better design the treatment strategy of
patients, we combined the risk score with clinicopathological
characteristics to construct a nomogram for ESCC. In the
univariate Cox regression analysis, age, tobacco use, grade, N stage
and the risk score were significantly associated withOS. Furthermore,
multivariate Cox analysis showed that the risk score was an
independent prognostic factor. We constructed a nomogram
based on risk score and clinical factors. The predictive ability of
the nomogram was further verified by time-dependent ROC curves
and calibration plots in both the training and validation sets. The
result showed a higher AUC (1-, 3- and 5- year OS was 0.67, 0.758
and 0.779, respectively) than the 10-FRG risk score alone in
validation dataset. The predictive power of the nomogram was
demonstrated to be better than that of either the risk score or
clinical variable alone. Therefore, physicians can apply the
nomogram to improve the accuracy of identifying high-risk
patients and realize accurate treatment.

During ferroptosis, enzymatic lipid peroxidation is mediated
by the activity of the lipoxygenase (LOX) family (Hassannia et al.,

FIGURE 11 | SRC inhibition sensitizes ESCC cell line to ferroptosis. (A)Western blot analysis of phosphorylated SRC (Tyr416), SRC and PTGS2 in ESCC cells after
treating with indicated concentration of IKE or RSL3 for 24 h. (B) Cell viability of ECA9706 cells was assessed after treating with either KX2-391, or KX2-391 and 1 μM
liproxstatin-1 for 48 h. (C) Dose-dependent toxicity of IKE in ECA9706 cells with or without KX2-391 presence. (D) Flow cytometry analysis of IKE-induced (2.5 μM for
18 h) BODIPY 581/591 C11 oxidization in ECA9706 cells treated with or without KX2-391. (E) Cell viability was assessed in ECA9706 cells following treating with
Celecoxib, or Celecoxib and liproxstatin-1 (1 µM, 48 h). (F) Dose-dependent toxicity of IKE in ECA9706 cells with or without Celecoxib presence.
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2019). LOXs are nonheme iron-containing enzymes that catalyze
the deoxygenation of free and esterified PUFAs to generate
various lipid hydroperoxides, which can cause the destruction
of the lipid bilayer and affect membrane function (Hassannia
et al., 2019; Chen et al., 2021). Inmammalian cells, LA and AA are
the most abundant PUFAs serving as substrates for LOXs
(Hassannia et al., 2019). In this study, both AA metabolism
and LA metabolism were enriched in the low-risk group,
suggesting that ESCC patients in the low-risk group are
susceptible to ferroptosis. Thus, ferroptosis inducers may be
more valuable to patients with low risk. In contrast, pathways
related to carcinogenesis and development, such as colorectal
cancer, DNA replication and the cell cycle, were positively
correlated with the high-risk group. This result suggested that
the risk score was positively associated with malignancy of ESCC,
which was also supported by the findings that the risk score was
higher in patients with lymph node metastasis and advanced
TNM stage. Biological processes involving tumor differentiation
and suppression were enriched in the low-risk group. This result
was consistent with the result of GO enrichment analysis.
Chemokines are a large family of small, secreted proteins that
interact with cell surface G protein-coupled receptors to stimulate
the migration of leukocytes during normal immune function
(Hughes and Nibbs, 2018). Consequently, chemokines play a
central role in the development and homeostasis of the immune
system (Hughes and Nibbs, 2018). Chemokine-related molecular
functions, including chemokine receptor binding, CCR binding
and chemokine activity, were enriched in the low-risk group,
suggesting that chemokines are active in patients with low-risk
scores.

Increasing evidence has shown that ferroptosis is associated
with tumor immunity (Friedmann Angeli et al., 2019). Wang
et al. reported that immunotherapy-activated CD8+ T cells induce
ferroptosis in tumor cells in vivo (Wang et al., 2019). CD8+ T cell-
derived IFN-γ downregulated the expression of SLC3A2 and
SLC7A11 by inhibiting its transcription, thus promoting lipid
peroxidation and ferroptosis in tumor cells (Wang et al., 2019).
Furthermore, depletion of cystine or cysteine in combination with
ICB synergistically enhanced T cell-mediated antitumor
immunity and induced ferroptosis in a mouse model (Wang
et al., 2019). Immunohistochemical studies showed that the CD8+

T cell signature was negatively associated with system Xc-
expression, suggesting that sensitivity to ferroptosis was
parallel to anticancer immunity (Wang et al., 2019). In our
study, the CD8+ T cell level in ESCC was positively correlated
with the risk score, indicating that the low-risk group may be
more sensitive to ICB. This was also supported by the results of
ImmuCellAI analysis, which revealed that the response rate to
ICB therapy was significantly higher in the low-risk group than in
the high-risk group. Thus, ICB and ferroptosis inducers may be
suitable for patients with low risk. Furthermore, we used CMap to
discover personalized treatment options for ESCC patients and
found that SRC inhibitors can be utilized for the high-risk group.
The protein encoded by SRC is a tyrosine-protein kinase that
plays a role in the regulation of embryonic development, cell
growth and multiple fields of tumorigenesis (Roskoski, 2015).
SRC has been indicated as a promising therapeutic target in the

treatment of solid tumors, including ESCC (Roskoski, 2015). For
example, bosutinib, dasatinib, and ponatinib are SRC/multikinase
inhibitors that are approved by the FDA for the treatment of
chronic myelogenous leukemia (Chen et al., 2015). Dasatinib
enhances cisplatin sensitivity in ESCC cells via suppression of the
PI3K/AKT and Stat3 pathways (Chen et al., 2015). Bosutinib
effectively induces apoptosis in ESCC cells by inhibiting Src/Abl
signaling (Ha et al., 2020). In our present study, we demonstrated
SRC was overexpressed in ESCC tissues compared with normal
esophageal mucosa. In addition, high expression of SRC was
significantly associated with advanced histological grade and poor
prognosis in ESCC. This was consistent with the results of
bioinformatic analysis in our study. Moreover, we also
revealed that ferroptosis inducers activated SRC while SRC
inhibition sensitized ESCC cells to ferroptosis. Thus, we
propose that SRC plays an essential role in ESCC progression
and ferroptosis, and it may be used as a potential prognostic
marker and therapy target for ESCC.

In summary, we constructed and validated a 10-FRG
signature-based risk model and a nomogram that could be
used to predict the prognosis of ESCC. Moreover, our study
provides a new understanding of ferroptosis in the context of
ESCC carcinogenesis and progression and offers important ideas
for developing ferroptosis inducers for the treatment of ESCC.
Because our results are based on microarray technology, a series
of in vitro and in vivo experiments are required to advance the
clinical application of our 10-FRG signature to improve the
survival rate of ESCC patients.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

AH designed the study and revised the manuscript. JY, YW, HC,
WD, and RL collected and assembled the data. JY and YW
performed data analysis and interpretation. LS was responsible
for IHC. JY drafted the manuscript. All the authors read and
approved the final manuscript.

FUNDING

This work was supported by the China Postdoctoral Science
Foundation (NO. 2019M663304).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.697524/
full#supplementary-material

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 69752416

Ye et al. Ten-FRG Signature for ESCC Prognosis

https://www.frontiersin.org/articles/10.3389/fgene.2021.697524/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.697524/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Birnbaum, D. J., Finetti, P., Lopresti, A., Gilabert, M., Poizat, F., Raoul, J.-L., et al.
(2017). A 25-gene Classifier Predicts Overall Survival in Resectable Pancreatic
Cancer. BMC Med. 15 (1), 170. doi:10.1186/s12916-017-0936-z

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and
MortalityWorldwide for 36 Cancers in 185 Countries. CA: a Cancer J. clinicians
68, 394–424. doi:10.3322/caac.21492

Brown, C. W., Amante, J. J., Goel, H. L., and Mercurio, A. M. (2017). The α6β4
Integrin Promotes Resistance to Ferroptosis. J. Cel Biol 216 (12), 4287–4297.
doi:10.1083/jcb.201701136

Chen, J., Lan, T., Zhang, W., Dong, L., Kang, N., Fu, M., et al. (2015). Dasatinib
Enhances Cisplatin Sensitivity in Human Esophageal Squamous Cell
Carcinoma (ESCC) Cells via Suppression of PI3K/AKT and Stat3 Pathways.
Arch. Biochem. Biophys. 575, 38–45. doi:10.1016/j.abb.2014.11.008

Chen, X., Kang, R., Kroemer, G., and Tang, D. (2021). Broadening Horizons: the
Role of Ferroptosis in Cancer. Nat. Rev. Clin. Oncol. 18, 280–296. doi:10.1038/
s41571-020-00462-0

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason,
C. E., et al. (2012). Ferroptosis: An Iron-dependent Form of Nonapoptotic Cell
Death. Cell 149 (5), 1060–1072. doi:10.1016/j.cell.2012.03.042

Friedmann Angeli, J. P., Krysko, D. V., and Conrad, M. (2019). Ferroptosis at the
Crossroads of Cancer-Acquired Drug Resistance and Immune Evasion. Nat.
Rev. Cancer 19 (7), 405–414. doi:10.1038/s41568-019-0149-1

Gao, M., Monian, P., Pan, Q., Zhang,W., Xiang, J., and Jiang, X. (2016). Ferroptosis
Is an Autophagic Cell Death Process. Cell Res 26 (9), 1021–1032. doi:10.1038/
cr.2016.95

Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E.,
et al. (2012). Intratumor Heterogeneity and Branched Evolution Revealed by
Multiregion Sequencing. N. Engl. J. Med. 366 (10), 883–892. doi:10.1056/
NEJMoa1113205

Ha, Y. N. E, Dai, Y., Wufuer, D., Pidayi, M., Anasihan, G., and Chen, L. (2020).
Second-generation Src/Abl Inhibitor Bosutinib Effectively Induces Apoptosis in
Human Esophageal Squamous Cell Carcinoma (ESCC) Cells via Inhibiting Src/
Abl Signaling. neo 67 (1), 54–60. doi:10.4149/neo_2019_190131N94

Hassannia, B., Vandenabeele, P., and Vanden Berghe, T. (2019). Targeting Ferroptosis
to Iron Out Cancer. Cancer Cell 35 (6), 830–849. doi:10.1016/j.ccell.2019.04.002

Hughes, C. E., and Nibbs, R. J. B. (2018). A Guide to Chemokines and Their
Receptors. FEBS J. 285 (16), 2944–2971. doi:10.1111/febs.14466

Jiang, B., Zhao, Y., Shi, M., Song, L., Wang, Q., Qin, Q., et al. (2020). DNAJB6
Promotes Ferroptosis in Esophageal Squamous Cell Carcinoma.Dig. Dis. Sci. 65
(7), 1999–2008. doi:10.1007/s10620-019-05929-4

Jiang, Y.,Mao, C., Yang, R., Yan, B., Shi, Y., Liu, X., et al. (2017). EGLN1/c-Myc Induced
Lymphoid-specific Helicase Inhibits Ferroptosis through Lipid Metabolic Gene
Expression Changes. Theranostics 7 (13), 3293–3305. doi:10.7150/thno.19988

Lamb, J., Crawford, E. D., Peck, D.,Modell, J.W., Blat, I. C.,Wrobel, M. J., et al. (2006). The
Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules,
Genes, and Disease. Science 313 (5795), 1929–1935. doi:10.1126/science.1132939

Li, C., Zhang, Y., Liu, J., Kang, R., Klionsky, D. J., and Tang, D. (2020).
Mitochondrial DNA Stress Triggers Autophagy-dependent Ferroptotic
Death. Autophagy 17, 948–960. doi:10.1080/15548627.2020.1739447

Li, J., Chen, Z., Tian, L., Zhou, C., He, M. Y., Gao, Y., et al. (2014). LncRNA Profile
Study Reveals a Three-lncRNA Signature Associated with the Survival of Patients
with Oesophageal Squamous Cell Carcinoma. Gut 63 (11), 1700–1710.
doi:10.1136/gutjnl-2013-305806

Liang, J.-y., Wang, D.-s., Lin, H.-c., Chen, X.-x., Yang, H., Zheng, Y., et al. (2020). A
Novel Ferroptosis-Related Gene Signature for Overall Survival Prediction in
Patients with Hepatocellular Carcinoma. Int. J. Biol. Sci. 16 (13), 2430–2441.
doi:10.7150/ijbs.45050

Liu, Y., Zhang, X., Zhang, J., Tan, J., Li, J., and Song, Z. (2020). Development and
Validation of a Combined Ferroptosis and Immune Prognostic Classifier for
Hepatocellular Carcinoma. Front. Cel Dev. Biol. 8, 596679. doi:10.3389/
fcell.2020.596679

Luo, H., and Ma, C. (2021). A Novel Ferroptosis-Associated Gene Signature to
Predict Prognosis in Patients with Uveal Melanoma. Diagnostics 11 (2), 219.
doi:10.3390/diagnostics11020219

Miao, Y. R., Zhang, Q., Lei, Q., Luo, M., Xie, G. Y., Wang, H., et al. (2020).
ImmuCellAI: A Unique Method for Comprehensive T-Cell Subsets Abundance
Prediction and its Application in Cancer Immunotherapy. Adv. Sci. 7 (7),
1902880. doi:10.1002/advs.201902880

Pennathur, A., Gibson, M. K., Jobe, B. A., and Luketich, J. D. (2013). Oesophageal
Carcinoma. The Lancet 381 (9864), 400–412. doi:10.1016/s0140-6736(12)
60643-6

Rice, T. W., Ishwaran, H., Ferguson, M. K., Blackstone, E. H., and Goldstraw, P. (2017).
Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging
Primer. J. Thorac. Oncol. 12 (1), 36–42. doi:10.1016/j.jtho.2016.10.016

Roskoski, R., Jr. (2015). Src Protein-Tyrosine Kinase Structure, Mechanism, and Small
Molecule Inhibitors. Pharmacol. Res. 94, 9–25. doi:10.1016/j.phrs.2015.01.003

Shishido, Y., Amisaki, M., Matsumi, Y., Yakura, H., Nakayama, Y., Miyauchi, W.,
et al. (2020). Antitumor Effect of 5-Aminolevulinic Acid through Ferroptosis in
Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 28, 3996–4006.
doi:10.1245/s10434-020-09334-4

Stockwell, B. R., Friedmann Angeli, J. P., Bayir, H., Bush, A. I., Conrad, M., Dixon,
S. J., et al. (2017). Ferroptosis: A Regulated Cell Death Nexus Linking
Metabolism, Redox Biology, and Disease. Cell 171 (2), 273–285. doi:10.1016/
j.cell.2017.09.021

Wang, W., Green, M., Choi, J. E., Gijón, M., Kennedy, P. D., Johnson, J. K., et al.
(2019). CD8+ T Cells Regulate Tumour Ferroptosis during Cancer
Immunotherapy. Nature 569 (7755), 270–274. doi:10.1038/s41586-019-1170-y

Xu, T., Ding, W., Ji, X., Ao, X., Liu, Y., Yu, W., et al. (2019). Molecular Mechanisms
of Ferroptosis and its Role in Cancer Therapy. J. Cel Mol Med 23 (8),
4900–4912. doi:10.1111/jcmm.14511

Yang, W. S., Kim, K. J., Gaschler, M. M., Patel, M., Shchepinov, M. S., and
Stockwell, B. R. (2016). Peroxidation of Polyunsaturated Fatty Acids by
Lipoxygenases Drives Ferroptosis. Proc. Natl. Acad. Sci. USA 113 (34),
E4966–E4975. doi:10.1073/pnas.1603244113

Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R.,
Viswanathan, V. S., et al. (2014). Regulation of Ferroptotic Cancer Cell
Death by GPX4. Cell 156 (1-2), 317–331. doi:10.1016/j.cell.2013.12.010

Yang, X., Liu, J., Wang, C., Cheng, K. K.-y., Xu, H., Li, Q., et al. (2021). miR-18a
Promotes Glioblastoma Development by Down-Regulating ALOXE3-Mediated
Ferroptotic and Anti-migration Activities. Oncogenesis 10 (2), 15. doi:10.1038/
s41389-021-00304-3

Ye, J., Zhang, Y., Liang, W., Huang, J., Wang, L., and Zhong, X. (2017). UHRF1
is an Independent Prognostic Factor and a Potential Therapeutic Target
of Esophageal Squamous Cell Carcinoma. J. Cancer. 8 (19), 4027–4039.
doi:10.7150/jca.21256

Zhan, C., Yan, L., Wang, L., Jiang, W., Zhang, Y., Xi, J., et al. (2016). Landscape of
Expression Profiles in Esophageal Carcinoma by the Cancer Genome Atlas
Data. Dis. Esophagus 29 (8), 920–928. doi:10.1111/dote.12416

Zheng, Y., Ji, Q., Xie, L., Wang, C., Yu, C. N., Wang, Y. L., et al. (2021). Ferroptosis-
related Gene Signature as a Prognostic Marker for Lower-grade Gliomas. J. Cel
Mol Med 25 (6), 3080–3090. doi:10.1111/jcmm.16368

Zhou, N., and Bao, J. (2020). FerrDb: A Manually Curated Resource for Regulators
and Markers of Ferroptosis and Ferroptosis-Disease Associations. Database
(Oxford). 2020, baaa021. doi:10.1093/database/baaa021

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ye, Wu, Cai, Sun, Deng, Liang and Han. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 69752417

Ye et al. Ten-FRG Signature for ESCC Prognosis

https://doi.org/10.1186/s12916-017-0936-z
https://doi.org/10.3322/caac.21492
https://doi.org/10.1083/jcb.201701136
https://doi.org/10.1016/j.abb.2014.11.008
https://doi.org/10.1038/s41571-020-00462-0
https://doi.org/10.1038/s41571-020-00462-0
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1038/s41568-019-0149-1
https://doi.org/10.1038/cr.2016.95
https://doi.org/10.1038/cr.2016.95
https://doi.org/10.1056/NEJMoa1113205
https://doi.org/10.1056/NEJMoa1113205
https://doi.org/10.4149/neo_2019_190131N94
https://doi.org/10.1016/j.ccell.2019.04.002
https://doi.org/10.1111/febs.14466
https://doi.org/10.1007/s10620-019-05929-4
https://doi.org/10.7150/thno.19988
https://doi.org/10.1126/science.1132939
https://doi.org/10.1080/15548627.2020.1739447
https://doi.org/10.1136/gutjnl-2013-305806
https://doi.org/10.7150/ijbs.45050
https://doi.org/10.3389/fcell.2020.596679
https://doi.org/10.3389/fcell.2020.596679
https://doi.org/10.3390/diagnostics11020219
https://doi.org/10.1002/advs.201902880
https://doi.org/10.1016/s0140-6736(12)60643-6
https://doi.org/10.1016/s0140-6736(12)60643-6
https://doi.org/10.1016/j.jtho.2016.10.016
https://doi.org/10.1016/j.phrs.2015.01.003
https://doi.org/10.1245/s10434-020-09334-4
https://doi.org/10.1016/j.cell.2017.09.021
https://doi.org/10.1016/j.cell.2017.09.021
https://doi.org/10.1038/s41586-019-1170-y
https://doi.org/10.1111/jcmm.14511
https://doi.org/10.1073/pnas.1603244113
https://doi.org/10.1016/j.cell.2013.12.010
https://doi.org/10.1038/s41389-021-00304-3
https://doi.org/10.1038/s41389-021-00304-3
https://doi.org/10.7150/jca.21256
https://doi.org/10.1111/dote.12416
https://doi.org/10.1111/jcmm.16368
https://doi.org/10.1093/database/baaa021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Development and Validation of a Ferroptosis-Related Gene Signature and Nomogram for Predicting the Prognosis of Esophageal  ...
	Introduction
	Methods
	Data Acquisition and Collection of Ferroptosis-Related Genes
	Construction and Validation of the Prognostic Risk Model
	Nomogram Construction and Evaluation
	Interaction Network and Functional Enrichment Analyses
	Correlation Between the Risk Score and Immune Infiltration
	Identification of Candidate Small Molecules
	Patients and Tissue Samples
	Cell Culture and Regents
	Total RNA Extraction and qRT-PCR Verification
	Immunohistochemical Staining and Scoring
	Cell Viability Assay
	Assessment of Lipid Peroxidation Using BODIPY-C11 (581/591)
	Western Blotting
	Statistical Aanalysis

	Results
	Construction of the Ferroptosis-Related Prognostic Risk Model
	Validation of the Prognostic Signature in the Independent Cohort
	Construction and Validation of the Predictive Nomogram
	Functional Analyses of Risk Model
	Relationship Between Risk Score and Immune Cell Infiltration
	Connectivity Map Analysis Identified Potential Compounds Suitable for Different Molecular Subtypes
	Clinical Experimental Validation
	SRC Protects Esophageal Squamous Cell Carcinoma Cells Against Ferroptosis

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


