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Abstract Reparative hepatocyte replication is impaired in chronic liver disease, contributing to

disease progression; however, the underlying mechanism remains elusive. Here, we identify

Map3k14 (also known as NIK) and its substrate Chuk (also called IKKa) as unrecognized

suppressors of hepatocyte replication. Chronic liver disease is associated with aberrant activation

of hepatic NIK pathways. We found that hepatocyte-specific deletion of Map3k14 or Chuk

substantially accelerated mouse hepatocyte proliferation and liver regeneration following partial-

hepatectomy. Hepatotoxin treatment or high fat diet feeding inhibited the ability of partial-

hepatectomy to stimulate hepatocyte replication; remarkably, inactivation of hepatic NIK markedly

increased reparative hepatocyte proliferation under these liver disease conditions. Mechanistically,

NIK and IKKa suppressed the mitogenic JAK2/STAT3 pathway, thereby inhibiting cell cycle

progression. Our data suggest that hepatic NIK and IKKa act as rheostats for liver regeneration by

restraining overgrowth. Pathological activation of hepatic NIK or IKKa likely blocks hepatocyte

replication, contributing to liver disease progression.

DOI: https://doi.org/10.7554/eLife.34152.001

Introduction
The liver is an essential metabolic organ that experiences metabolic stress during fasting, refeeding,

and overnutrition states (Rui, 2014). The liver is also responsible for detoxifications of endogenous

and exogenous toxic substances, thus being frequently exposed to harmful insults. Dietary hepato-

toxins and gut microbiota-derived toxic substances are transported to the liver through the entero-

hepatic circulation, further increasing risk for liver injury. To compensate for hepatocyte loss, the

liver evolves a powerful regenerative ability to maintain its homeostasis (Michalopoulos, 2017).

After 70% of partial hepatectomy (PHx), rodents are able to regain normal liver mass within a week

via reparative hepatocyte replications (Miyaoka et al., 2012). Nevertheless, hepatocyte proliferation

is severely inhibited in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD), alco-

holic liver disease, and chronic exposures to hepatotoxins (Richardson et al., 2007; Inaba et al.,

2015; Sancho-Bru et al., 2012; Michalopoulos, 2013). Impairment in hepatocyte replications con-

siderably precipitates liver disease progression; however, the underlying mechanism responsible for

defective hepatocyte replications remains poorly understood.
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In response to liver injury induced by PHx, numerous growth factors and cytokines are secreted

and delivered to hepatocytes where they stimulate hepatocyte proliferation by activating multiple

mitogenic pathways, including the Janus kinase 2 (JAK2)/STAT3, MAPK, PI 3-kinase, and NF-kB

pathways (Michalopoulos, 2017). In contrast, TGFb1 and interferon-g inhibit hepatocyte prolifera-

tion, thereby preventing liver from overgrowth (Michalopoulos, 2013; Sato et al., 1993; Wu et al.,

2015). Liver regeneration is fine-tuned by a balance between positive and negative regulators. We

postulated that in chronic liver disease, the negative branch might be predominant and overcome

the positive branch, leading to pathological suppression of hepatocyte proliferation and liver regen-

eration. However, intracellular pathways conferring hepatocyte proliferation inhibition remain elu-

sive. In search for inhibitory pathways, we identified Map3k14, also called NF-kB-inducing kinase

(NIK), and its substrate Chuck, also referred to as IkB kinase a (IKKa).

NIK is a Ser/Thr kinase known to activate the noncanonical NF-kB2 pathway (Sun, 2012). It phos-

phorylates and activates IKKa (Xiao et al., 2001). IKKa in turn phosphorylates the precursor of NF-

kB2 p100, resulting in generation of the p52 form of NF-kB2 (Sun, 2012; Xiao et al., 2001). Mature

p52 is translocated into the nucleus to activate target genes. We previously reported that metabolic

stress, oxidative stress, hepatotoxins, and cytokines stimulate hepatic NIK (Sheng et al., 2012;

Jiang et al., 2015). Importantly, hepatic NIK is aberrantly activated in both mice and humans with

NAFLD or alcoholic liver disease (Sheng et al., 2012; Shen et al., 2014). Hepatocellular stress and

liver inflammation, which are associated with chronic liver disease, likely activate hepatic NIK. These

observations prompted us to test the hypothesis that hepatic NIK/IKKa pathways cell-autonomously

inhibit hepatocyte proliferation. In this work, we characterized hepatocyte-specific NIK (NIKDhep) and

IKKa (IKKaDhep) knockout mice, and examined reparative hepatocyte replications using PHx models.

We found that the NIK/IKKa pathway suppresses reparative hepatocyte proliferation at least in part

by inhibiting the JAK2/STAT3 pathway. This work unveils unrecognized crosstalk between the NIK/

IKKa and the JAK2/STAT3 pathways involved in regulating liver regeneration.

Results

Hepatocyte-specific ablation of NIK accelerates liver regeneration
To assess the role of hepatic NIK in reparative hepatocyte proliferation, we performed 70% of PHx

on mice at 8 weeks of age following the established protocols (Mitchell and Willenbring, 2008).

NIKDhep mice were generated by crossing Map3k14flox/flox (referred to as NIKf/f) mice with Albumin-

Cre drivers (Shen et al., 2017). Proliferating cells were detected by immunostaining liver sections

with antibody against Ki67, a cell proliferation marker (Figure 1A). Baseline hepatocyte proliferation

rates were low and comparable between NIKDhep and NIKf/f mice (Figure 1B). Number of liver prolif-

erating Ki67+ cells markedly increased within 48 hr following PHx, and Ki67+ cells were 85% higher

in NIKDhep relative to NIKf/f mice (Figure 1B). In line with these observations, the number of liver

BrdU-labelled proliferating cells was also substantially higher in NIKDhep than in NIKf/f mice

(Figure 1C). Liver cell proliferation rates declined in both NIKDhep and NIKf/f mice after 48 hr post-

PHx, and became comparable between these two groups at 96 hr post-PHx (Figure 1B).

To verify hepatocytes proliferating, we costained liver sections with anti-Ki67 and anti-HNF4a (a

hepatocyte marker) antibodies, or with anti-Ki67 and anti-F4/80 (a Kupffer cell/macrophage marker)

antibodies. HNF4a+ hepatocytes accounted for 96% of Ki67+ proliferating cells in NIKDhep mice at

48 hr post-PHx (Figure 1D,F) while F4/80+ Kupffer cells/macrophages for <4% of Ki67+ cells

(Figure 1E,F). These data indicate that hepatic NIK is an intrinsic suppressor of hepatocyte

proliferation.

We also examined the effect of NIK deficiency on hepatocyte death using TUNEL assays. The

number of liver TUNEL+ apoptotic cells was slightly lower in NIKDhep relative to NIKf/f mice, but the

difference was not statistically significant (Figure 1G). Plasma alanine aminotransferase (ALT) activity,

a liver injury index, was comparable between NIKDhep and NIKf/f mice either under basal conditions

or after PHx (Figure 1H). Thus, accelerated hepatocyte proliferation cannot be explained by changes

in liver injury in NIKDhep mice.

To further confirm the role of hepatic NIK in liver regeneration, we assessed liver to body weight

ratios at 2 and 4 days post-PHx. Consistently, liver/body weight ratios were significantly higher in

NIKDhep than in NIKf/f mice at 4 days following PHx (Figure 1I). Of note, liver/body weight ratios
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Figure 1. Hepatocyte-specific ablation of NIK accelerates reparative hepatocyte proliferation. NIKf/f (n = 7) and NIKDhep (n = 7) male mice (8 weeks)

were subjected to PHx, and livers were harvested 48 hr or 96 hr later. (A) Representative immunostaining of liver sections (48 hr after PHx) with anti-Ki67.

(B) Ki67+ cells were counted and normalized to total DAPI+ cells. (C) Representative immunostaining of liver sections (48 hr after PHx) with anti-BrdU

antibodies. (D–E) Representative images of liver sections (48 hr after PHx) costained with anti-Ki67 and anti-HNF4a antibodies (D) or anti-Ki67 and anti-

F4/80 antibodies (E). (F) Ki67+HNF4a+ and Ki67+F4/80+ cells were counted and normalized to total Ki67+ cells. (G) Liver cell death were assessed 48 hr

after PHx using TUNEL reagents. (H) Plasma ALT levels. (I) Liver to body weight ratios (n = 8 per group). Data were statistically analyzed with two-tailed

Student’s t test, and presented as mean ± SEM. *p<0.05.

DOI: https://doi.org/10.7554/eLife.34152.002

The following source data is available for figure 1:

Source data 1. Hepatic NIK deficiency accelerates liver regeneration.

DOI: https://doi.org/10.7554/eLife.34152.003

Source data 2. PHx increases hepatocyte replications.

DOI: https://doi.org/10.7554/eLife.34152.004
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were similar between these two groups at 2 days post-PHx. One possible explanation is that a 2 day

period may be too short for newly-generated hepatocytes to grow in size large enough to increase

liver weight.

To determine whether NIK inhibits hepatocyte cell cycle progression, we measured the levels of

cyclin D1, which is believed to drive hepatocyte proliferation following PHx (Michalopoulos, 2013).

Hepatic cyclin D1 levels were undetectable in both NIKDhep and NIKf/f mice under basal conditions,

and were markedly increased by PHx (Figure 2A). Importantly, hepatic cyclin D1 levels were signifi-

cantly higher in NIKDhep than in NIKf/f mice (Figure 2A,B). Collectively, these results support the

notion that hepatic NIK may act as an intrinsic rheostat for liver homeostasis by restraining liver

overgrowth.

The role of NF-kB1, MAPK, and PI 3-kinase pathways in NIK-induced
suppression of hepatocyte proliferation
We next sought to interrogate the molecular mechanism of the NIK action. Expression of liver NIK

rapidly increased within 12 hr following PHx, but declined at 3 days post-PHx (Figure 2—figure sup-

plement 1A). Consistently, PHx also increased phosphorylation of liver IKKa/b (Figure 2—figure

supplement 1B,C). Interestingly, liver IKKa expression was also increased by PHx (Figure 2—figure

supplement 1C). The NF-kB1, MAPK, and PI 3-kinase pathways are known to be involved in mediat-

ing PHx-stimulated liver regeneration (Michalopoulos, 2013; Wuestefeld et al., 2013; Pauta et al.,

2016). Unexpectedly, phosphorylation of hepatic IkBa, p65 (the NF-kB1 pathway), Akt (pSer473)

(the PI 3-kinase pathway), ERK1/2, and JNK (the MAPK pathway) was comparable between NIKDhep

and NIKf/f mice at 4 hr post-PHx (Figure 2C). We also did not detect difference in hepatic levels of

reactive oxygen species (ROS) or hepatic expression of cytokines between NIKDhep and NIKf/f mice

(Figure 2D,E). Therefore, NIK suppression of liver regeneration cannot be explained by the above

pathways.

NIK suppresses the JAK2/STAT3 pathway
JAK2 is known to phosphorylate and activate STAT3, which is believed to drive hepatocyte prolifera-

tion (Wang et al., 2011; Shi et al., 2017). We postulated that NIK might suppress hepatocyte prolif-

eration by inhibiting the JAK2/STAT3 pathway. Liver extracts were prepared at 4 hr post-PHx and

immunoblotted with anti-phospho-JAK2 (pTyr1007/1008) or anti-phospho-STAT3 (pTyr705) antibod-

ies. Phosphorylation of both JAK2 and STAT3 was significantly higher in NIKDhep mice than in NIKf/f

littermates (Figure 3A). Baseline levels of JAK2 and STAT3 phosphorylation in the resected livers

were similar between NIKDhep and NIKf/f mice (Figure 2—figure supplement 1D).

To confirm that NIK directly inhibits the JAK2/STAT3 pathway, we transiently coexpressed JAK2

and STAT3 with NIK in HEK293 cells. In line with our previous reports (Rui and Carter-Su, 1999),

overexpressed JAK2 robustly autophosphorylated as well as phosphorylated STAT3 (Figure 3B).

Strikingly, overexpression of NIK dramatically decreased tyrosine phosphorylation of both JAK2 and

STAT3 (Figure 3B). Consistently, NIK was coimmunoprecipitated with JAK2 (Figure 3C). These data

indicate that NIK binds to JAK2 and inhibits JAK2 activity, thereby suppressing the JAK2/STAT3

pathway.

Interleukin 6 (IL6) stimulates the JAK2/STAT3 pathway, which is required for reparative hepato-

cyte proliferation (Riehle et al., 2008; Cressman et al., 1996). These observations prompted us to

test if NIK negatively regulates the IL6/JAK2/STAT3 pathway. Mouse primary hepatocytes were

transduced with NIK or b-galactosidase (b-gal) adenoviral vectors, followed by IL6 stimulation. IL6

robustly stimulated phosphorylation of STAT3 in b-gal-transduced, but not NIK-transduced, hepato-

cytes (Figure 3D). Collectively, these results unveil unrecognized crosstalk between NIK pathways

and the JAK2/STAT3 pathway.

Hepatic IKKa suppresses liver regeneration following PHx
Given that IKKa acts downstream of NIK in the noncanonical NF-kB2 pathway, we reasoned that

hepatic IKKa might also suppress liver regeneration. IKKaDhep mice were generated by crossing

Chukflox/flox (referred to as IKKaf/f) mice with albumin-Cre drivers (Liu et al., 2008). We confirmed

that IKKa expression was disrupted specifically in the liver but not brain, heart, kidney, skeletal mus-

cle, and spleen in IKKaDhep mice (Figure 4A). We performed PHx on IKKaf/f and IKKaDhep male mice
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Figure 2. Hepatic NIK deficiency upregulates cyclin D1 without altering NF-kB1, Akt, and MAPK pathways in the

liver. NIKf/f and NIKDhep male mice (8 weeks) were subjected to PHx. (A–B) Liver extracts were immunoblotted with

anti-cyclin D1 antibody (48 hr after PHx). Cyclin D1 levels were quantified and normalized to a-tubulin levels (NIKf/f:

n = 4, NIKDhep: n = 4). (C) Liver extracts were immunoblotted with the indicated antibodies (4 hr after PHx). (D)

Liver ROS levels 48 hr after PHx (normalized to liver weight). NIKf/f: n = 5, NIKDhep: n = 6. (E) Liver cytokine

expression was measured by qPCR and normalized to 36B4 expression (48 hr after PHx). NIKf/f: n = 5, NIKDhep:

n = 5. Data were statistically analyzed with two-tailed Student’s t test, and presented as mean ± SEM. *p<0.05.

DOI: https://doi.org/10.7554/eLife.34152.005

The following source data and figure supplements are available for figure 2:

Source data 1. Hepatic NIK regulates hepatocyte cell cycle progression.

Figure 2 continued on next page
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at 8–9 weeks of age. The number of liver proliferating Ki67+ cells was significantly higher in IKKaDhep

than in IKKaf/f littermates at both 1 and 2 days post-PHx, and became similar between these two

groups after 3 days following PHx (Figure 4B). HNF4a+ hepatocytes accounted for the majority of

proliferating cells (Figure 4C). Consistently, liver cyclin D1 levels were significantly higher in IKKaDhep

than in IKKaf/f mice (Figure 4D), while liver cell death was comparable between these two groups

(Figure 4E). Consequently, liver to body weight ratios were significantly higher in IKKaDhep relative

to IKKaf/f mice at both 5 and 7 days post-PHx (Figure 4F). Notably, liver/body weight ratios were

comparable between these two groups within 3 days following PHx, likely due to lack of sufficient

time for hepatocytes to grow their mass as discussed before. These results indicate that deficiency

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.34152.008

Figure supplement 1. Effect of PHx on liver NIK pathway activation.

DOI: https://doi.org/10.7554/eLife.34152.006

Figure supplement 1—source data 1. PHx stimulates hepatic NIK expression.

DOI: https://doi.org/10.7554/eLife.34152.007
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DOI: https://doi.org/10.7554/eLife.34152.009

The following source data is available for figure 3:

Source data 1. NIK inhibits the JAK2/STAT3 pathway.

DOI: https://doi.org/10.7554/eLife.34152.010
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Figure 4. Ablation of hepatocyte IKKa accelerates hepatocyte reparative proliferation. (A) Tissue extracts were

immunoblotted with anti-IKKa or anti-a-tubulin antibodies. (B–F) IKKaf/f (n = 6) and IKKaDhep (n = 6) male

littermates were subjected to PHx, and livers were harvested 48 hr later. (B) Liver sections were immunostained

with anti-Ki67 antibody, and Ki67+ cells were counted and normalized to total DAPI+ cells. Day 0 and 1: n = 4 per

Figure 4 continued on next page
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of hepatocyte IKKa, like NIK, also accelerates hepatocyte proliferation and liver regeneration in

response to acute liver injury.

To gain insight into the molecular mechanism of the IKKa action, we examined the JAK2/STAT3

pathway. The levels of phosphorylation of JAK2 as well as STAT3 were significantly higher in

IKKaDhep than in IKKaf/f mice at 4 hr post-PHx (Figure 5A,B). We also compared phosphorylation

time courses during days 0–7 following PHx. IKKa phosphorylation increased while JAK2 phosphory-

lation decreasing during days 1–5 (Figure 5—figure supplement 1A,B). This inverse relationship fur-

ther supports the notion that the NIK/IKKa pathway inhibits the JAK2/STAT3 pathway. Ablation of

hepatocyte IKKa increased phosphorylation of JAK2 and STAT3 during days 1–7 following PHx (Fig-

ure 5—figure supplement 1B). To confirm that IKKa cell-autonomously inhibits the JAK2/STAT3

pathway, IKKa was transiently coexpressed with JAK2 in HEK293 cells. IKKa was coimmunoprecipi-

tated with JAK2 (Figure 5C), and markedly decreased JAK2 autophosphorylation and the ability of

JAK2 to phosphorylate STAT3 (Figure 5D).

To determine whether NIK suppresses the JAK2/STAT3 pathway via IKKa, we transduced primary

hepatocytes from IKKaDhep (IKKa-deficient) and IKKaf/f (wild type) mice with NIK or green fluorescent

protein (GFP) adenoviral vectors, followed by IL6 stimulation. The ability of NIK to inhibit IL6-stimu-

lated phosphorylation of STAT3 was significantly reduced in IKKa-deficient hepatocytes compared

to wild type hepatocytes (Figure 5—figure supplement 1C,D). Of note, NIK overexpression still

considerately attenuated STAT3 phosphorylation in IL6-stimulated IKKa-deficient hepatocytes, com-

pared with GFP overexpression (Figure 5—figure supplement 1D). These findings suggest that

hepatic NIK suppresses the JAK2/STAT3 pathway, and possibly liver regeneration, by both IKKa-

dependent and IKKa-independent mechanisms.

Deficiency of hepatic NIK accelerates liver regeneration in mice with
hepatotoxin-induced liver injury
Hepatic NIK is highly activated in mice and humans with chronic liver disease (Sheng et al., 2012;

Shen et al., 2014), raising the possibility that hepatic NIK might impair liver regeneration in these dis-

ease conditions. To model chronic liver disease, we treated NIKDhep and NIKf/f male mice with 2-acety-

laminofluorene (AAF), a hepatotoxin (Laishes and Rolfe, 1981), for 10 days prior to PHx. Liver cell

proliferation was assessed at 48 hr post-PHx. AAF treatment considerably increased hepatic levels of

NF-kB2 p52 in wild type mice, indicative of NIK activation (Figure 6A). Baseline levels of proliferating

Ki67+ hepatocytes in the resected liver (<2%) were comparable between NIKf/f and NIKDhep mice

(Figure 6B). PHx markedly increased hepatocyte proliferation rates in NIKf/f mice, which was substan-

tially inhibited by AAF pretreatment (Figure 6C,D). Remarkably, the number of Ki67+ hepatocytes was

significantly higher in NIKDhep relative to NIKf/f littermates following AAF and PHx treatments

(Figure 6C,D). Liver to body weigh ratios were slightly higher in NIKDhep relative to NIKf/f mice at 2

days post-PHx, but not statistically different (Figure 6—figure supplement 1A). As discussed above,

a 2 day period may be too short for newly-generated hepatocytes to grow in size to significantly

increase liver weight. Plasma ALT levels were also similar between NIKf/f and NIKDhep mice (Figure 6E).

We next examined cell signaling that drives cell cycle progression. We detected baseline levels of

phosphorylation of hepatic STAT3 in NIKDhep but not NIKf/f mice after AAF pretreatment (Figure 6F).

PHx stimulated STAT3 phosphorylation in both NIKDhep and NIKf/f mice, but to a substantially higher

Figure 4 continued

group; day 3: IKKaf/f: n = 6, IKKaDhep: n = 8; day 5: IKKaf/f: n = 9, IKKaDhep: n = 8; day 7: IKKaf/f: n = 6, IKKaDhep:

n = 5. (C) Representative images of liver sections costained with anti-Ki67 and anti-HNF4a antibodies. (D) Liver

cyclin D1 was measured by immunoblotting (normalized to a-tubulin levels). (E) TUNEL-positive cells in liver

sections. (F) Liver to body weight ratios. Day 0 and 1: n = 4 per group; day 3: IKKaf/f: n = 6, IKKaDhep: n = 8; day 5:

IKKaf/f: n = 9, IKKaDhep: n = 8; day 7: IKKaf/f: n = 6, IKKaDhep: n = 5. Data were statistically analyzed with two-tailed

Student’s t test, and presented as mean ± SEM. *p<0.05.

DOI: https://doi.org/10.7554/eLife.34152.011

The following source data is available for figure 4:

Source data 1. Hepatic IKKa regulates liver regeneration.

DOI: https://doi.org/10.7554/eLife.34152.012

Xiong et al. eLife 2018;7:e34152. DOI: https://doi.org/10.7554/eLife.34152 8 of 18

Research article Cell Biology

https://doi.org/10.7554/eLife.34152.011
https://doi.org/10.7554/eLife.34152.012
https://doi.org/10.7554/eLife.34152


JAK2

JAK2

B
lo

t

IP: Flag-IKKα

Lysate

B

A

D

pJAK2

JAK2

STAT3

pSTAT3

B
lo

t

IKKαIKKα

IKKα

pJAK2

JAK2

STAT3

pSTAT3

B
lo

t

f/f ∆hep

S
T

A
T

3
 p

h
o

s
p

h
o

ry
la

ti
o

n

J
A

K
2
 p

h
o

s
p

h
o

ry
la

ti
o

nf/f

∆hep

LysateC

JAK2:

IKKα: - - +
+- +

- + +
+-

JAK2:

IKKα: +

0

1

2

3

4

0.0

0.3

0.6

0.9

1.2
**

Liver, 4 h-PHx

Figure 5. IKKa inhibits the JAK2/STAT3 pathway. (A–B) Liver extracts were prepared 4 hr after PHx and

immunoblotted with anti-phospho-JAK2 and anti-phospho-STAT3 antibodies. Phosphorylation of JAK2 (pTyr1007/

1008) and STAT3 (pTyr705) was normalized to total JAK2 and STAT3 levels, respectively. IKKaf/f: n = 6, IKKaDhep:

n = 6. (C) IKKa and JAK2 were coexpressed in HEK293 cells. Cell extracts were immunoprecipitated (IP) and

immunoblotted with the indicated antibodies. (D) STAT3 and JAK2 were coexpressed with IKKa in HEK293 cells.

Cell extracts were immunoblotted with the indicated antibodies. Data were statistically analyzed with two-tailed

Student’s t test, and presented as mean ± SEM. *p<0.05.

DOI: https://doi.org/10.7554/eLife.34152.013

The following source data and figure supplements are available for figure 5:

Source data 1. IKKa regulates the JAK2/STAT3 pathway.

DOI: https://doi.org/10.7554/eLife.34152.017

Figure supplement 1. The effect of PHx on activation of liver IKKa and JAK2/STAT3 pathways.

DOI: https://doi.org/10.7554/eLife.34152.014

Figure supplement 1—source data 1. PHx regulates the hepatic JAK2/STAT3 pathway.

DOI: https://doi.org/10.7554/eLife.34152.015

Figure supplement 1—source data 2. Regulation of the JAK2/STAT3 pathway by NIK/IKKa pathways.

DOI: https://doi.org/10.7554/eLife.34152.016
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Figure 6. Ablation of hepatocyte NIK reverses AAF-induced impairment in hepatocyte reparative proliferation. (A)

C57BL/6 males (8 weeks) were treated with PBS or AAF (10 mg/kg body weight, gavage) daily for 10 days. NF-kB2

p52 in liver extracts was immunoblotted with anti-NF-kB2 antibody (normalized to a-tubulin levels). PBS: n = 4,

AAF: n = 4. (B–G) NIKf/f and NIKDhep males were treated with PBS or AAF (10 mg/kg body weight) for 10 days and

Figure 6 continued on next page
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level in NIKDhep mice (Figure 6F). Baseline hepatic cyclin D1 levels were undetectable in both NIKDhep

and NIKf/f mice pretreated with AAF, and PHx increased cyclin D1 levels to a higher extent in NIKDhep

than in NIKf/f mice (Figure 6F). Together, these data support the notion that abnormal activation of

hepatic NIK contributes to hepatotoxin-induced impairment in liver regeneration.

Inactivation of hepatic NIK increases reparative hepatocyte
proliferation in mice with NAFLD
NAFLD is associated with both arrest of hepatocyte proliferation and upregulation of hepatic NIK

(Richardson et al., 2007; Inaba et al., 2015; Sheng et al., 2012; Shen et al., 2014; Collin de l’Hor-

tet et al., 2014), prompting us to test if elevated hepatic NIK is responsible for impairment in liver

regeneration under the disease conditions. To model NAFLD, we placed NIKDhep and NIKf/f mice on

a high fat diet (HFD) for 10 weeks. Both NIKDhep and NIKf/f mice similarly developed liver steatosis,

as assessed by liver triacylglycerol (TAG) levels (Figure 7A). HFD feeding increased hepatic NF-kB2

p52 levels, indicative of NIK activation (Figure 7B). To assess liver regeneration, we performed PHx

after HFD feeding for 10 weeks. Hepatocyte proliferation was assessed at 48 hr post-PHx by staining

liver sections with anti-Ki67 antibody (Figure 7C). Baseline levels of hepatocyte proliferation in

the resected liver were comparable between NIKDhep and NIKf/f mice (Figure 7D). PHx markedly

increased hepatocyte proliferation in chow-fed NIKf/f mice, which was substantially inhibited by HFD

feeding (Figure 7E). Importantly, number of proliferating Ki67+ hepatocytes was significantly higher

in NIKDhep than in NIKf/f littermates after HFD feeding (Figure 7E). Liver/body weight ratios were

slightly higher in NIKDhep relative to NIKf/f mice at 2 days post-PHx, but not statistically different (Fig-

ure 6—figure supplement 1B). This modest difference can be explained by the short duration that

limits the capacity of newly-generated hepatocytes to significantly grow in size and increase liver

weight. Plasma ALT levels were comparable between NIKDhep and NIKf/f littermates under both basal

and PHx conditions (Figure 7F).

We further explored liver mitogenic pathways in these mice. Baseline STAT3 phosphorylation lev-

els in the resected liver were similar between NIKDhep and NIKf/f mice fed HFD; however, liver STAT3

phosphorylation increased to a considerably higher level in NIKDhep relative to NIKf/f mice at 48 hr

post-PHx (Figure 7G). Hepatic cyclin D1 levels were also higher in NIKDhep than in NIKf/f mice post-

PHx (Figure 7G). These data suggest that aberrant activation of hepatic NIK suppresses hepatocyte

proliferation and liver regeneration in NAFLD at least in part by inhibiting the JAK2/STAT3 pathway.

Discussion
Reparative hepatocyte proliferation plays a pivotal role in the maintenance of liver homeostasis and

integrity by supplying new hepatocytes to replace lost ones. Liver regeneration impairment is likely

involved in chronic liver disease. In this work, we identified hepatic NIK and IKKa as unrecognized

Figure 6 continued

then subjected to PHx. Livers were harvested 48 hr later. (B) Baseline Ki67+ cell number in resected liver sections

obtained from PHx. NIKf/f: n = 5, NIKDhep: n = 4. (C) Representative immunostaining of liver sections (AAF-treated)

with anti-Ki67 antibody. (D) Ki67+ cell number in liver sections (normalized to DAPI+ cells). PBS;NIKf/f: n = 3, AAF;

NIKf/f: n = 5, AAF;NIKDhep: n = 5. (E) Plasma ALT levels. NIKf/f: n = 3, NIKDhep: n = 4. (F) Liver extracts were

immunoblotted with the indicated antibodies. Data were statistically analyzed with two-tailed Student’s t test, and

presented as mean ± SEM. *p<0.05.

DOI: https://doi.org/10.7554/eLife.34152.018

The following source data and figure supplements are available for figure 6:

Source data 1. Hepatic NIK regulates hepatocyte proliferation in AAF-treated mice.

DOI: https://doi.org/10.7554/eLife.34152.022

Figure supplement 1. Hepatic NIK inhibits reparative hepatocyte proliferation.

DOI: https://doi.org/10.7554/eLife.34152.019

Figure supplement 1—source data 1. Baseline hepatocyte proliferation in AAF-treated mice.

DOI: https://doi.org/10.7554/eLife.34152.020

Figure supplement 1—source data 2. Baseline hepatocyte proliferation in HFD-fed mice.

DOI: https://doi.org/10.7554/eLife.34152.021
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Figure 7. Hepatic NIK deficiency corrects impaired hepatocyte reparative proliferation in mice with NAFLD. (A–B)

C57BL/6 males (8 weeks) were fed a normal chow diet (n = 5) or a HFD (n = 5) for 10 weeks. (A) Liver TAG levels

(normalized to liver weight). (B) NF-kB2 p52 in liver extracts was immunoblotted with anti-NF-kB2 antibody

(normalized to a-tubulin levels). (C–H) NIKf/f and NIKDhep males were fed a HFD for 10 weeks followed by PHx, and

livers were harvested 48 hr after PHx. (C) Representative immunostaining of liver sections with anti-Ki67 antibody.

(D) Baseline Ki67+ cell number in resected liver sections obtained from PHx. NIKf/f: n = 4, NIKDhep: n = 4. (E) Liver

Ki67+ cell number (normalized to DAPI+ cells). Chow;NIKf/f: n = 3, HFD;NIKf/f: n = 5, HFD; NIKDhep: n = 4. (F)

Figure 7 continued on next page

Xiong et al. eLife 2018;7:e34152. DOI: https://doi.org/10.7554/eLife.34152 12 of 18

Research article Cell Biology

https://doi.org/10.7554/eLife.34152


suppressors of liver regeneration; moreover, NIK inhibits hepatocyte proliferation at least in part by

activating IKKa. We previously demonstrated that hepatic NIK is aberrantly activated in mice and

humans with chronic liver disease (Sheng et al., 2012; Shen et al., 2014). Our current results show

that elevated activation of hepatic NIK pathways impairs liver regeneration, likely contributing to

liver disease progression.

We found that hepatocyte-specific ablation of NIK or IKKa substantially increases hepatocyte pro-

liferation in NIKDhep or IKKaDhep mice following PHx. Accordingly, liver regeneration rates were

higher both in NIKDhep relative to NIKf/f littermates and in IKKaDhep relative to IKKaf/f mice. We

observed that both NIK and IKKa bound to JAK2 and substantially inhibited the ability of JAK2 to

phosphorylate STAT3. Consistently, hepatocyte-specific ablation of either NIK or IKKa substantially

increased phosphorylation of hepatic JAK2 and STAT3 in mice post-PHx. IKKa deficiency decreased

the ability of NIK to suppress the JAK2/STAT3 pathway in hepatocytes, confirming that IKKa acts

downstream of NIK. However, NIK overexpression still inhibited the JAK2/STAT3 pathway in IKKa-

deficient hepatocytes, suggesting that hepatic NIK is able to suppress the JAK2/STAT3 pathway by

an additional IKKa-independent mechanism. The JAK2/STAT3 pathway is known to drive hepatocyte

proliferation, which is indispensable for liver regeneration (Wang et al., 2011; Shi et al., 2017;

Riehle et al., 2008; Cressman et al., 1996). Therefore, hepatic NIK and IKKa inhibit liver regenera-

tion at least in part by suppressing the JAK2/STAT3 pathway.

Mounting evidence shows that hepatic NIK is aberrantly activated in chronic liver disease, likely

due to liver inflammation and hepatocellular stress (Sheng et al., 2012; Shen et al., 2014). We mod-

eled chronic liver disease by chronically treating mice with hepatotoxin AAF or placing them on

HFD. We found that hepatocyte-specific inactivation of NIK substantially increases the ability of PHx

to stimulate hepatocyte proliferation in both AAF-treated mice and HFD-fed NIKDhep mice. Consis-

tently, in mice pretreated with AAF or HFD, ablation of hepatic NIK increased phosphorylation of

both hepatic JAK2 and STAT3 post-PHx. It is worth mentioning that NIK in nonparenchymal cells

(e.g. immune cells) also contributes to obesity-associated liver steatosis (Liu et al., 2017). These

observations raise the possibility that in chronic liver disease, NIK in Kupffer cells/macrophages, and

possibly other nonparenchymal cells, may indirectly inhibit reparative hepatocyte replication by a

paracrine mechanism. Collectively, our results provide proof of concept evidence supporting the

notion that aberrant hepatic NIK impairs reparative hepatocyte replication, thereby contributing to

liver disease progression.

In conclusion, we have identified hepatic NIK and IKKa as unrecognized suppressors of reparative

hepatocyte replication. NIK and IKKa suppress liver regeneration at least in part by inhibiting the

hepatic JAK2/STAT3 pathway. Our findings suggest that pharmacological inhibition of hepatic NIK

or IKKa may provide a new therapeutic strategy for liver disease treatment.

Materials and methods

Key resources table

Reagent type Designation Source or reference Identifiers Additional information

Antibody Ki67 Vector lab VP-RM04 1:100

Antibody NIK Abcam ab191591 1:2000

Antibody IKK beta Cell Signaling Technology 8943 1:5000

Continued on next page

Figure 7 continued

Plasma ALT levels. NIKf/f: n = 3, NIKDhep: n = 4. (G) Liver extracts were immunoblotted with the indicated

antibodies. Data were statistically analyzed with two-tailed Student’s t test, and presented as mean ± SEM.

*p<0.05.

DOI: https://doi.org/10.7554/eLife.34152.023

The following source data is available for figure 7:

Source data 1. Hepatic NIK regulates hepatocyte proliferation in HFD-fed mice.

DOI: https://doi.org/10.7554/eLife.34152.024
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Continued

Reagent type Designation Source or reference Identifiers Additional information

Antibody IKK alpha Cell Signaling Technology 2682 1:5000

Antibody p-IKKa/b Cell Signaling Technology 2697 1:5000

Antibody STAT3 Santa Cruz sc-8019 1:1000

Antibody p-STAT3 Cell Signaling Technology 9145 1:5000

Antibody JAK2 Cell Signaling Technology 3230 1:5000

Antibody p-JAK2 1007/1008 Cell Signaling Technology 3776 1:5000

Antibody Myc Santa Cruz sc-40 1:1000

Antibody Flag Sigma F1804 1:5000

Antibody p85 Home-raised N/A 1:5000

Antibody a-tubulin Santa Cruz sc-5286 1:1000

Antibody JNK Cell Signaling Technology 9258 1:5000

Antibody p-JNK Cell Signaling Technology 4668 1:5000

Antibody ERK1/2 Cell Signaling Technology 9102 1:5000

Antibody p-ERK1/2 Cell Signaling Technology 4370 1:5000

Antibody NF-kB2 Cell Signaling Technology 4882 1:5000

Antibody p65 Cell Signaling Technology 8242 1:5000

Antibody p-p65 Cell Signaling Technology 3033 1:5000

Antibody IkB alpha Cell Signaling Technology 4812 1:5000

Antibody p-IkB alpha Cell Signaling Technology 9246 1:5000

Antibody AKT Cell Signaling Technology 4091 1:5000

Antibody p-Akt Cell Signaling Technology 4060 1:5000

Antibody Cyclin D1 Cell Signaling Technology 2978 1:5000

Antibody F4/80 eBioscience 14–4801 1:100

Antibody HNF4 alpha Santa Cruz sc-8987 1:100

Antibody CK8 Developmental Studies
Hybridoma Bank

Troma I 1:100

Antibody BrDU Cell Signaling Technology 5292 1:100

Antibodies and animals
Antibodies were described in the key resources table. Animal experiments were conducted following

the protocols approved by the University of Michigan Institutional Animal Care and Use Committee

(IACUC). We generated NIKf/f, NIKDhep, and IKKaDhep mice (C57BL/6 background). IKKaf/f mice

(C57BL/6 background) were provided by Dr. Yinling Hu (the Inflammation and Tumorigenesis Sec-

tion, National Cancer Institute). Albumin-Cre mice (C57BL/6 background) were from the Jackson lab-

oratory (Bar Harbor, ME). Mice were housed on a 12 hr light-dark cycle and fed a normal chow diet

(9% fat; Lab Diet, St. Louis, MO) or a HFD (60% fat in calories; D12492, Research Diets, New Bruns-

wick, NJ) ad libitum with free access to water.

PHx models
We followed published 2/3 PHx protocols (Mitchell and Willenbring, 2008). Briefly, NIKf/f, NIKDhep,

IKKaf/f, and IKKaDhep male mice (8–10 wks,) were anesthetized with isoflurane, followed by a ventral

midline incision. The median and left lateral lobes (70% of the liver) were resected by pedicle liga-

tions. Mice were euthanized after PHx, and tissues were harvested for histological and biochemical

analyses. Mice were introperitoneally injected, 12 hr before euthanization, with BrdU (40 mg/kg

body weight, ip) to label proliferating cells. A separate cohort was fed a HFD for 10 weeks prior to

PHx. An additional cohort was treated with hepatotoxin 2-acetylaminofluorene (AAF) (10 mg/kg

body weight, gavage) daily for 10 days prior to PHx.
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Immunostaining
Liver frozen sections were prepared using a Leica cryostat (Leica Biosystems Nussloch GmbH, Nus-

sloch, Germany), fixed in 4% paraformaldehyde for 30 min, blocked for 3 hr with 5% normal goat

serum (Life Technologies) supplemented with 1% BSA, and incubated with the indicated antibodies

at 4˚C overnight. The sections were incubated with Cy2 or Cy3-conjugated secondary antibodies.

Cell cultures, transient transfection, and adenoviral transductions
Primary hepatocytes were prepared from mouse liver using type II collagenase (Worthington Bio-

chem, Lakewood, NJ) and grown on William’s medium E (Sigma) supplemented with 2% FBS, 100

units ml�1 penicillin, and 100 mg ml�1 streptomycin, and infected with adenoviruses as described

previously (Zhou et al., 2009). HEK293 cells were grown at 37˚C in 5% CO2 in DMEM supplemented

with 25 mM glucose, 100 U ml�1 penicillin, 100 mg ml�1 streptomycin, and 8% calf serum. For tran-

sient transfection, cells were split 16–20 hr before transfection. Expression plasmids were mixed with

polyethylenimine (Sigma, St. Louis, MO) and introduced into cells. The total amount of plasmids was

maintained constant by adding empty vectors. Cells were harvested 48 hr after transfection for bio-

chemical analyses.

Immunoprecipitation and immunoblotting
Cells or tissues were homogenized in a L-RIPA lysis buffer (50 mm Tris, pH 7.5, 1% Nonidet P-40,

150 mm NaCl, 2 mm EGTA, 1 mm Na3VO4, 100 mm NaF, 10 mm Na4P2O7, 1 mm benzamidine, 10

mg ml�1 aprotinin, 10 mg ml�1 leupeptin, 1 mm phenylmethylsulfonyl fluoride). Tissue samples were

homogenized in lysis buffer (50 mM Tris, pH 7.5, 1% Nonidet P-40, 150 mM NaCl, 2 mM EGTA, 1

mM Na3VO4, 100 mM NaF, 10 mM Na4P2O7, 1 mM benzamidine, 10 mg/ml aprotinin, 10 mg/ml leu-

peptin; 1 mM phenylmethylsulfonyl fluoride). Proteins were separated by SDS-PAGE and immuno-

blotted with the indicated antibodies.

Real-time quantitative PCR (qPCR) and ROS assays
Total RNAs were extracted using TRIzol reagents (Life technologies). Relative mRNA abundance of

different genes was measured using SYBR Green PCR Master Mix (Life Technologies, 4367659). Liver

lysates were mixed with a dichlorofluorescein diacetate fluorescent (DCF, Sigma, D6883) probe (5

mM) for 1 hr at 37˚C. DCF fluorescence was measured using a BioTek Synergy 2 Multi-Mode Micro-

plate Reader (485 nm excitation and 527 nm emission).

Statistical analysis
Data were presented as means ± sem. Differences between two groups were analyzed using two-

tailed Student’s t tests. p<0.05 was considered statistically significant.
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