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. The fabrication, by an all electrochemical process, of porous Si/ZnO nanostructures with engineered
structural defects, leading to strong and broadband deep level emission from ZnO, is presented. Such
nanostructures are fabricated by a combination of metal-assisted chemical etching of Si and direct
current electrodeposition of ZnO. It makes the whole fabrication process low-cost, compatible with
Complementary Metal-Oxide Semiconductor technology, scalable and easily industrialised. The
photoluminescence spectra of the porous Si/ZnO nanostructures reveal a correlation between the

. lineshape, as well as the strength of the emission, with the morphology of the underlying porous Si,

© that control the induced defects in the ZnO. Appropriate fabrication conditions of the porous Silead to

. exceptionally bright Gaussian-type emission that covers almost the entire visible spectrum, indicating

. that porous Si/ZnO nanostructures could be a cornerstone material towards white-light-emitting
devices.

 White light emission is an important technical field with extremely high environmental, economic, and social
. impact. The current state-of-the-art in white solid state lighting is based on two device architectures!. The first
. one is based on an assembly of three light emitting diodes (LED), which emit red, green, and blue light, in com-
. bination with a diffuser screen. The second architecture combines a short wavelength LED (either UV or blue)
. with a yellow emitting phosphor material in a single assembly. Therefore, there is an increasing demand for
: materials that can emit directly broadband white light>*. One of the most well-established luminescent materials
© is ZnO, which exhibits both electroluminescence®* and photoluminescence®’. Its direct bandgap leads to strong
UV emission, which is known as near-band edge (NBE) emission®!!. ZnO may also exhibit broadband emission
in the visible range, which is usually centered around the green'?-'* but may be extended to yellow and orange'*'¢,
as well. This visible emission originates from deep-level states into the gap of ZnO, which are associated with
defects such as O vacancies among others”7-%°, and thus it is called deep-level emission (DLE). Therefore, and
given the variety of luminescent centers in defective ZnO, a defect-engineered ZnO may be a very promising
candidate towards white light applications. The importance of ZnO, being an oxide, is further enhanced by its
growth in ambient air without the need of vacuum?!. Another well-known luminescent material is porous Si
(pSi); pure pSi’s luminescence is theoretically predicted to be in the range of blue or shorter wavelengths due to
quantum confinement®. However, experiments have shown that the fabrication of pSi emitting blue or white light
is rather difficult, due to the formation of surface Si-O bonds that result in stronger red/yellow luminescence??*.
. Even for the case of pSi nanocrystals smaller than 2.0 nm, where the quantum confinement would be expected
: to maximize the blue or white emission, the red/yellow emission, due to the Si-O bonds, prevails for geometrical
reasons, as the surface to volume ratio of such nanocrystals is also maximized. Consequently, pSi in most cases
exhibits strong yellow/red emission instead of blue?>, making it unsuitable for white light applications on its own
merit. The coupling of the pSi surface with a luminescent material that presents a blue/green emission has been
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Figure 1. Schematic of the presented process for the production of pSi/ZnO NS emitting broadband light in the
visible spectrum.

proposed as a route towards white light emission?*-*. Thus, combined pSi/ZnO nanostructures (NS) were stud-
ied by many groups as potential candidates for white light emission via optical pumping; pSi/ZnO can be also
a promising candidate for electrically-pumped devices given that p-type Si is combined with the intrinsically
n-type ZnO3*"*2 In particular, R.G. Singh et al. reported the photoluminescence properties of pSi/ZnO NS. An
intense broadband emission was manifested by combining the blue-green emission from ZnO and orange-red
from pSi*. Two years later, the same research group attempted to explain this broadband emission based on
electron tunneling between the interface of ZnO and pSi through a siloxane structure?. In both papers, the ZnO
structures were prepared by sol-gel deposition. A different fabrication approach was suggested by E. Kayahan
with the combination of RF-magnetron sputtering and thermal annealing of the NS*. The observed broadband
light emission was attempted to be explained by using an oxygen-bonding model in the pSi and native defects in
ZnO. The origin of the broadband light emission was investigated by O. Marin et al. that identified the lumines-
cence centres in the pSi/ZnO NS?. Finally, the PL emission of the NS has been correlated with the porosity of the
pSi substrate®.

Sputtering®, Sol-Gel?® and Vapor Transport Deposition (VTD) techniques® have been used, so far, for the
preparation of pSi/ZnO NS. However, all of the aforementioned growth routes exhibit substantial drawbacks; in
particular, sol-gel is incompatible with Complementary Metal Oxide Semiconductor (CMOS) technology, and
consequently its products cannot be integrated in mainstream micro- and optoelectronic devices, while sputter
deposition and VTD suffer from limited potential to grow conformal films into the pores, and as a result, the
nanostructuring in sputtered or VID ZnO stems exclusively from the underlying pSi?®. Finally, most of the stud-
ied techniques, so far, are based on vacuum technology, which imposes significant limitations in terms of cost
and scalability.

In this work, we propose an entirely vacuum-free fabrication process for pSi/ZnO NS with exceptional
potential for defect-engineered ZnO towards white lighting applications. The proposed method comprises an
all-electrochemical process, a facile and inexpensive way of fabrication, which can give well-controlled and repro-
ducible results and is superior to the current state-of-the-art deposition techniques in terms of simplicity, scale-up
potential and versatility on the design and performance of pSi/ZnO NS (the fabrication steps of the samples are
presented in Fig. 1). We also present the PL properties of such NS and the effect of the pSi substrate morphology
on the emission properties; in particular, we identify the different luminescent centers and we correlate the emis-
sion at various visible colors with the crystallographic characteristics of the electrodeposited Zn. This method
qualifies as an inexpensive, fast, scalable and simple way towards the fabrication of luminescent NS, with PL that
can be easily enhanced and manipulated, hence it can be a very promising innovation towards the fabrication of
white light emitting devices.

Results and Discussion
pSi substrates were fabricated using an electroless etching process that requires three individual steps: Firstly, a
5-15nm Ag thin film was deposited on top of a p-type Si (100) wafer (1-10 Ohm-cm) by magnetron sputtering;
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Figure 2. (a) Plane-view SEM image of the pSi substrate, (b) cross-section SEM image of the pSi substrate after
focused ion beam etching, (c) plane-view image of the pSi/ZnO NS and (d) cross-section image of the pSi/ZnO NS.

note that the use of sputtering for the deposition of silver is not essential, as similar silver ultrathin films can
be deposited by a variety of vacuum-free techniques, such as electroless deposition®**, gravure printing®, and
inkjet printing’. Secondly, the Si/Ag structure was heated to 300 °C for 305, on a hot plate. This step formed Ag
nanoparticles (NPs) on top of the Si substrate due to dewetting of Ag®. Their size strongly depends on the initial
thickness of the Ag thin film. The third step, during which the pores are formed, is the immersion of the Si/Ag
NPs structure in an aqueous solution of 4.6% HF and 0.6% H,O, (v/v) for 30 min at room temperature (RT)?".
The diameter of the pores, as well as the porosity (the percentage of the surface area covered by the pores) of the
pSi substrates, were both directly correlated to the size and the population of the Ag NPs, respectively (see the
Supplemental Information, Fig. S1). Furthermore, the length of the pores can be controlled by the duration of
the etching process. The prepared pSi substrates were used as the working electrode for the electrodeposition
of metallic Zn; a 20V bias was applied between the pSi and the counter electrode (graphite rods) in an aqueous
solution of 5mM ZnSO,7H,0 and 0.1 M NaCl at room temperature (RT)*. The use of high voltage (20 V) stems
from the p-type character of Si as its high resistivity makes it a blocking contact in the electrodeposition pro-
cess®. The electrodeposited pSi/Zn samples were then thermally oxidized in a quartz tube at 500 °C for 60 min
in atmospheric air to form pSi/ZnO NS. This methodology could also show great potential for the fabrication of
intrinsically n-type ZnO NS based LEDs on top of p-type substrates, as an alternative method of fabricating ZnO
n-p heterojunctions, which presents both difficulty in the preparation and low efficiency**.

The pores’ formation process in Si is a cycle of oxidation and dissolution of silicon oxide that is in contact with
the metal NPs*"42, The NPs initially are hemmed in the amorphous native SiO, so they move in random direc-
tions and give a sponge-like morphology to the pSi surface, as shown in Fig. 2a. However, after the native oxide is
completely etched a different mechanism unfolds: the nanoparticles find their way towards the Si monocrystal-
line substrate and start etching it preferentially across the (100) orientation, which in our case is perpendicular
to the surface of the substrate (Fig. 2b). The net result of this process is the fabrication of very well aligned and
directional pores into the bulk volume of the Si substrate. The average pore diameter is dictated by the Ag nano-
particle size (for more details refer to the Supplemental Information, Figs S1 and S2 and the relevant text), which
also defines the Localized Surface Plasmon Resonance (LSPR) spectral position of the nanoparticles before the
metal-assisted etching step®.

The DC electrodeposition of Zn and the subsequent thermal oxidation, resulted in the coverage of the pSi sur-
face by the nanostructured spongy ZnO, as shown in Fig. 2c (for high-resolution images refer to the Supplemental
Information, Fig. S3). The fabricated ZnO NS seem not to cover the Si pores in their entirety, as shown in Fig. 2d
(and Fig. S3b in higher resolution); in addition, the volume fraction of the ZnO deposited on the surface of the pSi
is much higher compared to the pores. This is an indication of preferential deposition of Zn on the outer surface
of the substrate compared to deposition on the pore walls, due to ohmic losses and mass transport limitations,
that results in blockage of the pores*. Consequently, the major effect of the pSi substrate is not the formation of
ZnO into the pores itself, but the hindering of extended growth of ZnO along the x-y surface plane that results in
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Figure 3. XRD patterns of the sample with the smallest pores before thermal oxidation (pSi/Zn, blue line and
Miller indices) and after thermal oxidation (pSi/ZnO, magenta line and Miller indices); the dominant crystal
planes of metallic hcp Zn are also depicted for clarity. The inset presents the Ols core level XPS spectrum after
thermal oxidation that reveals the existence of a substantial number of structural defects.

the formation of ZnO grains, whose majority sizes are 100 nm or less (shown in Fig. S3a) as well as the incorpo-
ration of different point defects into the produced ZnO compared to the deposition on polished Si wafers, as we
will discuss in more detail later in this work.

Typical XRD patterns from the sample with the smallest pores in pSi before and after thermal oxidation are
presented in Fig. 3. The XRD pattern of the NS immediately after the electrodeposition reveals that only metallic
hcp Zn exists with preferential (101) orientation; this preferential orientation of Zn is associated with the poros-
ity of pSi and is essential for the luminescence of the pSi/ZnO NS, as we will discuss in more detail later. After
thermal oxidation, all the peaks of metallic Zn disappeared and only peaks corresponding to wurtzite-type ZnO
(w-ZnO) were present. This was confirmed by the chemical composition of the samples (both on their surface,
as well as at 10 and 20 nm below the surface), which was investigated by XPS. The survey XPS spectra from the
pSi/ZnO NS with the smallest pores at various depths are shown in the (Supplemental Information Fig. S4). In
the XPS spectrum of the pSi/ZnO NS’s surface, the peaks of C Is, Zn 2p;,, Zn 2p,,, and O Is are clearly observed,
from which an [O]/[Zn] ratio exceeding 1 is determined, however, it is still in the range of stoichiometry that
w-ZnO is observed. The XPS analysis also demonstrates the high chemical purity of the produced ZnO samples as
no impurity elements (such as Si and Ag from the substrate, or C from the counter electrode, or S, Na and Cl from
the electrodeposition solution) were detected into the films whatsoever. As the survey scan spectra, cannot iden-
tify the chemical state of the detected O (i.e. if it is exclusively lattice or defect O into ZnO or if it is adsorbed on
the high effective surface of the spongy ZnO), we consider the O Is core level spectra as presented in the inset of
Fig. 3. Indeed, the O Is peak can be deconvoluted in two peaks, one located at 529.8 eV, corresponding to O>~ in
wurtzite lattice sites and another one at 531.3 eV, correlated with the O~ in the oxygen deficient regions of ZnO*.
The area percentages of these curves were calculated to be 52% and 48% for lattice and defect sites, respectively.

Quantitative information regarding the structural quality of ZnO films and correlations of the micro-strain ¢
and their correlation to the pore size of pSi were derived from XRD analysis. The micro-strain €, is associated with
the structural defects of ZnO and the mismatch of the pSi/ZnO nanostructure interface, while the pore size is dic-
tated by the size (and consequently the LSPR spectral position®**) of the Ag NPs used for the Si etching. Indeed,
Fig. 4 shows the XRD patterns of two different pSi/ZnO samples fabricated with the use of two different pSi
substrates (Fig. 4a), as well as the reference XRD patterns of polycrystalline Zn, hexagonal wurtzite-type w-ZnO,
cubic zincblende-type zb-ZnO, and Ag and metallic Zn powders (Fig. 4b). The broadening (full width at half
maximum-FWHM) of each XRD peak, associated with w-ZnO, vs 4sinf (where 0 is the Bragg angle of each peak)
are presented in the inset graph (Fig. 4c). The XRD patterns were quantified by employing the Williamson-Hall
analysis* to the profiles of the w-ZnO peaks according to which:

FWHM - cosf = A/ D + 4¢, - sinf (1)

In Eq. 1, FWHM and 0 are the broadening and angular position of each XRD peak of w-ZnO, A is the X-ray wave-
length (0.154 nm in our case) and D is the average crystallite size. The results of this analysis show that the smaller
pore size in the pSi substrate (pSi prepared with the use of smaller Ag NPs) leads to higher ¢, i.e. higher number
of structural defects, which give rise to the DLE.

The effects of the aforementioned structural features to the PL spectra of pSi/ZnO NSs are presented in Fig. 5,
which shows that the higher number of structural defects leads to broader DLE emission. In particular, Fig. 5
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Figure 4. (a) XRD patterns of two pSi/ZnO samples fabricated using Ag NP templates of two different sizes
and LSPR wavelengths (480 and 510 nm), (b) the powder diffraction reference patterns for w-ZnO, zb-ZnO, Ag
and metallic Zn, (c) Williamson-Hall peak profile analysis for the determination of the micro-strain es, which is
associated with the structural defect density.
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Figure 5. (a) PL spectra of the pSi/ZnO samples fabricated using pSi substrates with different pore sizes. The
upper inset presents the reflectivity spectra of the Ag NPs used for the Si etching, in matching colors; thus, the
finest and widest pores correspond to the blue and green PL and reflectivity spectra, respectively, while the red
spectra are the intermediate case. Also shown are the PL spectra of bare pSi after thermal oxidation at 500 °C for
1h ( x 10) and of a ZnO thin film electrodeposited on top of a flat Si with identical conditions to the pSi/ZnO;
the lower inset shows the color coordinates of the emitted light from pSi/ZnO within the CIE scheme.

(b) Deconvolution of the normalized PL spectra of pSi/ZnO to contributions originating from various point
defects in Zn.

shows the room-temperature PL emission of three samples, fabricated with the use of three different pSi sub-
strates (red, green, blue lines). The deposition conditions of the ZnO were the same for all these samples, and only
the morphology of the underlying pSi varied. The inset of Fig. 5a depicts the reflectivity spectra of the Ag NPs that
were used for the preparation of the corresponding pSi substrates (as shown in Fig. S1 the Ag particles size used
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for the etching has the same lateral size with the produced pores). In Fig. 5 the PL spectrum of a bare pSi after
thermal oxidation at 500 °C is also shown, and it demonstrates that the pSi itself does not provide any broadband
PL and, therefore, the observed broadband PL is assigned exclusively to ZnO. The PL spectra of the pSi/ZnO
exhibit a blueshift and become sharper with increasing the Ag nanoparticle size, and consequently Si pore size, as
well, gradually approaching the spectral profile and strength of the DLE emission of ZnO deposited on polished
Si wafers (Fig. 5, magenta line). A more detailed view of the line shape and the spectral shifts of the PL spectra
can be seen in the normalized form presented in Fig. S5 in the Supplemental Information. The PL spectrum of the
pSi/ZnO NS with the finest pores (Fig. 5, blue line) has nearly perfect Gaussian shape that extends in the entire
visible spectrum; in addition, the PL emission of pSi/ZnO with the finest pores has threefold and sixfold highest
intensity compared to pSi/ZnO with large pores and ZnO on polished Si, respectively, due to the increase of the
structural defects with reducing pore size, as shown by the XRD analysis. The detected visible emission of all sam-
ples is dominated by the ZnO and not pSi, apart from the very sharp lines at 537, 588, 667, 708 nm, which are also
observed in bare pSi after thermal oxidation (Fig. 5a, grey line). Figure 5a also shows that the broadband emission
of pSi itself is very weak and its intensity is orders of magnitude smaller than the strongest DLE observed in the
pSi/ZnO NS (see Fig. S6, as well).

The DLE emission of ZnO has been assigned to several structural defects that induce luminescent centres
within its bandgap. Oxygen vacancies are a well-studied type of such defects that lead to green emission'*’.
Other structural defects can also create different energy levels inside the ZnO bandgap emitting light in several
wavelengths, thus extending the PL emission range!**#. In an effort to quantify the PL spectra and identify
the source of the broadband emission for the smallest pore sizes of pSi/ZnO, we deconvoluted the PL spectra
into individual Gaussian contributions that are associated with specific defects; although theoretical works have
shown that V, is a deep negative-U donor that has only one state in the band gap* there are plenty of experimen-
tal works reporting a variety of defects in ZnO that result in various defect states in the band gap and light emis-
sion from them?1718204%51-57 ‘Following the works of Barbagiovanni et al.>”*%, we identify four Gaussian curves
located at approximately 500 nm (~2.5eV), 530 nm (~2.3eV), 580nm (2.1eV) and 630 nm (~1.9eV) attributed
to Zinc vacancies (V,), ionized oxygen vacancies (V, "), neutral oxygen vacancies (V), and oxygen interstitials
(Oy), respectively™®. The concentration of each defect varies leading to slightly different lineshapes, as shown in
Fig. 5b. All spectra are dominated by the contributions of the Vo™ and V,, which are the source of the well-known
green-yellow luminescence. As the pores of the underlying pSi become finer, the red luminescence due to O; is
emerging; for the finest pores (<50 nm, Fig. S1) this red contribution balances the green-yellow luminescence
resulting into the bright broadband light emission (Fig. 5 and lower inset). The origin of the O; in pSi/ZnO with
fine pores can be well explained by considering the morphology of the electrodeposited Zn film before the final
oxidation step as revealed by XRD (see Supplemental Information, Fig. S7). Indeed, the electro-deposited Zn on
polished Si wafer (Fig. S7, blue line), where there is no contribution whatsoever of O; to the PL spectra (Fig. 5a),
is predominantly grown along the [001] direction [i.e. the (002) close-packing planes are parallel to the surface]
and exhibits sharper XRD features (due to larger grain size and less structural defects) than the Zn grown on pSi
(Fig. S7, red line), which is predominantly grown with the side planes (100) and (101) parallel to the surface.
Consequently, during oxidation the close packing of the (002) planes of the large Zn crystals electrodeposited
on polished Si hinders the diffusion of excess oxygen into interstitial sites. On the contrary, oxygen may easily
penetrate into interstitial sites via the open side planes [(100) and (101)], which are parallel to the surface of
the electrodeposited Zn on pSi giving rise to the red luminescence that complements the universally existing
green-yellow luminescence of ZnO and thus broadband light emission is created.

Conclusions

In conclusion, pSi substrates of varying pore sizes were fabricated by an electroless etching technique that can
provide high control on the volume fraction, length and morphology of the pores. These substrates were used
for the deposition of ZnO nanostructures with engineered defects using a low-cost, CMOS compatible and scal-
able process based on DC electrodeposition and subsequent thermal oxidation of Zn. The PL emission of these
nanostructures is strongly dependent on the underlying pSi substrate and can be designed to produce a near
Gaussian-shape emission that covers the entire visible spectrum whilst presenting exceptional brightness. The
use of pSi substrates is essential for hindering the growth of ZnO along high-packing (002) planes and thus pro-
moting the incorporation of oxygen interstitials during oxidation of Zn, giving rise to the otherwise missing red
component of ZnO’s PL emission. These results clearly demonstrate that pSi/ZnO nanostructures could be a very
competitive platform towards the preparation of low-cost white-light emitting devices.

Methods

The crystal structure of the samples was investigated by XRD in Bragg-Brentano geometry using a Rigaku Ultima™
instrument equipped with a Cu anode and a graphite monochromator. XPS spectra were acquired in a KRATOS
Axis Ultra DLD system equipped with a monochromated Al K, X-ray source. High-resolution Scanning electron
microscopy (HR-SEM) images were obtained with Magellan XHR 400 L FE-SEM - FEI instrument (FEI, USA) at
acceleration voltages of 15 and 20kV. Cross section images of the samples were taken using a Focused Ion Beam
(FIB) Helios 600 scanning electron microscope system (FEI).

PL excitation was performed using a CW HeCd laser (325 nm) with a circular 5mm beam spot incident on
the film surface. Typical incident beam power for the PL characterization was 9.2mW cm™2. The collection of the
emitted light took place through an appropriate optical fiber to an Ocean Optics S2000 spectrometer, which is
responsive from 200-1100nm. All spectra were acquired with the same integration time, laser focus conditions
and light collection geometry to enable quantitative comparisons.
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Data Availability Statement. All data generated and analysed during this study are included in this pub-
lished article (and its Supplementary Information file).
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