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Abstract 

Background:  While spontaneous robotic arm control using motor imagery has been 
reported, most previous successful cases have used invasive approaches with advan‑
tages in spatial resolution. However, still many researchers continue to investigate 
methods for robotic arm control with noninvasive neural signal. Most of noninvasive 
control of robotic arm utilizes P300, steady state visually evoked potential, N2pc, and 
mental tasks differentiation. Even though these approaches demonstrated success‑
ful accuracy, they are limited in time efficiency and user intuition, and mostly require 
visual stimulation. Ultimately, velocity vector construction using electroencephalogra‑
phy activated by motion-related motor imagery can be considered as a substitution. 
In this study, a vision-aided brain–machine interface training system for robotic arm 
control is proposed and developed.

Methods:  The proposed system uses a Microsoft Kinect to detect and estimates the 
3D positions of the possible target objects. The predicted velocity vector for robot arm 
input is compensated using the artificial potential to follow an intended one among 
the possible targets. Two participants with cervical spinal cord injury trained with the 
system to explore its possible effects.

Results:  In a situation with four possible targets, the proposed system significantly 
improved the distance error to the intended target compared to the unintended ones 
(p < 0.0001). Functional magnetic resonance imaging after five sessions of observation-
based training with the developed system showed brain activation patterns with 
tendency of focusing to ipsilateral primary motor and sensory cortex, posterior parietal 
cortex, and contralateral cerebellum. However, shared control with blending parameter 
α less than 1 was not successful and success rate for touching an instructed target was 
less than the chance level (= 50%).

Conclusions:  The pilot clinical study utilizing the training system suggested potential 
beneficial effects in characterizing the brain activation patterns.

Keywords:  Brain machine interface, Spinal cord injury, Electroencephalography, 
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Background
People can face losing all or part of their motor functions because of various diseases 
or physical accidents such as spinal cord injury, stroke, and amyotrophic lateral sclero-
sis. The damage to motor functions frequently makes it difficult to perform activities 
of daily living [1, 2]. Among various assistive technologies, brain–machine interfaces 
(BMIs), which depends on features from user’s neural signals, enables control of external 
devices. BMIs allow a person to bypass conventional neuromuscular pathways to inter-
act with the environment.

Since the concept of BMIs was first proposed in the 1970s at the University of Cali-
fornia Los Angeles [3, 4], scientists and engineers have improved upon technology for 
developing a human-controlled external robotic arm that does not require physical 
movement [5–8]. Monkeys have fed themselves by controlling a robotic arm [9], and 
humans have utilized invasive neural signals to control a seven degree-of-freedom 
(DOF) robotic arm as if it were their own [10, 11]. The previous notable studies [10, 11] 
showed that the success rate of reaching and grasping can reach approximately 70–90% 
in allocated time. These studies used intracortical microelectrode array (MEA), which 
are highly invasive. Features from spikes measured from MEA provide high spatial reso-
lution, which is advantageous in accurate prediction of imagery hand velocity.

Even though approaches based on MEA are highly successful, many researchers still 
attempt to control a robotic arm with noninvasive neural signals, such as those derived 
from electroencephalography (EEG), which does not require surgically implanting an 
electrode array. Previous EEG studies for robotic arm control uses features, such as 
P300 [12–15], N2pc [13, 15], steady-state visual evoked potential [16–19], and mental 
task differentiation [13, 20–24]. These approaches have demonstrated high performance 
in terms of accuracy, but relatively unintuitive, inefficient in terms of time, and mostly 
requires additional interfaces for visual stimulation. Thus, hand velocity predicted from 
EEG activated by motion-related motor imagery can be considered as an ultimate sub-
stitution for conventional EEG based control. Even though some research using mental 
task differentiation [13, 20–24] exhibited robotic arm control based on motor imagery, 
they utilized classification approach rather than velocity vector prediction. Velocity con-
trol of robotic arm base on EEG activated by motor imagery is a highly challenging pur-
pose and has not yet exhibited satisfactory performance because of its limited spatial 
resolution and low signal-to-noise ratio [25].

Thus, we propose and develop a novel training system, which can improve motor 
imagery ability to extract features for velocity vector prediction. The training system uti-
lizes shared control which uses auxiliary camera and makes the control easier. Shared 
control approaches that blend sensor information and neural signals for a more intel-
ligent system have been applied to BMI field for improvement of task performance 
or fine control of terminal device [26–29]. In the previous studies, the shared control 
approaches have been applied to determination of the parameters of decoder and user 
adaptation (co-adaptive process) [11, 30]. The studies were applied to train primates [30] 
and humans [11], and the training process can proceed in two phases. In the first phase, 
observation-based training is provided (Fig.  1a). During the phase, the robotic arm 
moves automatically driven by preprogrammed algorithm to reach targets and an initial 
decoder is generated. In the second phase of calibration, the user controls the robotic 
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arm by using the initial decoder while the shared control strategy assists the reaching 
motion (Fig. 1b). An improved decoder can be built from the second phase. These stud-
ies utilized invasive MEA and the training process has not yet been applied to noninva-
sive neural signals to the best of our knowledge.

In this study, a novel vision-aided BMI training system is developed and applied to co-
adaptive process of user and decoder. Whereas previous invasive studies used preferred 
direction based decoder, this study used regression between neural signal and hand 
velocity. The developed system is applied to two clinical cases of potential users (patients 
with cervical spinal cord injury) with functional magnetic resonance image (fMRI) stud-
ies to assess feasibility and possible effects of the training. As a neural signal, EEG is used 
because of its noninvasiveness.

Methods
Training system overview

The newly proposed training system automatically detects the target object on the basis 
of the image and uses the image information as well as the brain signal information to 
more easily control the robotic arm approaching the target object. During the phase of 
training with the system, shared control strategy can motivate user by maintaining the 
success rate to certain level. Kinect is used for image acquisition, and separation of pixel 
colour and hierarchical clustering is applied for multiple target object detection. For 
shared control, conventional artificial potential approach is modified to apply to BMI 
system for robotic arm control. As the dependency of image information is higher than 
that of brain signal information, the control difficulty of robotic arm is lowered. When 
the information from brain signal is completely suppressed, the robotic arm motion 
doesn’t reflect the user intention, and the process becomes an observation-based train-
ing. Further specific details are described in sections below.

Fig. 1  Two types of BMI training for robotic arm control. a Observation-based training. b Shared control 
based training. The training approaches consist of user training for the adaptation of motor imagery and 
parameter training for improved decoding performance
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Detecting target objects using the Kinect

The position of target objects must be accurately defined to compensate for the pre-
dicted hand trajectory from neural signals. Before their position can be estimated, 
the targets must be detected. Although various target detection algorithms have been 
reported, elaborate algorithms are not required for the BMI training system because it is 
operated in a relatively well-arranged space with clean background. Green balls (diame-
ter: 7 cm) serve as targets in this study, so binary images (green: 1; else: 0) were acquired 
using RGB images obtained by the Kinect (Kinect for XBOX 360, Microsoft, Redmond, 
WA, US). Using RGB values from the image, green pixels were separated, as shown in 
Eq. (1).

The images were filtered to remove noise via the process described in Eqs. (2) and (3).

Noise-filtered images can contain more than one target object, so pixels designated 
as “1” should be clustered to their corresponding target object. Hierarchical clustering 
distinguishes multiple target objects simultaneously. Conventional clustering algorithms 
require the number of clusters to be predetermined for centroid generation. However, a 
BMI system is highly limited if the number of target object is predetermined; thus, a divi-
sive hierarchical clustering approach was chosen instead. This approach initially assumes 
that there is one target object is. When the x- or y-axis standard deviation of pixels are 
equal or larger than 20, the cluster is reclustered with two centroids. This procedure is 
repeated until all clusters have a pixel distribution whose standard deviation is less than 
20 in both the x- and y-axes. The target detection procedure is summarized in Fig. 2.

To validate the algorithm, an environment containing several green target objects was 
prepared and photographed with the Kinect. The number of target objects ranged from 
two to four and 20 images were acquired for each number of target objects (for a total of 
60 images). The distance between target objects was controlled within the range from 15 
to 35 cm. For each number of target objects, the accuracy of detecting all existing targets 
was measured.

Estimation of 3D position (camera calibration)

The 3D position of detected target object should be estimated using information acquired 
from images. The Kinect provides two types of images: RGB and depth images. RGB images 
provide three channels of data with 480 × 640 resolution. Depth images provide one chan-
nel of 480 × 640 resolution; each pixel represents a depth index related to the distance to 
objects in the image. Using three types of camera calibration, the 3D position of each target 
object can be estimated.

(1)
G

R+G+ B
> 0.5

(2)Average
(

i, j
)

=
1

9

1
∑

k=−1

1
∑

l=−1

index
(

i + k , j + l
)

(3)
Filtered pixel

(

i, j
)

= 1
(

if Average
(

i, j
)

= 1
)

= 0 (else)



Page 5 of 21Kim et al. BioMed Eng OnLine           (2019) 18:14 

The first calibration consists of distortion compensation between the RGB and depth 
images. The same object is reflected in different pixels in the RGB and depth images, so 
calibration to match the two images is necessary for position estimation (Fig. 3a). Linear 
regression was applied to obtain the transformation matrix for the mapping. Images with 
several balls were photographed with the RGB and depth camera, respectively (Fig.  3b), 
and the pixel coordinates of the balls were measured. This process was repeated to obtain 
a larger dataset. The coordinates of the balls from the RGB images were stored to matrix A 
with a size of 165 × 2, which contains pixel information from 165 balls. Matrix D, for the 
depth image, was obtained similarly. Then, matrix B, which maps pixels from the RGB to 
the depth image, can be obtained with the linear regression shown below.

Thus, B was obtained as shown below. The R2 values for the x- and y-axes were nearly 1.0 
(> 0.999) and their root mean square errors (RMSEs) were 2.97 and 2.40 pixels, respectively. 
This result indicates that less than 3 pixels of error are occurred with the proposed linear 
regression. When total size of the images (480 × 640 pixels) is considered, this error seems 
to be trivial.

(4)D = [A 1]× B

(5)B =

(

XTX
)−1

XTD, X = [A 1]

(6)B =





1.17332 0.000815
−0.01963 1.12255
−34.6797 −20.0941





Fig. 2  Procedure for target object detection. a RGB image obtained from Kinect. b Binary image. c 
Noise-filtered image. d Object detection via hierarchical clustering
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The second calibration is between the depth index and real distance. We utilized a lin-
ear curve fitting provided by the Matlab Curve Fitting Toolbox (Matlab R2016b, Math-
works Inc., Natick, MA, US), the result of which is shown in Eq. (7).

Finally, 2D position was estimated from the x and y pixels of the RGB image. The above 
approach was used and the results are shown in Eqs. (8) and (9).

To validate the implemented algorithm, we compared it with an optic tracker (PST 
Base, ps-tech, Amsterdam, Netherlands) that estimates the 3D position of pre-attached 
stickers with high accuracy (positon < 0.5 mm RMSE, orientation < 1° RMSE2). Two tar-
get objects with pre-attached stickers were prepared and placed randomly on the pre-
pared experimental setup, as depicted in Fig.  4. The distance between the two target 
objects was measured using the optic tracker and Kinect. This procedure was repeated 
10 times and the difference between the two approaches was analyzed.

Vision‑aided robotic system hardware

The vision-aided robotic system consists of three components: a 6-DOF anthropomorphic 
robot arm (JACO, Kinova, Boisbriand, QC, Canada), Kinect, and targets. The dimensions 

(7)Distance (m) = 61.5× Depth index + 0.1046,
(

R2 = 0.9987
)

(8)X (m) = (0.001937× Distance (m)+ 0.0001662)× Pixel,
(

R2 = 0.9939
)

(9)Y (m) = (0.002072× Distance (m)− 0.000227)× Pixel,
(

R2 = 0.9784
)

Fig. 3  a Distortion between RGB and depth images caused by location of the sensors. b The same image 
photographed by the RGB (left) and depth (right) cameras, respectively
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of the aluminum profiles for fixing three components were designed by considering the 
workspace of the robotic arm, as shown in Fig. 5a. The arm was fixed on one side of the 
aluminum profiles and the Kinect on the other. The green target objects were fixed between 
them using flexible supports. Kinect detects target objects and the estimated positions are 
delivered to the robot arm for its waypoint generation. The coordinates of the Kinect and 
robot arm are different; thus, the homogeneous transformation matrix (Eqs. (10) and (11)) 
should be multiplied before the target position information is used for waypoint generation.

Vectors �A and �B are the position of target object measured from the Kinect and robot 
gripper, respectively. The origin of the robotic arm was defined as a point with an offset 
of 0.2 m in the x- and z-axes from the origin of frame 0 (the center of joint1, see Fig. 5b).
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Fig. 4  Experimental setup to validate camera calibration for position estimation

Fig. 5  a BMI training system, consisting of a robotic arm, Kinect, and aluminum profiles. b Frames and 
variables of the robotic arm kinematics
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Shared control using artificial potential

To generate waypoints of robot operation, both neural signals and the target object location 
should be considered. Previous studies reported shared control blending a velocity vector 
predicted from neural signals and the position of a target object; however, none considers 
the highly practical situation in which more than one target object exists in the workspace 
to the best of our knowledge. Thus, it is necessary to propose a novel shared-control strat-
egy for BMI system that is practical for use with multiple targets. To solve this issue, our 
research utilized artificial potential, which is a conventional motion planning approach for 
robots to avoid obstacles and reach a destination. In this study, we modified the conven-
tional approach to a proper form to apply to the BMI training system. It attracts robots to 
the most probable target object that allows the robot end-effector to approach the user-
intended target. In this study, the joints of the robotic arm are compensated by blending the 
predicted hand velocity and the ideal vector to the intended target.

The detailed algorithm for shared control is described below. First, artificial potential was 
formed by considering the intended target object using Eqs. (12)–(14).

q is the configuration of the joints and qg ,i is the goal configuration for the ith target 
object. Ua,i is the artificial potential provided by the ith target object. The stiffness ka,i is 
programmed to be 1 when the user of the BMI system most intends to reach the ith target 
object. The most intended target object is determined by the currently predicted velocity 
from neural signals. The angle between the predicted velocity vector and the vector from 
the current position to each target position is calculated and the target with the smallest 
angle is determined to be the intended target object. For the unselected target objects, ka,i is 
set to 0. So, ft is the attractive force acted by the intended target. The intended target object 
is updated for each stage of waypoint generation. Thus, the BMI user can change the pre-
ferred target object while controlling the robotic arm. Then, the ideal vector to the intended 
target object is generated based on the current waypoint of end-effector and attractive force 
ft as shown in Eq. (15).

xe(qk) is the kth waypoint for robot arm end-effector and the vector �xi,k points the ideal 
direction to approach the intended target. When the predicted hand velocity vector moves 
away from the origin and the angle to the most intended target object is less than 90°, the 
next waypoint is generated via Eqs. (16) and (17).
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�xk is the compensation vector for the kth waypoint and �xn,k is the hand velocity 
vector predicted from neural signals. The vector �xi,k , which points in the ideal direc-
tion to the intended target, is scaled to the size of vector �xn,k , and the two are blended 
with proportion of α and 1− α . The larger α increases the compensation from the Kinect 
and decreases the strength of the originally predicted hand velocity from neural sig-
nals. Additionally, inertia is considered via parameter β to suppress unintended sudden 
movement of the robotic arm. Similar BMI studies of shared control also considered the 
issue of reducing acceleration, applying a smoothing approach to motion planning [31]. 
At Eq. (17), the compensation for the k + 1th waypoint is provided by blending the kth 
compensation vector with the proportion of 1− β . Blending parameters α and β both 
range from 0 to 1.

To calculate equations for artificial potential, forward and inverse kinematics of the 
robotic arm are required; conventional kinematics of a 3-DOF anthropomorphic arm 
[32] were utilized in this study. The homogeneous transformation matrix for forward 
kinematics is suggested in Eq. (18). The Denavit–Hartenberg parameters for deriving the 
matrix are listed in Table 1.

Relevant nomenclature is suggested in Fig. 4b. c1 , c2 , and c3 indicate cosθ1 , cosθ2 , and 
cosθ3 . s1 , s2 , and s3 indicate sinθ1 , cosθ2 , and sinθ3 . Furthermore, c23 and s23 indicate 
cos(θ2 + θ3) and sin(θ2 + θ3) , respectively. Additional information for inverse kinematics 
is suggested in Eqs. (19)–(21).

pWx , pWy , and pWz indicate the x-, y-, and z-coordinates of the end-effector position 
measured in frame 0.

The proposed algorithm was validated by applying it to hand trajectories predicted 
from noninvasive EEG signals. Predicted hand trajectories obtained in previous research 
[25] were used. The details of decoding process were introduced in the previous paper. 
The dataset contains 120 hand trajectories predicted from a healthy participant consist-
ing of 4 directional reaching movements (30 trials per direction). Blending parameters α 

(18)Tforward(q) =







c1c23 −c1s23
s1c23 −s1s23

s1 c1(a2c2 + a3c23)
−c1 s1(a2c2 + a3c23)

s23 c23
0 0

0 a2s2 + a3s23
0 1







(19)θ3 = atan2(s3, c3)

(20)
θ2 = atan2

(

(a2 + a3c3)pWz − a3s3

√

pW 2
x + pW 2

y , (a2 + a3c3)
√

pW 2
x + pW 2

y + a3s3pWz

)

(21)θ1 = atan2
(

pWy, pWx

)

Table 1  Denavit–Hartenberg parameters for the robotic arm

Link ai ai di θi

1 0 π/2 0 θ1

2 a2 = 0.41 m 0 0 θ2

3 a3 = 0.44 m 0 0 θ3
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and β affect the performance of the algorithm and were modulated from 0.05 to 1.00 in 
intervals of 0.05 for optimization.

Clinical application in participants with upper limb impairment

We established a clinical BMI training system consisting of an EEG acquisition sys-
tem (Synamps 2, Compumedics Neuroscan, Texas, USA) and the vision-aided robotic 
system. The two systems are connected to a personal computer for a cooperated sys-
tem. EEG is processed by Matlab, and the robotic arm is controlled by C# (Microsoft, 
Redmond, WA, USA) based SDK. Two volunteers with severe upper limb impairment 
due to cervical spinal cord injury participated in this study. The inclusion criteria for 
recruiting participants were: (1) severely disabled patient with unilateral or bilateral 
upper limb paralysis, (2) no significant cognitive impairment (MMSE > 26), and (3) able 
to fully understand the study and provide informed consent. Participant #1 is a 31-year-
old male with American Spinal Injury Association Impairment Scale (AIS) C at level C4 
(motor C7/C4 and sensory C5/C5), and participant #2 is a 47-year-old male with AIS B 
at level C4 (motor C4/C4 and sensory C5/C5). These patients are completely unable to 
control their own arms. The participants were given a total of 10 sessions for BMI train-
ing. The first 5 sessions were designed to help the participants get used to motor imagery 
using targets and virtual reality video files (Fig.  6a). In the next 5 sessions, developed 
BMI training system was utilized (Fig.  6b). In each session, the users were instructed 
to imagine robotic arm control to reach an instructed target out of two. Two types of 
training were applied to each session. As the first type, observation-based training was 
performed, and the parameters of the decoder were determined using multiple linear 
regressions between robotic arm motion and EEG signal. Since the decoder was not yet 
verified by patients with upper limb paralysis, blending parameters were set to 1, and 
the instructed targets were preprogrammed in the controller. After observation-based 

Fig. 6  Training setup. a Virtual reality based training for the first 5 sessions. b Observation-based training 
for the last 5 sessions. After each observation-based training, shared control based reaching target was 
attempted to confirm improved decoding performance
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training of each session, shared control based robotic arm control was attempted with 
blending parameters α = β =  0.6. For each trial of shared control session, users were 
instructed to choose one target out of two, and success rate was measured for about 
40 trials. fMRI while performing motor imagery tasks was taken before the 6th training 
session and after the 10th training session. Overall plan of clinical application is repre-
sented in Fig. 7. This clinical study was approved by the Institutional Review Board of 
Seoul National University Hospital (IRB No. 1605-136-765).

fMRI evaluation

Functional imaging consisted of motor imagery tasks in 3 directions: upper, lower-left, 
and lower-right. Block design was used in all tasks; during each task, participants were 
instructed to imagine reaching and grasping movements repeatedly in selected direc-
tions. For each task, 8 active blocks and 7 rest blocks (each 20 s) were interleaved. The 
fMRI images were acquired with a Siemens MAGNETOM Trio, A Tim Syngo scanner 
using echo planar imaging (EPI, TE = 30 ms, TR = 3000 ms), angulated in parallel to the 
anterior and posterior commissure line. A T1-weighted image was also obtained for ana-
tomical reference. The fMRI data were preprocessed using Statistical Parametric Map-
ping 12 (SPM12, Wellcome Trust Centre for Neuroimaging, London, UK; http://www.fil.
ion.ucl.ac.uk/spm/) executed in MATLAB 2015b (Mathworks Inc., Natick, MA).

Results
Accuracy of target object detection and position estimation

No failure in accurate target detection occurred. In all images, the appropriate num-
ber of targets were detected at each location. The same conditions with two target 
objects were photographed and the distance between the two targets was measured 
using both the self-calibrated Kinect and an optic tracker. The optic tracker was used 
as a gold standard because it had been validated as a highly accurate system. In the 
second approach, as represented in Table  2, the Kinect-based system exhibited a dis-
tance error of 0.0250 ± 0.0160 m compared with the optic tracker. This distance error is 
4.620 ± 3.490% of the total distance between the two target objects, indicating that there 
is less than a 2-cm error when the robot conducts approximately 40 cm of reaching and 
grasping movements. When the size of the robot gripper and the diameter of the target 
are considered, deviation of 1–2 cm is tolerable.

Fig. 7  Overall plan of clinical application. Each participant participated the training session two times per a 
week, and it took about 5 weeks to complete the training processes

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Accuracy improvement of BMI system using artificial potential

This study proposes a shared control algorithm using artificial potential and validates 
it using hand trajectories predicted from noninvasive EEG neural signals. The algo-
rithm was applied to 120 reaching trajectories in 4 directions. The target object posi-
tions were calculated using real hand trajectories, which were simultaneously measured 
with an accelerometer placed on the index finger. Applying this algorithm improved 
the predicted hand trajectories, and the shortest distance to the intended target object 
decreased, as shown in Fig. 8a. Additionally, we can confirm that the three joint angles of 
the robotic arm continuously reached to the ideally required joint angle to reach the tar-
get (Fig. 8b, c). Figure 9a shows the average improvement of the shortest distance to the 
target object as blending parameters differ. As blending parameters α and β increased, 
the degree of improvement increased the shortest distance to the target improved 
57.37% when both blending parameters were 1.00. The patterns of improvement were 
similar for four each direction (Fig. 9b). Additionally, it was also confirm that the algo-
rithm with low blending parameter α worsen the performance of the BMI system. The 
decreased error lower than 0 in Fig. 9 indicates the shortest distance to intended target 
object became farther rather than the improvement.

Whereas the implemented algorithm using artificial potential enabled the robot arm 
to more closely reach the intended target object, the shortest distance to nonintended 
target objects was not substantially affected by the algorithm. According to Fig. 10a, the 
average shortest distance to the nonintended targets decreased 4.07% when α = β = 1.00. 
The degree of improvement was affected by α rather than β. The condition α = β = 0.60 
led to 5.84% improvement (Fig. 10b). In individual cases of each of the four directions, 
less than 15% improvement was observed. The decrease in the shortest distance to 
the nonintended target was significantly less than that of the shortest distance to the 
intended target. Thus, we confirmed that the algorithm enables the robot end-effector 
to selectively reach an intended target. The decrease in the shortest distances to the 
nonintended and intended targets were compared, as shown in Table  3. The p-value, 
calculated using a one-tailed two-sample t-test, implies that the distance error to the 
intended targets was significant less than to nonintended targets. Figure 11a, b show all 

Table 2  Accuracy of the position estimation

No. Distance measured using optic 
tracker (m)

Distance error (m) Error percentage (%)

1 0.489 0.0158 3.221

2 0.589 0.0003 0.045

3 0.669 0.0197 2.949

4 0.430 0.0397 9.239

5 0.596 0.0401 6.725

6 0.572 0.0490 8.578

7 1.018 0.0238 2.335

8 1.013 0.0069 0.686

9 0.410 0.0373 9.106

10 0.519 0.0172 3.320

Average 0.630 ± 0.217 0.0250 ± 0.0160 4.620 ± 3.490



Page 13 of 21Kim et al. BioMed Eng OnLine           (2019) 18:14 

Fig. 8  a Compensated trajectory (red) reaches more closely to the target object than the raw hand trajectory 
predicted from EEG. Blue line indicates trajectory with no compensation. b Definition of the joint angles of 
the robotic arm. c Green line indicates the ideal joint angle to reach the target object. Joint angles are closer 
to the ideal joint angles with compensation (red) than without (blue)

Fig. 9  a Decreased error to the intended target averaged over all 120 trials. b Decreased error to intended 
target averaged over 30 trials for individual directions. The surface graph has a larger value from blue to 
yellow
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the reaching trials before and after compensation, respectively (α = β = 0.60; 1 of the 120 
total trials is not represented, as it is a serious outlier).

Effect of vision‑aided BMI training in two clinical cases

Before the BMI training, both participants showed brain activation in multiple areas 
in both hemispheres in fMRI findings. Participant #1 demonstrated significant brain 
activation in the precentral gyrus (primary motor cortex), postcentral gyrus (primary 
sensory cortex), posterior parietal cortex (PPC), and lateral portion of the middle 
frontal gyrus and inferior frontal gyrus (prefrontal cortex) in the right hemisphere, 
which correspond to the left hand the participant was trying to move (Fig. 12a). The 
contralateral cerebellum was also significantly activated (Fig. 12a). After the training, 
brain activation was focused to the right precentral and postcentral gyri, PPC, and 
contralateral cerebellum (Fig. 12b). Participant #2 also demonstrated scattered brain 

Fig. 10  a Decreased error to the three nonintended targets averaged over 120 trials. b Decreased error to 
the three nonintended targets averaged over 30 trials for each direction. The surface graph has a larger value 
from blue to yellow

Table 3  Improvement of the predicted hand trajectory

*** p < 0.0001, * p < 0.01

α = β Decrease in the shortest distance 
to intended target (unit: %, n = 120)

Decrease in the shortest distance 
to nonintended target (unit:  %, n = 360)

p-value

1.00 57.37 ± 44.12 4.07 ± 29.18 ***

0.90 55.62 ± 43.63 4.70 ± 28.67 ***

0.80 54.73 ± 41.40 4.99 ± 26.22 ***

0.70 53.97 ± 37.16 5.58 ± 23.47 ***

0.60 51.85 ± 34.43 5.84 ± 20.40 ***

0.50 49.15 ± 32.60 5.89 ± 17.51 ***

0.40 46.63 ± 29.32 5.67 ± 14.74 ***

0.30 41.98 ± 27.12 5.26 ± 12.48 ***

0.20 33.02 ± 26.08 4.36 ± 12.27 ***

0.10 8.34 ± 36.43 1.19 ± 19.02 *
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activation across both hemispheres—especially in the occipital lobe—before real-
time training; however, after training, the activated areas tended to focusing to the 
left precentral and postcentral gyri, PPC, and contralateral cerebellum, corresponding 
to the right hand the participant intended to move. However, in both cases, activation 
patterns did not differ between the three imagined reaching directions.

Discussion
Vision‑aided BMI training system

The vision-aided system consists of an anthropomorphic robotic arm, Kinect, and 
aluminum profiles for fixing the other components. The Kinect enables target object 
detection and position estimation. In 60 validation trials (20 each for 2, 3, and 4 target 
objects), there were no failures in target detection. The implemented target detection 
algorithm can automatically detect multiple targets; however, it is still limited in that 
target objects must be green and the performance can deteriorate for increasing num-
bers of target objects. Improved image processing approaches, such as a convolutional 
neural network [33, 34], or a histogram of oriented gradients [35, 36], could potentially 
be applied as appropriate alternatives that overcome this issue.

The position estimation error rate was about 4.62%, and occurred for two main rea-
sons. First, the calibration approach is linear. For camera calibration and position 

Fig. 11  a Raw hand trajectories predicted from EEG. b Compensated hand trajectories using artificial 
potential. Red, blue, purple and green lines indicate predicted hand trajectory to reach targets 1, 2, 3, and 4 
respectively
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estimation, we applied linear regression using the least-squares method. Even though 
this approach performed satisfactorily, it cannot fully explain the complicated relations 
between variables. Second, the implemented algorithm estimated the center of two tar-
get objects, whereas the optic tracker measured the distance between stickers, causing 
differences between the two results. Furthermore, small errors caused by the internal 
Kinect software cannot be excluded.

BMI system using artificial potential

Artificial potential, one of the main focuses of this study, was used to compensate for the 
joint movement of the robot arm and reach closer to the intended target. We found that 
the motion planning approach improved the shortest distance to the intended target up 
to 57.37%, whereas that to the nonintended targets showed almost no improvement. A 
t-test supported this observation statistically (p < 0.0001).

This result is meaningful because none of the information for determining the target 
object was preprogrammed. Although shared control based on high-level commands 
(a goal-oriented approach) frees the system from the burden of low-level and demand-
ing high-speed interaction, it limits the robot arm to preprogrammed commands [37]. 
The suggested process-oriented approach provides low-level intervention in the robot 
arm movement and does not highly limit the paths by which the robot moves. The com-
pensating information for following intended target was obtained from only raw hand 
velocities predicted from EEG and the positions of possible targets. Thus, the suggested 
algorithm maintains the volition of the user and improves robustness and accuracy.

Fig. 12  a fMRI image during reaching task (left arm) in participant #1 shows brain activation in various 
area including right primary motor and sensory cortex, posterior parietal cortex, prefrontal cortex, and left 
cerebellum (p < 0.001). b Brain activation is relatively focused to the right primary motor and sensory cortex, 
posterior parietal cortex, and left cerebellum after 5 sessions of BMI training with real-time visual feedback 
(p < 0.001)
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Optimal blending parameters

When α = β =  0.60, the degree of improvement is sufficiently saturated, such that the 
shortest distance to the intended target decreased by 51.85%, which is approximately 
90% of 57.37%. According to Table  4, the degree of improvement sufficiently satu-
rated at the condition α = β = 0.60. In the case of Direction 4, the condition in which 
α = β  =  0.60 (60.49%) exhibited greater improvement than the condition in which 
α = β = 1.00 (55.28%); therefore, we infer that blending parameters exceeding 0.60 are 
not highly effective.

Less blending parameter α provides less compensation and higher decoding power of 
user and decoder should be guaranteed. The blending parameter α can be modulated to 
sustain the success rate of instructed tasks and motivate the users [11]. Low blending 
parameter β implies that the robotic arm reflects the previous velocity vector value as 
high weight, and sudden unpredictable motions are sufficiently suppressed. The param-
eter β can be determined by considering the user safety and signal characteristic. When 
it is considered that user prefers BMI system with high level of user volition and safety, 
α = β = 0.60 can be provided as the optimal condition if initial decoder.

Advantages of novel BMI training system

The suggested training system preserves the high level of user volition for the robotic 
arm control. It gives the training system the following advantages. First, it is easy to set 
the appropriate chance level for active shared control. Since active shared control can 
reach a target even with random walk signal through an auxiliary control command, 
reaching the target point is not a measure of success. Rather, it is a more objective indi-
cator of success to reach the intended target among various candidate objects. In this 
case, the chance level is calculated as in Eq. (22).

Second, it is easy to perform robust parameter training because the targets can be 
moved by using flexible cable as used in the current study. Trained model parameters for 
targets at various locations can avoid the issue of the decoding model being over-fitted 
to objects at specific locations. In addition, the reaching success rate of the target object 
at any arbitrary position can give a higher sense of trust to the reader of a paper or the 
viewer of a video.

Effect of vision‑aided BMI training in clinical application

In the first phase of training (first 5 training sessions), the participants were given a 
VR video of robotic motion for motor imagery of reaching motion, as the purpose of 
this phase was to accustom them to the imagery task. Users were instructed to assume 
that the robotic arm was their arm, as the robotic arm was positioned nearest to their 

(22)Chance Level (%) = 100÷ Number of Targets

Table 4  Improvement of the predicted hand trajectory at α = β = 0.60 and 1.00

(α, β) Direction 1 (%) Direction 2 (%) Direction 3 (%) Direction 4 (%) Average (%)

(1.00, 1.00) 41.12 51.20 81.90 55.28 57.37

(0.60, 0.60) 36.20 37.18 73.55 60.49 51.85
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paralyzed arm. However, even after 5 sessions of imagery training, fMRI revealed that 
brain activation areas were scattered across motor planning and execution areas in both 
hemispheres. This result suggested a less characterized pattern of brain activity, although 
the most significantly active areas were consistent with previous studies reporting areas 
activated during motor imagery and BMI learning: the ipsilateral premotor cortex, sup-
plementary motor area, primary motor cortex, PPC, insula, and contralateral cerebellum 
[38, 39].

After 5 additional training sessions with the observation-based training provided, 
brain activation patterns tended to focused to the primary motor and sensory areas, 
PPC, and contralateral cerebellum. Wander et  al. [40] also demonstrated that cortical 
adaptation occurs during BMI learning, during which activation in the prefrontal cor-
tex, premotor cortex, and PPC tend to decrease as users switch from cognitive to auto-
matic phases. However, in our study, whereas prefrontal and premotor cortex activity 
decreased significantly, PPC activity was relatively sustained. This difference may arise 
from the fact that the participants were still in the training phase of external robot con-
trol, which may require PPC and cerebellar activity for planning movements and BMI 
learning [41], even if imagining the reaching movement itself may have entered the 
autonomic phase, requiring less prefrontal and premotor activity. This result suggests 
that reorganization and plasticity of the brain play an essential role in BMI training, in 
addition to algorithm-based training of the system, such as machine learning methods. 
Cortical reorganization during BMI training for reaching and grasping or neurofeedback 
in rehabilitation has also been shown in other studies [42, 43]. Because the gross activa-
tion pattern significantly changes with repeated training, machine learning parameters 
should be updated with each training session.

Limitations

Using the proposed shared control strategy for the robot end-effector to reach the 
intended target, the success rate of reaching the instructed target did not exceed the 
chance level significantly. It is possible that, as we could not confirm the difference in 
brain activation according to the direction of motion imagery in fMRI, it may be neces-
sary to observe the activation with electrodes of a higher spatial resolution in the area 
where activation is focused. At least, it is almost certain that EEG cannot distinguish the 
pattern inside the active area of the fMRI image in Fig. 12b. So, as the future study, more 
invasive electrodes with finer spatial resolution can be considered. Electrodes for elec-
trocorticography, which is less invasive (intermediate type of invasive and non-invasive 
electrodes) is expected to provide improved results.

Conclusions
This study presents a BMI training system that automatically detects and estimates the 
position of possible target objects. Further, we applied an artificial-potential-based algo-
rithm to predicted hand velocity, and it enabled a robot arm to selectively reach for an 
intended target. The developed training system was applied to two potential users with 
cervical spinal cord injury, and provided observation-based training. The pilot clinical 
study utilizing the training system suggested potential beneficial effects in characterizing 
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the brain activation patterns. The suggested training method may help adaptation and 
optimization of the brain activity, to eventually utilize the BMI practically as an assis-
tive technology. However, the shared control was not successful because of low decod-
ing power. When the size of focused activation area is considered, finer electrode with 
higher spatial resolution is required. The suggested training method may help adaptation 
and optimization of the brain activity.
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